In vitro reconstitution of wool-IF.pdf

Embed Size (px)

Citation preview

  • 7/26/2019 In vitro reconstitution of wool-IF.pdf

    1/7

    n v i t r o r e c o n s t i t u t i o n o f w o o l

    i n t e r m e d i a t e f i l a m e n t s

    Helga Thomas, Andrea Conrads,

    K i m - H b P h a n ,

    Monika van de Li icht and

    H e l m u t

    Z a h n t

    D e u t s c h e s W o l l f o r s ch u n g s i n st i t u t a n d e r R W T H A a c h e n V e l t m a n p la t z 8 D - 5 1 0 0 A a c h e n F R G

    (Received 7 February 1986; revised 7 May 1986)

    Al thou yh the hard a-kerat ins o f woo l are recognized as mem bers oJ the in termediate j i lame nts by sequence

    comparison thus far a l l a t t empts on recons t i tu t ion o f woo l a-kerat in f i lamen ts

    in vitro

    have f i~iled. Here we show

    that ox idat ive sulphito lys is rather than the prev ious ly used S-carboxy methy lat ion i s the method Of choice to

    prepare a -kerat in der ivatives sui table ., (or assemb ly exper ime nts . O nce the protec t ing S-sulpho grou p i s removed

    by 2 - m e r c ap t oe thano l in vitro . fi lament form at ion can be induced. Elec t ron micrographs show f i laments wi th a

    diameter o f ~ 1 1 nm as in a l l o ther in termediate . fi laments . Thu s , f i lament Jormation o/ c t -kerat ins does not

    require the presence o f m atr ix prote ins .

    Keywords: Intermediate filaments: in vitro reconstitu tion: negative staining; oxidative sulphitolysis

    Introduction

    I n t e r me d ia t e f i l a me n t s ( I F ) a r e a c o n s t i t u e n t o f t h e

    c y to s k e l e to n p r e s e n t i n a lmo s t a l l v e r t e b r a t e c e l l s . T h e y

    w e r e o r i g in a l l y d e s c r i b e d a t t h e e l e c t r o n m ic r o s c o p i c a l

    l e v e l a s f i l a me n to u s s t r u c tu r e s w i th a c h a r a c t e r i s t i c

    d i a m e t e r o f 7 - 1 n m w h i c h is in t e r m e d i a t e b e t w e e n th a t

    o f th e a c t i n - c o n t a i n i n g m i c r o f i l a m e n t s ( 5 -7 n m ) a n d t h e

    t u b u l i n - c o n t a i n i n g m i c r o t u b u l e s (2 5 n m ) 1. A l t h o u g h I F

    a r e a g r o u p o f s t r u c tu r a l l y s imi l a r f il a me n t s s h o w in g

    p a r t ia l s e q u e n c e h o m o l o g y a n d a h i g h p e r c e n t a g e o f ~-

    h e l ic a l c o n f o r m a t io n , t h e y c a n b e d iv id e d i n to f iv e d i s t i n c t

    c la ss e s a c c o r d in g t o t h e i r i m m u n o l o g i c a l a n d b i o c h e m i c a l

    c r i t e r i a : k e r a t i n s , v ime n t in , d e s min , g l i a l f i l a me n t s a n d

    n e u r o f i l a m e n t s 2. C o m p a r e d w i t h t h e o t h e r f o u r g r o u p s

    th e k e r a t i n s r e p r e s e n t t h e mo s t c o m p le x c l a s s 6 . R e c e n t l y ,

    the mic ro f ibr i l s o f ha r d c~-ke ra tins hav e been inc lude d in to

    th e c l as s o f I F b a s e d o n t h e i r s e q u e n c e a n d s t r u c tu r a l

    h o m o lo g i e s w i th t h e o th e r I F p r o t e in s 4 8.

    G e n e r a l l y , a m in o a c id se q u e n c e d a t a h a v e r e v e a l e d

    t h a t I F s u b u n i t s a r e c o m p o s e d o f a c e n t r a l s -h e l ic a l

    d o m a i n o f c o n s e r v e d l e n g th a n d s e c o n d a r y s t r u c t u re a n d

    tw o n o n c t - h e l i c a l p a r t s a t t h e a min o a n d c a r b o x y

    t e r m i n u s , s h o w i n g i n c o n t r a s t t o t h e c e n tr a l d o m a i n w i d e

    v a r i a t i o n s i n s i z e a n d p r im a r y s t r u c tu r e 5 '9 t l

    A l t h o u g h w o o l f i l a m e n t o u s s t r u c t u r e s s i m i l ar t o t h o s e

    o f I F h a v e b e e n o b s e r v e d i n t h e e le c t r o n mic r o s c o p e a f t e r

    me c h a n i c a l d i s r u p tu r e o f w o o l f ib r e s l 2, i n t a c t h a i r k e r a t i n

    f i l a me n t s h a v e b e e n i s o l a t e d o n ly f r o m f o l l i c l e s o f r a t

    v ib r a s s a e a n d t h e i n n e r r o o t s h e a th o f g u in e a - p ig

    h a i r t 3 't * . A t t e mp t s h a v e b e e n m a d e t o r e c o n s t i t u t e

    mic r o f ib r i l l a r p r o t e in s f r o m h a r d k e r a t i n f i b r e s ( w o o l )

    a f t e r d ig e s t i o n o f t h e n o n - h e l i c a l t a i ls tS ' t 6 , w h e r e a s i n t a c t

    p r o t e in m a te r i a l f r o m th e o th e r I F - c o n t a in in g t i s s u e s, e. g .

    * Partly presented at the EMBO-Workshop Intermediat e Filaments:

    Structure, Function and Patho logy' , Irsee, 27-30 April 1985 as well as a

    poster demonstrat ion at the 3rd Meeting of the European Cytoskeletal

    Club, 'The Cytoskeleton in De velopment and Pathogenesis' , Bielefeld,

    7-10 September 1985.

    + To whom correspondence should be addressed.

    0141-8130/86/050258~7503.00

    ~ 1986 Butterworth & Co. [Publishers) Ltd

    2 5 8 I n t . J . B io l . M a c r o mo l . , 1 9 86 , V o l 8 , O c to b e r

    a s t r o c y t e s , s mo o th mu s c l e c e l l s , k e r a t i n i z in g a n d n o n -

    k e r a t i n i z in g e p i t h e l i a h a v e b e e n i s o l a t e d a n d

    r e c o n s t i t u t e d

    in v i t ro 17.

    T h e s e d i f f ic u l ti e s w i th h a r d k e r a t i n s a r e d u e t o t h e

    e x t r e me in s o lu b i l i t y o f t h e w o o l mic r o f ib r i l l a r p r o t e in s ,

    r e s u l t i n g fr o m h ig h c o n t e n t s o f c y s t i n e b r id g e s a n d t h e

    e x i s t e n c e o f a s u lp h u r - r i c h i n t e r mic r o f ib r i l l a r ma t r i x i n

    w o o l a n d h a i r , l e a d in g t o a c o - e x t r a c t i o n o f b o th

    c o mp o n e n t s a f t e r c l e a v a g e o f t h e c y s t i n e l i n k a g e s .

    U p t il l n o w e x t r a c t i o n o f w o o l k e r a t i n s i n v o lv in g a

    s e p a r a t i o n i n to mic r o f ib r i l l a r a n d m a t r i x p r o t e in s h a s

    b e e n p e r f o r m e d u s i n g e i t h e r S - c a r b o x y m e t h y l a t i o n o r

    o x id a t i o n p r o c e d u r e s 1 8't 9. T h e s e l e d , h o w e v e r , t o n e w

    in t r o d u c e d c h a r g e s . S o f a r n o

    i n v i t r o

    r e c o n s t i t u ti o n o f

    w o o l mic r o f ib r i l s b a s e d o n t h e s e i s o l a t i o n me th o d s h a s

    b e e n d e s c r i b e d . W i th a mo d i f i e d o x id a t i v e s u lp h i t o ly s i s

    p r o c e d u r e a c c o r d i n g t o B a i l e y 2 ' 2 1 w e h a v e a l r e a d y

    s h o w n 2 2-2 4 t h e p o s s ib i l i ty o f e x t r a c t i n g w o o l k e r a t i n s i n

    th e S - s u lp h o f o r m, w h ic h a l l o w s a s e p a r a t i o n i n to

    mic r o f ib r i l l a r a n d ma t r i x p r o t e in s a s w e l l a s t h e

    r e f o r m a t io n o f c y s t i n e b ri d g e s . I t w a s t h e r e f o r e o b v io u s t o

    u s e t hi s t e c h n i q u e in o r d e r t o a t t e m p t - - a s i n t h e c as e o f

    t h e o t h e r I F t y p e s - - a r e c o n s t i t u ti o n o f w o o l i n t e r m e d i a t e

    f i l a me n t s w h ic h c a n b e c h a r a c t e r i z e d b y e l e c t r o n

    mic r o s c o p y . W e s h o u ld l i k e t o d e s c r i b e h e r e t h e

    e x t r a c t i o n p r o c e d u r e a s s u c h , i n v o lv in g s o lu b i l i z a t i o n

    a n d f r a c t io n a t i o n s t e ps , a n d t h e

    i n v i t r o

    r e c o n s t i t u t i o n o f

    wool mic rof ibr i l s .

    Mater ia l s and methods

    S t a r t i n g m a t e r i a l

    U n d a m a g e d L in c o ln w o o l (~b 3 8 / a m, w i th o u t t ip s ).

    E x t e r n a l l i p id w a s r e mo v e d b y a S o x h l e t e x t r a c t i o n

    p r o c e d u r e u s i ng d i c h l o r o m e t h a n e f o r 2 h.

    E x t r a c t i o n o f S - s u l p h o - k e r a t e i m

    O n e g r a m s n i p p et s o f L i n c o l n w o o l ( a p p r o x i m a t e l y

    2 m m ) w e r e e x t r a ct e d w i t h 1 0 0 m l o f t h e f ol l o w in g

    s u lp h i t o ly s i s r e a g e n t : 0 . 2 M N a 2 S O 3 , 0 . I M N a z S a O 6 i n

  • 7/26/2019 In vitro reconstitution of wool-IF.pdf

    2/7

    In v i t ro

    r e c o n s t i t u t i o n o f w o o l i n t e r me d i a t e f i l a me n t s : H . T h o ma s

    et al.

    8

    M

    urea, 0 .1 MTri s , pH 9 .5 , fo r 24 h a t room temp era tu re .

    The inso lub le res idue was removed af t e r cen t r i fuga t ion

    ( 4 0 0 0 r e v / mi n , r o o m t e mp e r a t u r e , 3 0 mi n ) a n d t h e

    superna tan t was d ia lysed aga ins t de ion ized water fo r 2

    days (Visking dialys is tube 27/32).

    Separa t ion o f matr ix and micro f ibr i l lar pro te ins

    After concen t ra t ing the S-su lpho-kera t e in -con ta in ing

    so lu t ion to 100 ml , 2 ml o f a 1 M z inc ace ta t e so lu t ion w ere

    added ( resu l t ing pH 6 .045 .5 ) and the p rec ip i t a t ed

    pro te ins separa t ed by cen t r i fuga t ion (4000 rev /min , roo m

    t e mp e r a t u r e , 3 0 mi n ) . T h e p e l l e t w a s s u s p e n d e d i n 1 %

    s o d i u m c i t r a t e s o l u t i o n t o a p r o t e i n c o n c e n t r a t i o n o f

    approx imate ly 1% and d ia lysed aga ins t 30 - fo ld excess o f

    d i s ti l led wa ter and 0 .05 M sod iu m te t rab ora te so lu t ion .

    The p ro te ins were aga in p rec ip i t a t ed wi th z inc ace ta t e ,

    red i s so lved in sod ium c i t ra t e , d i a lysed aga ins t d i s t i l l ed

    wa ter a nd f ina lly f reeze-d r i ed .

    In v i t ro

    r e c o n s ti t u ti o n o f w o o l f i l a me n t s

    The p rec ip i t a t ed f reeze-d r i ed p ro te ins were d i s so lved in

    the fo l lowing so lu t ion (2 mg /ml ) an d kep t fo r 12-15 h a t

    6C: 8 M urea , 8 % f l -m ercap toe thano l , 0 .05 M Tr i s -HC 1

    pH 7 .5 . Af te r cen t r i fuga t ion (10 0000 g , 4C, 10m in)

    f i lamen t s were recons t i tu t ed b y d ia lys ing the supern a tan t

    a t 6 C o v e r n i g h t a g a i n s t 4 M u r e a , 1 0 mM T r i s - H Cl p H

    7.5 , 25mM f l -mercap toe thano l . Fur ther d i a lys i s was

    per fo rmed aga ins t 10mM Tr i s -HC1 pH 7 .5 , 10mM f l -

    me r c a p t o e t h a n o l f o r a n o t h e r p e r i o d o f 1 2 - 2 4 h a t 6 C .

    So lu t ions o f recon s t i tu t ed w ool kera t in f i lamen t s were

    d i lu t ed to approx imate ly i mg/ml wi th the l as t d i a lys i s

    buf fer and a d ro p o f th i s so lu t ion p laced on a g l as s p l a t e

    covered wi th paraf i lm. A carbon coa ted g r id (Cu ,

    3 .05 mm , 200 mesh T ed Pe l l a Inc .) was p laced w i th the

    c a r b o n s i de o n t o t h e s u r f a c e o f th e d r o p , a l lo w i n g t h e

    p r o t e i n s to a d s o r b d u r i n g 2 - 5 m i n . T h e s a mp l e s w e r e th e n

    i mme d i a t e l y c o n t r a s t e d w i t h u r a n y l a c e t a t e ( 1 - 2 % ,

    f i l t e red so lu t ion) dur ing 60 s and a i r d r i ed .

    Elec tron microscopy

    Neg at ive ly s ta ined spec im ens were examined in a Ze i s s

    E M 1 0 9 e l e c t r o n mi c r o s c o p e t h a t w a s o p e r a t e d a t a n

    acce le ra t ing vo l t age o f 50 kV. E lec t ron m icrograph s w ere

    r e c o r d e d a t e i t h e r 2 0 0 0 0 o r 5 0 0 0 0 t i me s n o mi n a l

    ma g n i f i c a ti o n o n A G F A O r t h o 2 5 f ilm a n d d e v e l o p e d f o r

    17min a t 20C in I l fo rd Percep to l . Magn i f i ca t ion

    ca l ib ra t ion was per fo rmed us ing a l i ne g r id .

    Amino ac id ana lys i s

    Sa mp l e s o f th e S - s u l p h o - p ro t e i n s w e r e h y d r o l y s e d w i t h

    c o n s t a n t b o i l i n g 6 M H C I a t 1 0 8C u n d e r v a c u u m f o r 2 4 h

    a n d a n a l y s e d o n a B i o t r o n i c L C 6 0 0 0 E a mi n o a c i d

    ana lyser .

    Prepara t ion o f rad io label led S -carboxymethy la ted

    kera te ins

    T h e r e d u c t i v e c l e a v a g e o f th e S - s u l ph o g r o u p s a n d t h e

    fo l lowing S-carbox ym et hy la t ion s t ep ( iodo[2-14C]_ace t ic

    a c i d ) w e r e c a r r i e d o u t u n d e r t h e s a me c o n d i t i o n s a s

    descr ibed by M arsha l l and Gi l l esp ie 26.

    Polyacrylamide gel electrophoresis

    So l u t i o n s o f r a d io l a b e l le d p r o t e i n s w e r e e x a mi n e d b y

    t w o - d i me n s i o n a l p o l y a c r y l a mi d e g e l e l e c t r o p h o r e s i s

    accord ing to Ma rsha l l and Gi l l esp ie 26. P ro te in

    separa t ion w as car r i ed ou t a t p H 8 .9 ( l s t d im. : 8 M urea ,

    7 . 5 % s e p a r a t i o n g e l ; 2 n d d i m . : 0 . 1 % SD S, 1 0 %

    separat ion gel) .

    Af te r e l ec t rophores i s , rad io labe l l ed p ro te ins were

    l o c a t e d b y f l u o ro g r a p h y . T h e g e l w a s i mp r e g n a t e d w i t h

    2 . 5 - d ip h e n y l o x a z o le a n d p la c e d o n a K o d a k - X - O m a t A R

    film a t - 35C fo r 7 h a f t e r d ry ing the ge l a t 80C under

    v a c u u m.

    Pro te in prepara t ion for l aC-n .m.r s tud ies

    Freeze-d r i ed S-su lpho-pro te in f rac t ions were d i s so lved

    in the fol lowing solut ion (1 mg /ml) for 12-15 h at 6C: 8 ~o

    f l -merca p toe thano l , 8 M urea , 0 .05 M Tr i s -H Cl , pH 7 .5 .

    Af te r cen t r i fuga t ion (4000 rev /min , room temp era tu re ,

    1 0 mi n ) t h e s u p e r n a t a n t w a s d i l u t e d w i t h 8 M u r e a t o

    appro x im ate ly 1 mg/m l . P ro te ins w ere f reeze-d r ied a f te r

    d i a ly s in g a g a i n s t a b u f fe r c o n ta i n i n g 0 .0 5 M N H 4 H CO 3 /

    N H 3 O H , p H 8 .5 f o r 1 0 d a y s .

    Re su l t s

    Figure 1

    s h o w s s c h e ma t i c a ll y t h e e x t r a c t io n o f w o o l

    kera t ins us ing ox ida t ive su lph i to lys i s . Af t e r reduc t ive

    c leavage o f the cys t ine b r idges wi th so d ium su lph i te ,

    c y s t e i n e g r o u p s a r e c o mp l e t e l y c o n v e r t e d i n t o t h e S -

    s u l p h o f o r m b y t h ei r r e a c t i o n w i t h s o d i u m t e t r a t h io n a t e

    and sod ium su lph i t e . A separa t ion in to micro f ib r il l a r and

    mat r ix p ro te ins can be ach ieved accord ing to the i r

    d i f fe ren t so lub i l i t y behav iour us ing an i soe lec t r i c

    p rec ip i t a t ion p rocedu re . Af te r rem oval o f the so lub le

    ma t r i x c o mp o n e n t s t h e f i l a me n t o u s S - s u l p h o p r o t e i n s

    can b e t rans fo rm ed in to the th io l fo rm us ing an excess o f a

    reducing agen t .

    W i t h t h e o x i d a t i v e s u lp h i to l y s is p r o c e d u r e m o r e t h a n

    50% of the s t a r t ing mater i a l (L inco ln wool ) can b e

    so lub i li zed . Scann ing e l ec t ron m icrosc opy sh ow s 25 tha t

    P e l l e t : m i c r o f i b r i l l a r p r o t e i n s

    ( L S - S S O 3 )

    R e d u c t i o n

    s s s o s

    R e c o n s t i t u t i o n o f I F

    ( L S - S S - L S )

    W o o l

    K e r a t i n

    e x t r a c t i o n

    o x i d a t i v e s u l p h i t o l y s i s )

    k e r - S S - k e r ~ 2 k e r - S S 0 3~

    I s o e l e c tr ic p r e c i p i t a t i o n

    S u p e r n a t a n t : m a t r ix p r o t e in s

    ( H S - S S 0 3 0 )

    Figure 1 W ool keratin extraction schem e. Protein extraction

    procedure performing oxidative sulphitolysis followed by an

    isoelectrical precipitation of the microfibrillar, low sulphur

    proteins (LS-SSO~ ); matrix, high sulphur proteins (HS-SSO 3)

    remain in solution. Cleavage of the S-sulpho groups can be

    achieved by reaction with an excess of reducing agent. Low

    sulphur proteins so prepared are the starting material for the

    in

    vitro

    reconstitution experiments of wool IF

    in t . j . Bio l . Macromol . , 1986 , Vol 8 , October

    259

  • 7/26/2019 In vitro reconstitution of wool-IF.pdf

    3/7

    I n v i t r o

    reconst i tu t ion of w ool in termediate . fi laments: H. Tho ma s

    et a l .

    t h e r e m a i n i n g r e s i d u e is c o m p o s e d o f a m e m b r a n e - l i k e

    n e t w o r k o f f i b re f r a g m e n t s a s w el l a s n e a r l y u n d a m a g e d

    w o o l f i b r e s i n m i n o r a m o u n t s .

    T h e m a t e r i a l s s ol u b i li z e d w i t h s o d i u m s u l p h i t e / s o d i u m

    t e t r a t h i o n a t e a r e c o m p o s e d o f m i c r o f i b r il l a r a n d m a t r i x

    p r o t e i n m a t e r i a l , a s s h o w n b y c o m p a r i s o n o f o u r t w o -

    d i m e n s i o n a l p o l y a c r y l a m i d e g el e l e c tr o p h o r e s i s ( 2 D -

    P A G E ) p r o t e i n p a t t e r n s w i t h th o s e o f M a r s h a l l f o r S -

    c a r b o x y m e t h y l a t e d k e r a t e i n s Figure

    2) 26.

    A c c o r d i n g t o t h e e x t r a c t i o n s c h e m e a n i s o e l e c t r i c

    p r e c i p i t a ti o n u s i n g zi n c a c e ta t e w a s p e r f o r m e d i n o r d e r t o

    s e p a r a t e m a t r i x f r o m m i c r o f i b r i l l a r k e r a t e in s 2 7 ; 6 4 9/0 o f

    t h e s o l u b i l i z e d S - s u l p h o p r o t e i n s a l w a y s p r e c i p i t a t e d ,

    i n d e p e n d e n t l y o f t h e e x t r a c t i o n r a t e . T o t e s t w h e t h e r t h i s

    s e p a r a t i o n w a s c o m p l e t e , a m i n o a c i d a n a l y s i s a s w e l l a s

    2 D - P A G E , w e r e c a r ri e d o u t . Table 1 s h o w s t h e a m i n o

    a c i d c o m p o s i t i o n o f th e p r e c i p i ta t e a n d t h e s u p e r n a t a n t ;

    t h e r e a r e m a r k e d d i f fe r e n c e s i n t h e c o n t e n t o f c e r t a i n

    a m i n o a c i d s , e sp e c i a l ly in t h e c y s t i n e c o n t e n t . T h e

    p r e c i p i t a t e d p r o t e i n s a r e e n r i c h e d i n a - h e l i x s t a b i l i z i n g

    a m i n o a c i d s ( A s p , G l u , L y s , L e u , A l a ) w h i l e t h e o t h e r

    ~ ~ / ~ i ~ / ~ ~ : / i ~ : ~ ~

    F igure 2 2D -P A GE of a wool p ro te in ex trac t The s am ple i s

    com posed of h igh su lphur (HS ) and low su lphur (LS ) p ro te ins .

    Af te r reduc t ive c leavage of the p ro tec t ing S -su lpho groups

    sam ples were rad io labe l l ed by S -ca rboxym ethy la t ion o f the

    resulting thiol groups using iodo(2-14C)acetic acid.

    Electrophores is according to Marshal l and Gil lespie26; charge

    sepa ra t ion (u rea ) f i r s t d im ens ion , fo l lowed by S DS -P AGE a t

    r ight angles

    Table 1 Am ino ac id com p os i t ion (m ol 9 'o ) o f wool low/h igh

    su lphur p ro te ins . The a r row s ind ica te an inc reased (1" ) o r

    dec reased (~ ) concen t ra t ion in the low su lphur p ro te ins in

    com par i son wi th the h igh su lphur f rac t ion

    Low su lphur High su lphur

    fract ion fract ion

    As p 9.4 ~ 3.1

    Th r + 5.5 11.3

    Ser I 9.9 14.5

    G lu 16.3 T 9.6

    Pro ~ 4.9 14.5

    Gl y 7.5 6.9

    Ala 7.2 T 3.2

    (Cys)2~ 2.9 6.3

    Val 5.8 6.4

    Met 0.6

    Ile 3.2 3.6

    Leu 10.4 ~ 4.2

    Ty r 2.9 2.7

    Phe 2.6 2.2

    Ly s 1.9 i" 0.3

    Hi s 0.8 0.8

    Ar g 7.8 8.3

    " A low cy stine content is detected because of the fact that S-sulpho-

    cysteine is not completely detectable by amin o acid analysis

    S I

    L 8 H S

    F igures 3 /4 2D -P A GE of m ic rof ib r i ll a r , low su lphur (LS ) and m a t r ix , h igh su lphur (HS ) p ro te ins . S am ple p repa ra t ion a s we ll a s

    pe r form ance of the e lec t rophores i s , s ee Figure 2 . The e lec t rophore t i ca l expe r im ents c lea r ly dem ons t ra te the pos s ib i l i ty o f a

    quan t i t a t ive s epa ra t ion in LS and HS pro te ins accord ing to the wool ex t rac t ion s chem e

    Figure 1)

    2 6 0 I n t . J . B i o l . M a c r o m o l . , 1 9 86 , V o l 8, O c t o b e r

  • 7/26/2019 In vitro reconstitution of wool-IF.pdf

    4/7

    I n v i t r o reconstitution of wool intermediate filaments: H Thomas: et a l .

    C H

    M i c r o f i b r i l l a r p r o t e i n s i

    . / L e u

    a h ~ A l a ~ /

    I I L P ro . /

    I

    I I I I i

    2 0 0 1 5 0 1 0 0 5 0 0

    6 ( p p m )

    M a t r i x p r o te i n s

    ehl

    \

    C H

    P h e / ~ ~ / / V ~ i a

    I I I I i

    1 2 0 0 1 5 0 1 0 0 5 0

    0

    6 ( p p m )

    Figures 5/6 t3C-n.m.r, spectra of wool LS/H S prote ins. 75.5 M Hz ~aC-n.m.r . CP /MA S spectrum o f sol id fract ions of Lincoln wool .

    Measu rements an d signal assignments were conducted accord ing to K richeldo rf and Mii llera4; for each spectrum abou t 12000

    transients were accum ulated. P rote in samples w i th recom bined cyst ine bridges, received af ter reduct ive c leavage of the S-sulpho groups

    followed by oxidat ive dia lysis, w ere examined. I n the sh ort range o rder microfibr i l lar prote ins show st rong ~-hel ical (~h) and weak f l-

    st ructure (f ls) signals whereas in the case of the m atr ix prote ins the st rength of the signals i s

    vice versa

    Figure 7 Elect ron microg raph of protofi lamen tous st ructures of wool microfibri llar mater ia l . After reduct ive cleavage of the S-sulpho

    groups and 100 000 g centr i fugat ion wool microfibr i l lar prote ins were dia lysed for 16 h di rect ly against a no n-urea co ntaining T ris-H Cl

    buffer . Samples w ere negatively sta ined wi th 1% uranyl aceta te . Sho rt protofi lame ntous st ructures in a diam eter range of

    approx imately 2-4 nm can be observed. Bar , 100 nm; x 140000

    s o lu b l e c o m p o n e n t is m a i n l y c o m p o s e d o f am i n o a c id s

    d i s t u r b i n g ~ t- he li ca l c o n f o r m a t i o n ( P r o , S e r , T h r ) .

    Figures 3 a n d 4 s h o w t h e 2 D p a t t e r n s o f t h e s e p a r a t e d

    p r o t e i n f r a c t i o n s w i t h t h e p r e c i p i t a t e d p r o t e i n s c l e a r l y

    c o r r e s p o n d i n g t o m i c r o f i b r i l l a r , l o w s u l p h u r w o o l

    p r o t e i n s a n d t h e s u p e r n a t a n t o n e s t o t h e h i g h s u l p h u r

    m a t r i x c la s s , a s s h o w n b y c o m p a r i s o n o f th e s e r e s u l ts w i t h

    t h o se a l r e a d y e s t a b l i sh e d i n t h e l i t e r a t u r e 2 6.

    I n t . J . B i o l . M a c r o m o l . , 1 9 8 6, V o l 8 , O c t o b e r 2 6 1

  • 7/26/2019 In vitro reconstitution of wool-IF.pdf

    5/7

    In vitro

    reconst i tu t ion o f wool in termediate f i lamen ts: H. Tho ma s

    et al.

    Figure

    8 Effectof prolonged dialysis ime on filamentreconstitution of wool LS proteins. In contrast to the upper sample preparation

    (16 h dialysis) a prolonged dialysis (24 h) was performed. Quite long filamentous structures can be observed with the filaments having

    the tendency to twist around each other. Bar, 100 nm; x 105000

    Figures 5

    and 6 show ~3C-n.m.r. studies of the protein

    fractions after cleavage of the protecting groups and

    recombination of cystine linkages. Both keratin classes

    show high degrees of short-range order. Besides 10-20%

    of totally amorphous parts there is a relation of 8/2 (~-

    helical//~-structure) in the microfibril lar proteins while the

    matrix components show a relation of 3/7, indicating a

    strongly diminished a-helical content.

    The 13C-n.m.r. studies as well as the results of amino

    acid analysis, 2D-PAGE and the constant precipitating

    ratio of 64 ~o shows that a complete separation in the two

    wool protein classes (low sulphur/high sulphur) can be

    achieved by the use of the S-sulpho technique.

    The low sulphur wool proteins thus isolated were used

    as starting material for the

    in vitro

    reconstitution of wool

    microfibrils.

    Directly after the reductive cleavage of the protecting

    groups, reconst itution of the intermediate filaments in t he

    disulphide form was performed and the filamentous

    proteins were negatively stained with uranyl acetate.

    After dialysing the samples for 16 h against a non-urea-

    containing Tris buffer, relatively short protofilamentous

    structures could be observed with a diameter of 2 4 nm,

    as shown in Figure 7 .

    After a prolonged dialysis (total 24 h) under the same

    conditions, filament assembly was more or less

    completed, resulting in 7-11 nm IF, with the proteins

    having the tendency to aggregate by twisting around each

    other

    Figure 8).

    Obviously the conditions chosen were not yet optimal.

    With the help of an additional dialysis step (against 4 M

    urea) further improvement in IF reaggregation could be

    achieved

    Figure 9).

    The filaments are no longer twisted;

    they appear to be longer and the outlines are sharper.

    D i s c u s s i o n

    Keratin extraction procedures using oxidative

    sulphitolysis have been performed to obtain pure wool

    microfibrillar proteins as starting material for

    in vitro

    reconstitution experiments. Only about 50~ of the

    starting material can be solubilized. This is less than with

    commonly used reduction procedures 2s and could be

    explained by the extraction step as such being very gentle,

    resulting in single fibres still resistant against the chemical

    attack, as revealed by scanning electron microscopy.

    However, the described method fulfils the following

    conditions in order to reconstitute wool-IF:

    (1) representative isolation of protein material

    throughout the fibre,

    (2) prior condition for a complete separation into

    microfibrillar and matrix proteins, and

    (3) a cleavage of the S-sulpho groups can be easily

    performed29.30.

    262 Int. J. Biol. Macromol. , 1986, Vol 8, October

  • 7/26/2019 In vitro reconstitution of wool-IF.pdf

    6/7

    In vitro r e c o n s t i t u t i o n o f w o o l i n t e r m e d i a t e f i l a m e n t s : H . T h o m a s et al.

    Figure 9 Electronmicrographs of intermediate-sizedfilamentsreconstituted from wool microfibrillar proteins. After cleavage of the

    S-sulpho group and 100 000 g centrifugation filament reconstitution was achieved by two-step dialysis. First, samples were dialysed

    against 4 M urea bufferand then dialysed against the filament buffer (I0 mM Tris-HC1, 10 mM fl-mercaptoethanol,pH 7.5). This two-

    step procedure obviously led to the best results. Wool microfibrillar proteins can be reconstituted to long filaments showing the

    diameter range of 7-11 nm being typical for intermediate filaments. Bar, 100 nm; x 78 000

    The latter point represents the main difference in

    comparison to the other keratin extraction and

    separation procedures; e.g. a reduction followed by S-

    carboxymethylation leads to an irreversible introduction

    of charged groups into the polypeptide chains. In contrast

    to these methods the keratin isolation procedure using

    oxidative sulphitolysis allows the reformation o f cystine

    bridges and and is therefore an approach to the 'native

    structure'.

    On the basis of this method it has been possible for the

    first time to reconstitute IF from hard keratin fibres in

    vi tro showing the typical diameter of 7-11 nm.

    Obviously the filament formation is not spontaneous.

    A prolonged dialysis time is therefore necessary, possibly

    because the reconstitution of IF proceeds via a succession

    of intermediate states involving thiol-disulphide

    interchange.

    With the successful IF reconstitution, hard ~-keratin

    microfibrils can be classified as members of the IF family

    not only on the basis of sequence data but also on their

    electron microscopical appearance, this being the original

    criterion.

    Our results differ from those obta ined by Campbell e t

    al.15 and Ahrnadi et al. 16 who investigated only ~-helical

    enriched fragments of low-sulphur keratinous proteins.

    However, according to the current state of knowledge, the

    non-helical terminal domains of IF proteins play an

    essential role in filament assembly and stabili ty 17'a1'32

    As these are particulary rich in cysteine9,33 it is not

    surprising that previous attempts on S-carboxy-

    methylated wool keratin failed to provide in v i tro filament

    formation.

    Starting with the in v i tro reconstitution of wool IF,

    further studies could elucidate the common properties of

    the IF family of proteins. In the case of wool the chemical

    and physical behaviour of isolated microfibrils can be

    investigated by, e.g. using X-ray techniques to detect a

    possible fibre diagram after orientation of IF proteins.

    This would complement the 13C-n.m.r. data.

    It must also be mentioned that an in vitro

    reconstitution of wool IF cannot be achieved with the

    same ease as in the case of other IF proteins, e.g. from

    human skin. As we have performed IF reconstitution of

    callus keratins even without separation of the keratins

    from other cellular proteins (A. Conrads, unpublished

    data) parallel to the wool microfibrillar proteins, we could

    observe that the renatured wool IF often do not show the

    more 'normal' appearance compared with the skin

    Int. J. Biol. Macromol., 1986, Vol 8, October 263

  • 7/26/2019 In vitro reconstitution of wool-IF.pdf

    7/7

    I n v i t r o reconstitution o f wool intermediate filaments. H. Th om as et a l .

    kerat in IF wh ich are very smo oth an d long. In order to

    explain the observed phenomenon a further advance in

    the kno wled ge o f the respect ive prote ins i s necessary.

    A c k n o w l e d g e m e n t s

    We are grate ful to Profes sor H. R . K riche ldorf for

    carrying o ut the ~3C-n .m.r . s tudies and for perm iss ion to

    publ i sh the data and to Dr J . F6h les for performing the

    am i n o ac i d an a ly s is . F u r t h e r m or e w e w i s h to t h an k D r R .

    C. Marshal l , Dr R . A. Quin lan and E. Bartn ik for

    v a l u ab l e d i s c u s s i on s an d t h e D e p ar t m e n t o f P l an t

    P h y s i o l og y a t t h e R W T H A ac h e n f or t h e p e r for m an c e o f

    the 100000 g centr i fugat ion . In addi t ion , we thank

    Profes sor Dr K. Weber , Drs E. F innimore and J . F /Sh les

    for their critical reading of the man uscript.

    R e f e r e n c e s

    1 Ishikaw a, H., Bischoff, R. and Ho l tzer, R J Ce l l B i o l 1968, 38,

    538

    2 Lazaride s, E. A n n R e v B i o c h e m 1982, 51 ,219

    3 Mo l l , R. , Fra nke , W. W. and Schi ller, D. L. C e l l 1982, 31, i1

    4 Web er , K . and Gei s l e r, N . E M B O J 1982, 1, 1155

    5 Gei s l e r , N . and Web er , K . E M B O J 1982, 1, 1649

    6 Hanu koglu , I . and Fuchs , E . C e l l 1982, 31 ,243

    7 Dow l ing , L . M. , Parry , D . A . D . and Sparrow, L . G . B i o s c i R e p

    1983, 3, 73

    8 Fraser , R . D . B . and Mac Rae , T . P . B i o s c i R e p 1983, 3, 517

    9 Hanu koglu , I . and Fuchs , E . C e l l 1983, 33, 915

    10 Crewther , W. G . , Dow l ing , L . M. , S t e iner t , P . M. and Parry , D .

    A D I n t J B i o l M a c r o m o l 1983, 5, 267

    11 Steinert , P. M., Rice, R. H., Roop , D. R., Trus , B. L. and Steven,

    A C N a t u r e 1983, 302, 794

    12 Zahn , H . M e l l i a n d T e x t i l b e r 1941, 22, 305

    13 Jones , L . N . B i o c h e m B i o p h y s A c t a 1975, 412, 91

    14 Steinert , P. M., Dye r, P. Y. and Rogers, G E J I n v e s t

    D e r m a t o l 1971, 56, 49

    15 Camp bel l , M. E. , Do bb, M. G . , H i lburn , M. E . , Loh , P ., Lot ay ,

    S . S . , Speakman, P . T . , S t a insby , G . and Yarwood, R . E . i n

    'Proceedings 5 th In t e rna t i ona l Wool Text i l e Research

    Con ference Aa chen ' , (Ed. K. Ziegler), 1976, Vol . II , p. 243

    16 Ahm adi , B . , Bos ton , N . M. , Dob b, M. G . and Speakman, P . T . i n

    'Fibrous Proteins: Scient i fic, Indust rial and Medical Aspects ' ,

    (Eds D . A . D . Parry and L . K . Creamer) , Academic Press ,

    Lon don , 1980, p. 161

    17 S t e iner t, P . M. i n 'E l ec t ron Microscopy of Pro t e ins ' , (Ed . J . R .

    Harris), Academic Press, London, 1981, p. 126

    18 God dard , D . R . and Michae l i s , L J B i o l C h e m 1935, 11 2, 361

    19 Alexander , P . and Ear l and , C . N a t u r e 1950, 166, 396

    20 Bailey, J. L. B i o c h e m J 1957, 67, 21

    21 Harrap , B . S . and Wo ods , E . F . B i o c h e m J 1964, 92, 8

    22 Spei, M. and Thom as , H . C o l l o i d a n d P o l y m S c i 1983, 261,96 8

    23 Spei, M. and Thom as , H . M e l l i a n d T e x t i l b e r 1984, 65, 266

    24 Thom as , H . PhD Thesi s, RW TH Aachen , 1984

    25 Thom as , H . , Greven , R . and Spei, M. M e l l i a n d T e x t i l b e r 1983,

    64, 297

    26 Mars hal l , R. C. and Gi l lespie, R M J F o r e n s S c i S o c 1982, 22,

    377

    27 Gillespie, J. M. A u s t J B i o l S c i 1957, 10, 105

    28 Greven , R . PhD Thesi s, RW TH , Aachen , 1982

    29 Fo otne r, H. B. and Smiles, S J J C h e m S o c 1925, 127, 2887

    30 Thom as , H . and Spei, M. M e l l i a n d T e x t i l b e r 1984, 65, 208

    31 Sauk , J . J . , Krum mweide , M. , Cocking -Johnson , D . and Whi t e ,

    J G J Ce l l B i o l 1984, 99, 1590

    32 Gei s l e r, N . , Kaufm ann, E . and Weber , K . C e l l 1982, 30, 277

    33 Fraser , R . D . B ., MacR ae , T . P . and Rogers , G . E . i n 'Kera t i ns ,

    t he i r Composi t i on , S t ruc ture and Biosynthes is ' , C . C . Thom as ,

    Springfield, Il l inois, 1972

    34 Kri che ldorf , H . R . and Muel l e r , D . M a c r o m o l e c u l e s 1983, 16, 615

    2 6 4 I n t . J . B i o l . M a c r o m o l . , 1 9 8 6, V o l 8 , O c t o b e r