44
Aerodynamics 2015 fall -1- Incompressible Flow over Airfoils Road map for Chap. 4

Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

  • Upload
    lylien

  • View
    262

  • Download
    17

Embed Size (px)

Citation preview

Page 1: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 1 -

Incompressible Flow over Airfoils

Road map for Chap. 4

Page 2: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 2 -

< 4.1 Introduction >

Incompressible flow over airfoils

Incompressible Flow over Airfoils

Prandtl (20C 초) Airfoil (2D)

Wind (3D)

Body

Airfoil : any section of the wing cut by a plane normal to y-axis

Page 3: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 3 -

< 4.2 Airfoil Nomenclature >

NACA (National Advisory Committee for Aeronautics) series

Incompressible Flow over Airfoils

Thickness

Camber

Leading edge

Mean camber line

Trailing edge

Chord lineUpper surface

Lower surface

Page 4: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 4 -

< 4.2 Airfoil Nomenclature >

NACA (National Advisory Committee for Aeronautics) series

Incompressible Flow over Airfoils

NACA 4-digit series

* NACA2412

2 : max. camber = 2% of the chord4 : the location of max. camber = 40% of the chord12 : max. thickness = 12% of the chordIf the airfoil is symmetric, it becomes NACA00XX

NACA 5-digit series

* NACA230122 : 2*0.3/2 = 0.3 design CL

30 : 30/2 % = the location of max. camber12 : max. thickness = 12% of the chord

Page 5: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 5 -

< 4.2 Airfoil Nomenclature >

NACA (National Advisory Committee for Aeronautics) series

Incompressible Flow over Airfoils

6-digit series laminar flow airfoil

* NACA65-218

6 : series designation5 : min. pressure location = 50% of the chord2 : design CL= 0.218 : max. thickness = 18% of the chord

Other notations

* SC0195

* VR12

Page 6: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 6 -

< 4.3 Airfoil Characteristics >

Incompressible Flow over Airfoils

* 1930~40 NASA carried numerous experiments on NACA airfoil characteristics(Measured Cl, Cd, Cm 2-D data)

* In the future, new airfoils should be designed and tested(consideration of aerodynamic, dynamic & acoustic limitation)

* Typical lift characteristics of an airfoilStall

Stall angle (12~18deg)

Zero lift angle

Maximum lift coefficient

: angle of attack

SepatationDynamic stall

How to measure Cl, Cd, Cm?

a0 =

Page 7: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 7 -

< 4.3 Airfoil Characteristics >

Incompressible Flow over Airfoils

[Def.] a, angle of attack : the angle between the freestream velocity and the chord

[Note] 1. a0 is not usually a function of Re.2. Cl,max is dependent on Re.

Page 8: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 8 -

< 4.3 Airfoil Characteristics >

Typical drag & pitching moment characteristics

Incompressible Flow over Airfoils

* Aerodynamic drag = Pressuredrag

Skin frictiondrag

(form drag)

Profile drag

* AC (Aerodynamic Center)[Def.] The point about which the moment is independent of AOA

Subsonic : AC=c/4Supersonic : AC=c/2

+

Sensitive to Re.

Page 9: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 9 -

< 4.4 Vortex Sheet >

Kutta-Joukowski Theorem

Incompressible Flow over Airfoils

* Kutta (German), Joukowski(Russia)

* Incompressible, inviscid flow

L = rvG

* G : positive clockwise

G

LiftG

Vortex filament of strength G

Page 10: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 10 -

< 4.4 Vortex Sheet >

Incompressible Flow over Airfoils

* g(s) = the strength of vortex sheet

per unit length along s

* From Biot-Savart Law

* Velocity potential for vortex flow

* Velocity potential at P

Page 11: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 11 -

< 4.4 Vortex Sheet >

Incompressible Flow over Airfoils

* Circulation around the dashed path

* If

(Note)

The local strength of the vortex sheet is equal to the difference (jump) in

tangential velocity across the vortex sheet

Page 12: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 12 -

< 4.4 Vortex Sheet >

(Note)

“Vortex sheet method” is more than just a mathematical device; it also has

a physical meaning

ex. : Replacing the boundary layer ( ) with a vortex sheet

Incompressible Flow over Airfoils

* “Vortex Sheet” - Application for inviscid, incompressible flow

* Calculate g(s) to form the streamlines with a give airfoil shape

Page 13: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 13 -

< 4.5 The Kutta Condition >

Incompressible Flow over Airfoils

* For a circular cylinder,

* For a given a, should have only one solution

?

Page 14: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 14 -

< 4.5 The Kutta Condition >

Incompressible Flow over Airfoils

* From the experiments, we know that the velocity at the trailing-edge in

finite. Kutta Condition

* The circulation around the airfoil is the value to ensure that the flow

smoothly leaves the trailing edge.

g(TE)=V1-V2=0

V(TE)=finite

Page 15: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 15 -

< 4.6 Kelvin’s Circulation Theorem >

Incompressible Flow over Airfoils

* Assume)

The time rate of change of circulation around a closed curve

consisting of the same fluid elements is zero

1. Inviscid

2. Incompressible

3. No body forces

Ex) Starting vortex

[ at rest ] [ after the start ]

Page 16: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 1 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* Assumptions

i) The camber line is one of the streamlinesii) Small maximum camber and thickness relative to the chordiii) Small angle of attack

i) Find g(s)ii) Use Kutta-Joukowski theorem, L’=rVG

* Purposes

Page 17: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 2 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* The component of free-stream velocity normal to the mean camber line at P

From small angle assumption

Page 18: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 3 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* If the airfoil is thin,

: velocity normal to the camber lineinduced by the vortex sheet

: velocity normal to the chord lineinduced by the vortex sheet

* The velocity at point x by the elemental vortex at point x

* The velocity at point x by all the elemental vortices along the chord line

Page 19: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 4 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* The sum of the velocity components normal to the surface at all point along the vortex sheet is zero

The fundamental equation of thin airfoil theory

Page 20: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 5 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* Sysmmetric airfoil no camber,

* Transform variable x into q

, ,

Page 21: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 6 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* Check Kutta condition

By L’Hospital’s rule

Indeterminant form

Page 22: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 7 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* Since we get g(q), now calculate G, L

* Lift :

* Lift coefficient :

* Lift slope :

Lift coefficient is linearly proportional to angle of attack.

Page 23: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 8 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* The moment about the leading edge

Page 24: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 9 -

< 4.7 Classical Thin Airfoil Theory >

The Symmetric Airfoil

Incompressible Flow over Airfoils

* The moment coefficient

* Aerodynamic center is located at c/4 for incompressible, inviscid and symmetric airfoil (true in real world)

* Center of pressure : the point at which the moment is zeroAerodynamic center : the point at which the moment is independent of aoa

Page 25: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 10 -

< 4.8 The Cambered Airfoil >

Incompressible Flow over Airfoils

* From thin airfoil theory,

* For cambered airfoil,

* The solution becomes

Fourier series term due to camber

Leading term for symmetric airfoil

Transformx into q

…… (a)

…… (b)

…… (c)

Page 26: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 11 -

< 4.8 The Cambered Airfoil >

Incompressible Flow over Airfoils

* Substitute (c) into (b)

By using the integral standard form

Page 27: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 12 -

< 4.8 The Cambered Airfoil >

Incompressible Flow over Airfoils

For Fourier cosine series,

[Note] given Determine g(q) to make the camber line a streamline with A0, An

+ Kutta condition, g(p)=0

Page 28: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 13 -

< 4.8 The Cambered Airfoil >

Incompressible Flow over Airfoils

* The total circulation due to the entire vortex sheet

,By using

Page 29: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 14 -

< 4.8 The Cambered Airfoil >

Incompressible Flow over Airfoils

Lift slope,

* Lift coefficient for a cambered thin airfoil

Page 30: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 15 -

< 4.8 The Cambered Airfoil >

Incompressible Flow over Airfoils

[Note]

* Lift slope is 2p for any shape airfoil

* Zero lift angle :

* Lift coefficient for a cambered thin airfoil

Page 31: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 16 -

< 4.8 The Cambered Airfoil >

Incompressible Flow over Airfoils

* The total moment about the leading edge

* Moment coefficient

A1 & A2 both are independent of aoa The quarter-chord is the aerodynamic center for a cambered airfoil

Page 32: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 17 -

< 4.8 The Cambered Airfoil >

Incompressible Flow over Airfoils

* The center of pressure

Not a convenient point

Page 33: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 18 -

< 4.8 The Cambered Airfoil >

The influence of camber on the thin airfoil

Incompressible Flow over Airfoils

* The cambered airfoil * The symmetric airfoil

Page 34: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 1 -

< 4.10 The Vortex Panel Method >

Incompressible Flow over Airfoils

* Thin airfoil theory

- Closed form- Limited to thin airfoil,

* Exactly same idea of thin airfoil theory, but no closed form g(s) solve numerically

* Panel method

- Vortex panel- Source panel non-lifting cases

Page 35: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 2 -

< 4.10 The Vortex Panel Method >

Incompressible Flow over Airfoils

* The velocity potential at P due to j-th panel

Controlpoint

Boundarypoint P(x,y)

(xj,yj)

J-1 j

J+1

x

y

qj

* Let’s put point P at the control point of i-th panel

Page 36: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 3 -

< 4.10 The Vortex Panel Method >

Incompressible Flow over Airfoils

* At the control points, the normal component of velocity is zero.

- The component of V normal to i-th panel

- The normal component of induced velocity at (xi, yi)

= : f (panel geometry)

Page 37: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 4 -

< 4.10 The Vortex Panel Method >

Incompressible Flow over Airfoils

* Boundary condition :

+ Kutta condition :

i

i+1

* Now, we have (n+1) eq. with n unknowns ignore one of control points

* Total circulation :

* Lift :

Inside the solid surface

* The flow velocity tangent to the surface = g

ui,1

ui,2

Page 38: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 5 -

< 4.12 The Flow over an Airfoil – the Real Case >

Stall

Leading-edge stall

Incompressible Flow over Airfoils

Flow separation takes place

over the entire top surface

of the airfoil after occurring

at the leading edge

Page 39: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 6 -

< 4.12 The Flow over an Airfoil – the Real Case >

Stall

Trailing-edge stall

Incompressible Flow over Airfoils

α = 5° α = 10° α = 15° α =22.5°

Flow separation takes place from the trailing edge at

thicker airfoils than leading-edge stall

Page 40: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 7 -

< 4.12 The Flow over an Airfoil – the Real Case >

Stall

Thin airfoil stall

Incompressible Flow over Airfoils

Leading-edge stall

Flow separation takes place

over the entire surface of

the airfoil after occurring at

the leading edge

Page 41: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 8 -

< 4.12 The Flow over an Airfoil – the Real Case >

Stall

Lift-coefficient curves

Incompressible Flow over Airfoils

10 20

1.0

0.5

1.5

Lif

t co

effi

cien

t

α, degrees

Leading-edge stall

Trailing-edge stall

Thin airfoil stall

Page 42: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 9 -

Incompressible Flow over Airfoils

< 4.12 The Flow over an Airfoil – the Real Case >

High-lift devices

Leading edge slat

Trailing edge flap

Page 43: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 10 -

Incompressible Flow over Airfoils

< 4.12 The Flow over an Airfoil – the Real Case >

High-lift devices

Trailing-edge flap (plain type)

More camber → Higher lift

Page 44: Incompressible Flow over Airfoils - SNUaancl.snu.ac.kr/aancl/lecture/up_file/_1444613570_Chapter 4.pdf · Aerodynamics 2015 fall - 3 - < 4.2 Airfoil Nomenclature > NACA (National

Aerodynamics 2015 fall - 11 -

Incompressible Flow over Airfoils

< 4.12 The Flow over an Airfoil – the Real Case >

High-lift devices

Effect of slats and flaps