42
www.iap.uni-jena.de Imaging and Aberration Theory Lecture 4: Aberrations Expansions 2012-11-09 Herbert Gross Winter term 2012

Imaging and Aberration Theory - Institute of Applied

  • Upload
    others

  • View
    44

  • Download
    6

Embed Size (px)

Citation preview

Page 1: Imaging and Aberration Theory - Institute of Applied

www.iap.uni-jena.de

Imaging and Aberration Theory

Lecture 4: Aberrations Expansions

2012-11-09

Herbert Gross

Winter term 2012

Page 2: Imaging and Aberration Theory - Institute of Applied

2

Preliminary time schedule

1 19.10. Paraxial imaging paraxial optics, fundamental laws of geometrical imaging, compound systems

2 26.10. Pupils, Fourier optics,

Hamiltonian coordinates

pupil definition, basic Fourier relationship, phase space, analogy optics and mechanics,

Hamiltonian coordinates

3 02.11. Fermat principle and eikonals Fermat principle, method of stationary phase, Eikonals, relation rays-waves, geometrical

approximation, inhomogeneous media

4 09.11. Aberration expansion single surface, general Taylor expansion, representations, various orders, stop shift

formulas

5 16.11. Representations of aberrations different types of representations, fields of application, limitations and pitfalls,

measurement of aberrations

6 23.11. Spherical aberration phenomenology, sph-free surfaces, skew spherical, correction of sph, aspherical

surfaces, higher orders

7 30.11. Distortion and coma phenomenology, relation to sine condition, aplanatic systems, effect of stop position,

various topics, correction options

8 07.12. Astigmatism and curvature phenomenology, Coddington equations, Petzval law, correction options

9 14.12. Chromatical aberrations,

Sine condition, isoplanatism

Dispersion, axial chromatical aberration, transverse chromatical aberration,

sine condition, Herschel condition, isoplanatism, relation to coma and shift,

Pupil aberrations, invariants, relation to Fourier optics and phase space

10 21.12. Surface contributions sensitivity in 3rd order, structure of a system, superposition and induced aberrations,

analysis of optical systems, lens contributions

11 04.01. Wave aberrations definition, various expansion forms, propagation of wave aberrations, relation to PSF

and OTF

12 11.01. Zernike polynomials special expansion for circular symmetry, problems, calculation, optimal balancing,

influence of normalization, recalculation for offset, ellipticity, measurement

13 18.01. Miscellaneous Aldi theorem, telecentric case, afocal case, aberration balancing, Delano

diagram, Scheimpflug imaging, Fresnel lenses

14 25.01. Vectorial aberrations Introduction, special cases, actual research, anamorphotic, partial symmetric

15 01.02. Statistical aberrations atmospheric turbulence, calculation, spatial frequency contents

16 08.02. Physical model of imaging coherent and incoherent imaging, Fourier description, partial coherence

Page 3: Imaging and Aberration Theory - Institute of Applied

Repetition...

Single refracting surface

Adaptation on optical system terms

Primary monochromatic aberration surface contributions

Extension on several surfaces

Pupil shift formula

Lens contributions

Examples

3

Contents

Page 4: Imaging and Aberration Theory - Institute of Applied

Wave Aberration

Exact relation between wave aberration and ray deviation

General expression from geometry

a describes the lateral aberration

Substitution of angle by scalar

product

Exact relation is quadratic in R

Approximation for large R

with

4

real ray

C

R

s

sr

reference

sphere

a

A

W

wave

front

z

yp

cos1

'1

'

22

0

R

asan

ss

assssnWW

r

rr

2

2222

41

2'

R

asa

R

asanWW

'2

''

22

zR

yx

yR

yx

R

xW

pp

pp

'

'

'

z

y

x

a

Page 5: Imaging and Aberration Theory - Institute of Applied

Fermat principle: the light takes the optical

path of the smallest time of flight

The derivative on variation parameters vanishes

Method of stationary phase:

The light propagates along rays, which

are locally perpendicular to the wave

5

Repetition

2

1

0),,(

P

P

dszyxnL

wave front

contributions

of stationary

phase in P

point of

calculation P

P1

P2

P3

P4

P5

A

B

initial path

modified path

dh

variation

0

h

L

Page 6: Imaging and Aberration Theory - Institute of Applied

A description of the light field by

rays or waves is equivalent

The eikonal function L describes the optical path length

A ray is fully described in one

plane by 4 parameters x, y, sx, sy

Due to the Fermat principle, there are only 4

independent parameters for one ray in a system,

they are coupled by the eikonal function

6

Repetition

object

plane

image

plane

z0 z1

y1

y0

phase

L = const

L = const

srays

),,,(',',',' yxyx ssyxLssyx

optical

system

s

angle

(direction)

point

r

object

spaceimage

space

s'

angle

(direction)

point r'

Page 7: Imaging and Aberration Theory - Institute of Applied

Considering spatial coordinates or directions, there are four different eikonals possible

A change in the object space

fully determines athe change

in the image space by the

eikonal characteristic function

The integration of the 4 derivative conditions fully describes the remaining parameters

Example angle eikonal:

Perfect imaging is only possible for infinitesimal field sizes:

ellipse, special gradient lenses, aplanatic surface,...

7

Repetition

optical

system

dr

ss'

dr'

P

B

Q

P'

B'

Q'

''')',( srdnsrdnrrdLP

xns

L

x

A

''

'xn

s

L

x

A

yn

s

L

y

A

''

'yn

s

L

y

A

Page 8: Imaging and Aberration Theory - Institute of Applied

Example eikonal

of refracting surface:

optical path length

Second order expansion: relation of paraxial optics

Fourth order expansion: aberrations

Ray-wave conversion: always possible, if no ray crossing occurs (outside caustics)

Approximation of geometrical optics:

separation of amplitude Eo and phase L in wave equation:

For small wavelength l, small gradients of phase and amplitude:

geometrical eikonal equation

8

Repetition

P

surface

Rrn n' P'

z

s'(-)s

uu'

aa'

Q

xx'

2222 )'()'(')()()( xrsznxrsznrL

02 0000

22

0

2

0 ELELEikLnEk

)(22rnL

Page 9: Imaging and Aberration Theory - Institute of Applied

Refracting Surface I: Basic Eikonal Approach

P, P' points on ray

A, A' arbitrary points on axis

s,s' direction unit vectors of the rays

relationship

Real surface equation

contains system parameters R, b

Angle eikonal, gives the optical path length change in P', if the point P is varied

In coordinate

representation

...)1(

82 3

22222

bR

yx

R

yxz

P

surface

R

Q

A

P'

A'

M

y

z

n n'

ss'

r

a

O origin

a'z

'''')',( sdarnsdarnssdLA

zyxzyxA dsazdsydsxndsazdsydsxndL '''''

2222 ''1',1 yxzyxz ssssss

Page 10: Imaging and Aberration Theory - Institute of Applied

Refracting Surface II: Eikonal

Integration of the differential to get the total optical path length

Result of 4th order Taylor approximation

Elimination of intermediate variables x, y of the intersection point with the help of the

law of refraction

222

2222222

3

222

2222222

3

2222

2222

''8

'

4

''

8

1'

848

1

''2

'

2'''

22

''

yx

yx

yx

yx

yxyx

yxyx

A

ssa

R

ssyxyx

R

bn

ssa

R

ssyxyx

R

bn

ssa

R

yxsysxn

ssa

R

yxsysxn

ananL

zyxzyxA sazsysxnsazsysxnL '''''

Page 11: Imaging and Aberration Theory - Institute of Applied

Refracting Surface III: Law of Refraction

Implicite surface equation

Normal unit vector in the intersection point

Law of refraction

Formulation in components

Solving for x, y in approximation of 4th order

3

22222

8

)1(

2),,(

R

yxb

R

yxzzyxF

1,

2

)1(1,

2

)1(1

),,(

2

22

2

22

zyx eR

yxb

R

ye

R

yxb

R

xe

zyxFe

0)''( esnsn

0

2

)1(1)''(

2

)1(1)''(

02

)1(1)''()''(

02

)1(1)''()''(

2

22

2

22

2

22

2

22

R

yxb

R

xsnns

R

yxb

R

ysnns

R

yxb

R

xsnnssnns

R

yxb

R

ysnnssnns

yyxx

zzxx

zzyy

'

'',

'

''

nn

snnsRy

nn

snnsRx

yyxx

Page 12: Imaging and Aberration Theory - Institute of Applied

Refracting Surface IV: Eikonal

Resulting Eikonal function of sx, sy, s‘x, s‘y only

Further re-arrangements for better practical usage:

1. introduction of the pupil coordinates xp, yp instead of the image sides directions s‘x, s‘y

2. switch to the image space ray parameters

3. optional switch to circular coordinates

4. according to Seidel substitution of the system parameter by the paraxial properties of the

system and the marginal ray

5. Further approximation in 4th order to get a perturbation representation of the paraxial

imaging. This allows a decoupling of the surface contributions

22

3

222222

222222

2

222222

)4()2()0(

'''')'(8

)1(''''

8

1

''''''')'(4

''2

''

2''''

)'(2''

yyxxyxyx

yxyxyyxx

yxyxyyxx

AAAA

snnssnnsnn

Rbssanssna

ssnssnsnnssnnsnn

R

ssan

ssna

snnssnnsnn

Ranna

LLLL

Page 13: Imaging and Aberration Theory - Institute of Applied

Refracting Surface V: Paraxial Optics

2nd order: paraxial optics

Eliminating sx, sy

Imaging condition: x‘, y‘ independent from ray directions sx, sy

1. imaging equation

2. Magnification

''

'''

''

1'

''

'''

''

1'

'

''

'

1

'

''

'

1

)2(

)2(

)2(

)2(

nn

nRs

nn

Rnas

s

L

ny

nn

nRs

nn

Rnas

s

L

nx

nn

Rns

nn

nRas

s

L

ny

nn

Rns

nn

nRas

s

L

nx

yy

y

A

xx

x

A

yy

y

A

xx

x

A

R

nn

a

n

a

n '

'

'

an

na

x

xm

an

naxx

'

'',

'

''

R

nn

a

n

a

ns

n

aa

R

nn

a

n

n

ayy

R

nn

a

n

a

ns

n

aa

R

nn

a

n

n

axx

y

x

'

'

'

'

''

'

'

'

''

'

'

'

'

''

'

'

'

''

Page 14: Imaging and Aberration Theory - Institute of Applied

Refracting Surface VI: Pupil Coordinates

Change to pupil coordinates

for optical systems

Relations

Approximated to 2nd order

object

plane

entrance

pupil

system

surface

s

p

y

y yp

yparcsin(sz)

arcsin(sy)

z

p

y

z

yp

y

z

p

x

z

xp

x

z

p

y

z

yp

y

z

p

x

z

xp

x

sp

yys

s

s

p

yyu

sp

xxs

s

s

p

xxu

sp

yys

s

s

p

yyu

sp

xxs

s

s

p

xxu

''

''',

'

'

'

'''tan

''

''',

'

'

'

'''tan

,tan

,tan

'

''',

'

'''

,

p

yys

p

xxs

p

yys

p

xxs

p

y

p

x

p

y

p

x

Page 15: Imaging and Aberration Theory - Institute of Applied

Refracting Surface VII: Eikonal

Eikonal of 4th order

Coefficients

1. Spherical aberration

2. Astigmatism

3. Field curvature

4. Distortion

5. Coma

pppppp

ppppA

yyxxyxp

pssCyyxxyx

p

pssDyyxxyx

p

pssP

yyxxp

pssAyx

p

sSyx

p

psKL

22

4

322

4

322

4

22

2

4

22222

4

4222

4

4)4(

2

)(

2

)(

4

)(

2

)(

88

)(

''

11)'(

''

11)(

''

11)'(

''

11)(

''

11)'(

''

11)'(

''

11)'(

'

1

'

1''

11)'(

3

2

3

3

2

3

2

3

2

2

2

23

snnsQQ

R

bnnC

snnsQQQ

snnsQ

R

bnnD

snnsQQQ

snnsQQ

R

bnnP

snnsQ

R

bnnA

snnsQ

R

bnnS

sRssn

sRsns

R

bnnK

p

pp

ppp

pp

pp

p

pp

Page 16: Imaging and Aberration Theory - Institute of Applied

Refracting Surface VIII: Aberrations

Corresponding differential equations of the angle eikonal determine the changes in the

spatial coordinates

Calculation of the transverse aberrations:

separation of the paraxial and the perturbation part

Used paraxial abbreviations:

1. pupil imaging magnification

2. Abbe invariants

3. usual special Picht-operator: difference before / after the refraction surface

''

1'',

''

1''

y

A

x

A

s

L

nyymy

s

L

nxxmx

''

1',

''

1'

)4()4(

y

A

x

A

s

L

nymy

s

L

nxmx

ps

ps

y

ym

p

p

p

'

''

p

psR

nQsR

nQ11

,11

...,,'

','

s

n

s

n

s

nnnn

Page 17: Imaging and Aberration Theory - Institute of Applied

Refracting Surface IX: Transverse Aberrations

Transverse aberrations

Due to the derivative, only 5 terms remain for the primary aberrations,

The transverse aberrations are of 3rd order in the coordinates

For the special cases of

1. image in infinity

2. exit pupil in infinity

there are particular sets of formulas

Possible variables:

1. x‘,y‘, x‘p,y‘p, s‘, s‘p, p‘

2. A,A‘, i, i‘

'sps'

pp

pp

pp

p

pp

pppp

pp

p

pp

pp

pp

p

pp

pppp

pp

p

yyxxpn

ssyCyx

pn

ssyDyx

pn

ssyA

yyxxpn

ssyCyx

pn

ssyPyx

pn

sySy

yyxxpn

ssxCyx

pn

ssxDyx

pn

ssxA

yyxxpn

ssxCyx

pn

ssxPyx

pn

sxSx

''''''

'''''

''2

'''''

''2

'''

''''''

'''''

''2

'''''

''2

'''

''''''

'''''

''2

'''''

''2

'''

''''''

'''''

''2

'''''

''2

'''

3

22

22

3

3

22

3

3

3

3

22

3

22

22

3

4

3

22

22

3

3

22

3

3

3

3

22

3

22

22

3

4

Page 18: Imaging and Aberration Theory - Institute of Applied

Generalization on Optical Systems

Paraxial optics: small field and aperture angles,

Aberrations occur for larger angle values

Two-dimensional Taylor expansion shows field

and aperture dependence

Expansion for one meridional field point y

Pupil: cartesian or polar grid in xp / yp

field

point

optical

axis

axis

point

entrance

pupil

coma rays

outer rays of

aperture cone

chief

ray

object

height y

xp

O

xp

yp

r

yp

ray

object

plane

meridional

plane

sagittal

plane

Page 19: Imaging and Aberration Theory - Institute of Applied

x, y object coordinates, especially object height

x', y' image coordinates, especially image height

xp,yp coordinates of entrance pupil

x'p, y'p coordinates of exit pupil

s object distance form 1st surface

s' image distance form last surface

p entrance pupil distance from 1st surface

p' exit pupil distance from last surface

x' sagittal transverse aberration

y' meridional transverse aberration

19

Notations for an Optical System

x

y

y

s

p

s'

p'

xP

yp

y'

x'

y'

x'P

y'p

object

plane

entrance

pupil

exit

pupil

image

plane

zx'

y'

system

surfaces

xP

yp

x'P

y'p

Page 20: Imaging and Aberration Theory - Institute of Applied

Sequence of refracting surfaces:

the optical path length contributions are additive

The contributions of every surface are summed up

Every surface contribution is imaged and magnified by the following surfaces

The successive surfaces fulfill sj+1 = s'j,...

The height ratios help to express the magnifications

Individual magnifications dependencies for the various aberration types

20

Sequence of Surfaces

1

1

21

1

1

21 '...'','...''N

k

kNkkN

N

k

kNkkN xmmmxxymmmyy

j

jh

h

1

pj

pj

p

h

h

1

P1 P2 P3P4 P5

Q1 Q2

Q3 Q4

Q5

Page 21: Imaging and Aberration Theory - Institute of Applied

Transverse Aberrations of Seidel

Decomposition of transverse aberrations

k

k

p

k

k

pppp

k

k

ppp

k

k

pppppp

k

k

ppp

Dpn

ssyxx

Ppn

ssyxxA

pn

ssyyxxx

Cpn

ssyxxyyxxxS

pn

syxxx

3

322

3

2222

3

22

3

322

3

422

''2

'''''

''2

'''''

''

'''''''

''2

''''''''''2

''2

'''''

k

k

p

k

k

pppp

k

k

ppp

k

k

pppppp

k

k

ppp

Dpn

ssyxy

Ppn

ssyxyA

pn

ssyyxxy

Cpn

ssyxyyyxxyS

pn

syxyy

3

322

3

2222

3

22

3

322

3

422

''2

'''''

''2

'''''

''

'''''''

''2

''''''''''2

''2

'''''

Page 22: Imaging and Aberration Theory - Institute of Applied

Surface Contributions

Spherical aberration

Coma

Astigmatisms

Field curvature

Distortion

jjjj

jjjsnsn

QS1

''

124

11

124 111

''

1

pjj

pjpj

jjjj

jjjssQ

Qn

snsnQC

2

11

2

124 111

''

1

pjj

pjpj

jjjj

jjjssQ

Qn

snsnQA

jjrpjj

pjpj

jjjj

jjjnnrssQ

Qn

snsnQP

1

'

11111

''

12

11

2

124

11

1

2

11

2

124 111

'

11111

''

1

pjj

pjpj

jjrpjj

pjpj

jjjj

jjjssQ

Qn

nnrssQ

Qn

snsnQD

Page 23: Imaging and Aberration Theory - Institute of Applied

Rotational Invariants

General case : two coordinates in object plane and pupil

Rotational symmetry: 3 invariants

1. Scalar product of field vector and pupil vector

2. Square of field height

3. Square of pupil height

Therefore:

Only special power

combinations are

physically meaningful

Object

Pupilx

y

P

F

y

x

xp

yp

z

xp

yp

F

P

222 yxFFFu

222

pp yxPPPv

yyxxFPFPw pp )cos( PF

Page 24: Imaging and Aberration Theory - Institute of Applied

Power Series Expansion of Aberrations

General case of Taylor expansion

Expansion with selection rules:

only powers of the rotational invariants can occur

Simple expansion according

to this scheme

Explicite equation in real coordinates

nmlk

nml

p

k

pklmn yxyxaW,,,

),,( wvuWW

...)(

)()()()()(

)()()(

)(

6

10

5

9

224

8

24

7

33

6

223

5

2222

4

2222

3

222

2

322

1

4

6

3

5

222

4

22

3

22

2

222

1

2

32

22

10

ydyydyxydyydyyd

yxyydyxydyxyydyxyydyxd

ycyycyxycyycyxyycyxc

ybyybyxbaW

ppppp

ppppppppppppp

ppppppppp

ppp

...3

10

2

9

2

8

2

7

3

65

2

4

2

3

2

2

3

1

2

654

2

32

2

1

3210

udwudvuduwdwduwvduvdvwdwvdvd

ucuwcuvcwcwvcvc

ubwbvbaW

Page 25: Imaging and Aberration Theory - Institute of Applied

Higher Order Aberrations

Relevance of higher order expansion terms

Perfect geometrical imaging possible in the special cases:

1. small aperture

2. small field

(29-6)

field y/w

aperture

DAP/NA2nd order

in NA

4th order

in NA

6th order

in NA....

....

2nd

order

in y

4th

order

in y

6th

order

in y

paraxial

optics

conic mirrors

telescopes

microscopy

high NA

monocentric

systems

photography

wide angle

micro

lithography

Page 26: Imaging and Aberration Theory - Institute of Applied

Circular Coordinates

Introduction of circular coordinates

according to the geometry

Transverse aberrations

Aberration curves:

Considering a rinf with constant r'p in the pupil,

- eliminating 'p

- delivers curve in image plane for x', y'

22''' ppp yxr

ppp

ppp

ry

rx

'cos'

'sin''

ppp

pp

p

p

pppp

p

pp

p

pp

ppp

pp

p

p

pppp

p

pp

p

pp

p

yxrpn

ssyCyx

pn

ssyDr

pn

ssyA

yxrpn

ssCyxr

pn

ssPr

pn

sSy

yxrpn

ssxCyx

pn

ssxDr

pn

ssxA

yxrpn

ssCyxr

pn

ssPr

pn

sxSx

'cos''sin''''

'''''

''2

''''

''2

'''

'cos''cos'sin''''

'''''cos'

''2

'''cos'

''2

''

'cos''sin''''

'''''

''2

''''

''2

'''

'cos'sin''sin''''

'''''sin'

''2

'''sin'

''2

'''

3

22

22

3

3

2

3

3

22

3

3

22

3

22

3

3

4

3

22

22

3

3

2

3

3

22

3

3

22

3

22

3

3

4

Page 27: Imaging and Aberration Theory - Institute of Applied

Polynomial Expansion of Aberrations

Representation of 2-dimensional Taylor series vs field y and aperture r

Selection rules: checkerboard filling of the matrix

Constant sum of exponents according to the order

Field y

Spherical

y0 y 1 y 2 y3 y 4 y 5

Distortion

r

0

y

y3

primary

y5

secondary

r

1

r 1

Defocus

Aper-

ture

r

r

2

r2y Coma primary

r 3

r 3 Spherical

primary

r

4

r

5

r 5 Spherical

secondary

DistortionDistortionTilt

Coma Astigmatism

Image

location

Primary

aberrations /

Seidel

Astig./Curvat.

cos

cos

cos2

cos

Secondary

aberrations

cos

r 3y 2 cos

2

Coma

secondary

r4y cos

r2y

3 cos

3

r2y

3 cos

r1 y

4

r1 y

4 cos

2

r 3y 2

r12

yr

12 y

Page 28: Imaging and Aberration Theory - Institute of Applied

Power Expansion of Aberrations

Wave aberration

Transverse aberration

Longitudinal aberration Aberration Coefficient

Seidel sum

Aperture Field Aperture Field Aperture Field

Spherical aberr. c1 IS 4 0 3 0 2 0

Coma c2 IIS 3 1 2 1 1 1

Astigmatism c3 IIIS 2 2 1 2 0 2

Field curvatures (sagittal)

c4

(Petzval)

IVS 2 2 1 2 0 2

Distortion c5 VS 1 3 0 3 - -

Axial color 1

~b

IC 2 0 1 0 0 0

Lateral color 2

~b

IIC 1 1 0 1 - -

From : H. Zügge

Orders of field and aperture dependencies for different representations of primary

aberrations

Page 29: Imaging and Aberration Theory - Institute of Applied

29

5th Order Aberrations

No

k Field

power

l, Pupil power

m, Azimuthal

power Term Name

1 0 6 0 W rp060

6 Secondary spherical aberration

2 1 5 1 W y rp151

5' cos Secondary coma

3 2 4 2 W y rp242

2 4 2' cos Secondary astigmatis, wing error

4 3 3 3 W y rp333

3 3 3' cos trefoil error, arrow error

5 2 4 0 W y rp240

2 4' Skew spherical aberration

6 3 3 1 W y rp331

3 3' cos Skew coma

7 4 2 2 W y rp422

4 2 2' cos Skew astigmatism

8 4 2 0 W y rp420

4 2' Secondary field curvature

9 5 1 1 W y rp511

5' cos Secondary distortion

Page 30: Imaging and Aberration Theory - Institute of Applied

Power Series Expansion of Aberrations

If the stop is moved, the chief ray takes a modified way through the system

The stop shift formulas shows the change of the Seidel coefficients due to this

effect

II sS

IIIII sA

AsS

IIIIIIII sA

AsS

IVIV sS

,

imageplane

ray

y'chief ray 1

chief ray 2

ExP 1ExP 2

p'1

rpmax

z

p'2

IVIIIVV ss

A

AsS

Page 31: Imaging and Aberration Theory - Institute of Applied

Power Series Expansion of Aberrations

Stop shift formulas excplicite with the help of the

moving parameter

,

h

hhE oldnew

old position

new position

old chief ray

new chief ray

oldh

new

h

II SS

IIIII SESS

IIIIIIIII SESESS 2

IVIV SS

IIIIVIIIVV SESESSESS 3233

Page 32: Imaging and Aberration Theory - Institute of Applied

There is a large number of different notations for the thrid order representation:

Haferkorn, Welford, Seidel, Berek, Köhler,...

The differences are the choice of the parameter and some of the approximations

The so called reduced representations are of a special form without considering the

field dependence explicite

Example: Zernike expansion

The third order theory is limited on systems with not too high angles of marginal and chief

ray

Mostly the third order describes the leading term

Higher orders than 3 can not be decomposed as simple into the surface contributions:

1. the magnification of the following surfaces acts non-linear and can not be neglected

2. the second order perturbation theory has no decoupling of the contributions

(induced aberrations)

32

Notations

Page 33: Imaging and Aberration Theory - Institute of Applied

Welford‘s Notation

Abbreviations

bar: chief ray

Seidel aberrations

1. spherical aberration

2. coma

3. astigmatism

4. Petzval curvature

5. distortion

Representation in normalized circular coordinates

'')( ininuhcnA

'')( ininuchnA

n

uhAS I

2

n

uhAAS II

n

uhAS III

2

ncHS IV

12

ncH

A

A

n

uh

A

ASV

123

maxmax

,y

y

r

r

coscoscos),,(32222234

2

1

4

1

2

1

2

1

8

1VIVIIIIIIIII SSSSSSW

Page 34: Imaging and Aberration Theory - Institute of Applied

Surface Contributions: Example

Seidel aberrations:

representation as sum of

surface contributions possible

Gives information on correction

of a system

Example: photographic lens

1

23 4

5

6 8 9

10

7

Retrofocus F/2.8

Field: w=37°

SI

Spherical Aberration

SII

Coma

-200

0

200

-1000

0

1000

-2000

0

2000

-1000

0

1000

-100

0

150

-400

0

600

-6000

0

6000

SIII

Astigmatism

SIV

Petzval field curvature

SV

Distortion

CI

Axial color

CII

Lateral color

Surface 1 2 3 4 5 6 7 8 9 10 Sum

Page 35: Imaging and Aberration Theory - Institute of Applied

Graphical supported representation of the Seidel surface contributions of a photographic

lens

35

Seidel Surface Contributions

Page 36: Imaging and Aberration Theory - Institute of Applied

Microscopic Objective Lens

Incidence angles for chief and

marginal ray

Aperture dominant system

marginal ray

chief ray

incidence angle

0 5 10 15 20 2560

40

20

0

20

40

60

microscope objective lens

Page 37: Imaging and Aberration Theory - Institute of Applied

Photographic lens

Incidence angles for chief and

marginal ray

Field dominant system

incidence angle

chief

ray

Photographic lens

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1560

40

20

0

20

40

60

marginal

ray

Page 38: Imaging and Aberration Theory - Institute of Applied

Microscope Objective Lens

Seidel surface contributions

for 100x/0.90

No field flattening group

Lateral color in tube lens corrected

5 10

-0.5

0

0.5

-0.02

0

0.02

-4

-2

0

2

4

-5

0

5

-2

0

2

-0.02

0

0.02

-1

0

1

spherical

coma

astigmatism

curvature

distortion

axial

chromatic

lateral

chromatic

1

518

11

13

sum

Page 39: Imaging and Aberration Theory - Institute of Applied

Zoom lens

Three moving groups

Zoom Lens

e)

f' = 203 mm

w = 5.64°

F# = 16.6

d)

f' = 160 mm

w = 7.13°

F# = 13.7

c)

f' = 120 mm

w = 9.46°

F# = 10.9

b)

f' = 85 mm

w = 13.24°

F# = 8.5

a)

f' = 72 mm

w = 15.52°

F# = 7.7

group 1 group 2 group 3

Page 40: Imaging and Aberration Theory - Institute of Applied

Performance Variation over z

Seidel

surface

contrib.

coma distortion axial chromatical lateral chromatical

lens 1

lens 2

lens 3

sum

spherical aberration

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

-0.1

0

0.1

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

-0.2

-0.1

0

0.1

0.2

-0.2

-0.1

0

0.1

0.2

-0.2

-0.1

0

0.1

0.2

-0.2

-0.1

0

0.1

0.2

1 2 3 4 5

-5

0

5

1 2 3 4 5

-5

0

5

1 2 3 4 5

-5

0

5

1 2 3 4 5

-5

0

5

1 2 3 4 5

-5

0

5

1 2 3 4 5

-5

0

5

1 2 3 4 5

-5

0

5

1 2 3 4 5

-5

0

5

1 2 3 4 5

-0.5

0

0.5

1 2 3 4 5

-0.5

0

0.5

1 2 3 4 5

-0.5

0

0.5

1 2 3 4 5

-

0.5

0

0.5

Page 41: Imaging and Aberration Theory - Institute of Applied

Lens Contributions of Seidel

In 3rd order (Seidel) :

Additive contributions of thin lenses (equal ) to the total aberration value

(stop at lens position)

Spherical aberration

X: lens bending

M: position parameter

Coma

Astigmatisms

Field curvature

Distortion

2

22

23

3 2

)1(

2

)1(2

1

2

1)1(32

1M

n

nnM

n

nX

n

n

n

n

fnnSlens

MnX

n

n

fnsClens )12(

1

1

'4

12

2'2

1

sfAlens

2'4

1

snf

nPlens

0lensD

Page 42: Imaging and Aberration Theory - Institute of Applied

Lens Contributions of Seidel

Spherical aberration

Special impact on correction:

1. Special quadratic dependence on

bending X

Minimum at

2. No correction for small n and M

3. Correction for large

n: infrared materials

M: virtual imaging

Limiting value

2

22

23

3 2

)1(

2

)1(2

1

2

1)1(32

1M

n

nnM

n

nX

n

n

n

n

fnnSlens

sphW

X

M = 6M = - 6

M = - 3M = 0

M = 3

n = 1.5

X

n

nMsph min

2 1

2

2

M

n n

ns

0

2

2

2

1