29
Influence of foam morphology on end of life U-value for subsea foamed polypropylene pipeline insulation June 7, 2017 AMI’s Oil & Gas Polymer Engineering Texas 2017

Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Influence of foam morphology on end of life U-value

for subsea foamed polypropylene pipeline insulation

June 7 2017

AMIrsquos Oil amp Gas Polymer Engineering Texas 2017

Foam Morphology and End of Life U-value

2

Contents

bull Shawcor at a glance

bull Hydrostatic compression

bull Triaxial compression test

bull Simulated Service Test

bull U-value case study

bull Foam morphology

bull Triaxial test results

bull SST results

bull Thermal design process

bull Hypothetical designs

bull Summary

Shawcor at glance

3

Global Energy Services Company

~ 5000Employees worldwide

80+ Global locations

25Countries across the globe

236 Issued Patents 86 Proprietary Formulations Solutions ndash Driven by Innovative Technology

~ $18 (CAD)

Billion revenues

Provides technology-based solutions for the pipeline and pipe services market and the petrochemical and industrial markets Shawcor focuses on five core competencies pipeline coating welding inspections composite pipe oilfield asset management and cables and connectors

4

ShawcorProducts and Services Offering

sPP(U gt 3 W msup2 K)

120 150 18080

100

500

1000

1500

2000

2500

3000

200

GsPU(U gt 3 W

msup2 K)UltraFoam

(U gt 2 W msup2 K)

UltraSolid(U gt 3 W msup2 K)

XtremeTemp(U gt 3 W msup2 K)

Wat

er D

epth

[m

]

Design Temperature [degC]

PPFoam(U gt 3 W msup2 K)

5

Shawcor ndash Wet flowline insulation solutions

bull PPFoam

bull 150 degC and 500 m

bull High density foam Nominal density 740 kgm3

Hydrostatic Compression

6

Hydrostatic pressure according to water depth bull

from 1 MPa to 30 MPa

Constant over the pipelinersquos lifetime (bull 30 years)

Initial compression componentbull

Upon installationbull

Considered instantaneousbull

Recoverablebull

Creep compression componentbull

Over entire lifetimebull

Limited recoverybull

ISO bull 12736 calls for determination of

ldquohydrostatic compressive behaviorrdquo of each

layer of insulation

At bull 23 degC and max rated temperature

Shall be determined for each insulation layerbull

Standard for Petroleum and natural gas industries mdash

Wet thermal insulation coatings for pipelines flow lines equipment and subsea structures

MEASUREMENT OF HYDROSTATIC COMPRESSIONTriaxial Compression Test and Simulated Service Test

7

Triaxial Compression Test

8

Method

bull Cylindrical test specimen

bull Contained in cylindrical steel autoclave

bull Piston pressing down on top of sample

bull Produces a tri-axial stress state

bull Mimics the stresses in pipe coating

bull Temperature and pressure constant

bull Compression recorded over time

bull Measures initial compression

bull Measures creep compression

bull Common test on foamed insulation at Shawcor

bull Described in ISO 12736 Annex AEssential test for design of thermal insulation

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 2: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Foam Morphology and End of Life U-value

2

Contents

bull Shawcor at a glance

bull Hydrostatic compression

bull Triaxial compression test

bull Simulated Service Test

bull U-value case study

bull Foam morphology

bull Triaxial test results

bull SST results

bull Thermal design process

bull Hypothetical designs

bull Summary

Shawcor at glance

3

Global Energy Services Company

~ 5000Employees worldwide

80+ Global locations

25Countries across the globe

236 Issued Patents 86 Proprietary Formulations Solutions ndash Driven by Innovative Technology

~ $18 (CAD)

Billion revenues

Provides technology-based solutions for the pipeline and pipe services market and the petrochemical and industrial markets Shawcor focuses on five core competencies pipeline coating welding inspections composite pipe oilfield asset management and cables and connectors

4

ShawcorProducts and Services Offering

sPP(U gt 3 W msup2 K)

120 150 18080

100

500

1000

1500

2000

2500

3000

200

GsPU(U gt 3 W

msup2 K)UltraFoam

(U gt 2 W msup2 K)

UltraSolid(U gt 3 W msup2 K)

XtremeTemp(U gt 3 W msup2 K)

Wat

er D

epth

[m

]

Design Temperature [degC]

PPFoam(U gt 3 W msup2 K)

5

Shawcor ndash Wet flowline insulation solutions

bull PPFoam

bull 150 degC and 500 m

bull High density foam Nominal density 740 kgm3

Hydrostatic Compression

6

Hydrostatic pressure according to water depth bull

from 1 MPa to 30 MPa

Constant over the pipelinersquos lifetime (bull 30 years)

Initial compression componentbull

Upon installationbull

Considered instantaneousbull

Recoverablebull

Creep compression componentbull

Over entire lifetimebull

Limited recoverybull

ISO bull 12736 calls for determination of

ldquohydrostatic compressive behaviorrdquo of each

layer of insulation

At bull 23 degC and max rated temperature

Shall be determined for each insulation layerbull

Standard for Petroleum and natural gas industries mdash

Wet thermal insulation coatings for pipelines flow lines equipment and subsea structures

MEASUREMENT OF HYDROSTATIC COMPRESSIONTriaxial Compression Test and Simulated Service Test

7

Triaxial Compression Test

8

Method

bull Cylindrical test specimen

bull Contained in cylindrical steel autoclave

bull Piston pressing down on top of sample

bull Produces a tri-axial stress state

bull Mimics the stresses in pipe coating

bull Temperature and pressure constant

bull Compression recorded over time

bull Measures initial compression

bull Measures creep compression

bull Common test on foamed insulation at Shawcor

bull Described in ISO 12736 Annex AEssential test for design of thermal insulation

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 3: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Shawcor at glance

3

Global Energy Services Company

~ 5000Employees worldwide

80+ Global locations

25Countries across the globe

236 Issued Patents 86 Proprietary Formulations Solutions ndash Driven by Innovative Technology

~ $18 (CAD)

Billion revenues

Provides technology-based solutions for the pipeline and pipe services market and the petrochemical and industrial markets Shawcor focuses on five core competencies pipeline coating welding inspections composite pipe oilfield asset management and cables and connectors

4

ShawcorProducts and Services Offering

sPP(U gt 3 W msup2 K)

120 150 18080

100

500

1000

1500

2000

2500

3000

200

GsPU(U gt 3 W

msup2 K)UltraFoam

(U gt 2 W msup2 K)

UltraSolid(U gt 3 W msup2 K)

XtremeTemp(U gt 3 W msup2 K)

Wat

er D

epth

[m

]

Design Temperature [degC]

PPFoam(U gt 3 W msup2 K)

5

Shawcor ndash Wet flowline insulation solutions

bull PPFoam

bull 150 degC and 500 m

bull High density foam Nominal density 740 kgm3

Hydrostatic Compression

6

Hydrostatic pressure according to water depth bull

from 1 MPa to 30 MPa

Constant over the pipelinersquos lifetime (bull 30 years)

Initial compression componentbull

Upon installationbull

Considered instantaneousbull

Recoverablebull

Creep compression componentbull

Over entire lifetimebull

Limited recoverybull

ISO bull 12736 calls for determination of

ldquohydrostatic compressive behaviorrdquo of each

layer of insulation

At bull 23 degC and max rated temperature

Shall be determined for each insulation layerbull

Standard for Petroleum and natural gas industries mdash

Wet thermal insulation coatings for pipelines flow lines equipment and subsea structures

MEASUREMENT OF HYDROSTATIC COMPRESSIONTriaxial Compression Test and Simulated Service Test

7

Triaxial Compression Test

8

Method

bull Cylindrical test specimen

bull Contained in cylindrical steel autoclave

bull Piston pressing down on top of sample

bull Produces a tri-axial stress state

bull Mimics the stresses in pipe coating

bull Temperature and pressure constant

bull Compression recorded over time

bull Measures initial compression

bull Measures creep compression

bull Common test on foamed insulation at Shawcor

bull Described in ISO 12736 Annex AEssential test for design of thermal insulation

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 4: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

4

ShawcorProducts and Services Offering

sPP(U gt 3 W msup2 K)

120 150 18080

100

500

1000

1500

2000

2500

3000

200

GsPU(U gt 3 W

msup2 K)UltraFoam

(U gt 2 W msup2 K)

UltraSolid(U gt 3 W msup2 K)

XtremeTemp(U gt 3 W msup2 K)

Wat

er D

epth

[m

]

Design Temperature [degC]

PPFoam(U gt 3 W msup2 K)

5

Shawcor ndash Wet flowline insulation solutions

bull PPFoam

bull 150 degC and 500 m

bull High density foam Nominal density 740 kgm3

Hydrostatic Compression

6

Hydrostatic pressure according to water depth bull

from 1 MPa to 30 MPa

Constant over the pipelinersquos lifetime (bull 30 years)

Initial compression componentbull

Upon installationbull

Considered instantaneousbull

Recoverablebull

Creep compression componentbull

Over entire lifetimebull

Limited recoverybull

ISO bull 12736 calls for determination of

ldquohydrostatic compressive behaviorrdquo of each

layer of insulation

At bull 23 degC and max rated temperature

Shall be determined for each insulation layerbull

Standard for Petroleum and natural gas industries mdash

Wet thermal insulation coatings for pipelines flow lines equipment and subsea structures

MEASUREMENT OF HYDROSTATIC COMPRESSIONTriaxial Compression Test and Simulated Service Test

7

Triaxial Compression Test

8

Method

bull Cylindrical test specimen

bull Contained in cylindrical steel autoclave

bull Piston pressing down on top of sample

bull Produces a tri-axial stress state

bull Mimics the stresses in pipe coating

bull Temperature and pressure constant

bull Compression recorded over time

bull Measures initial compression

bull Measures creep compression

bull Common test on foamed insulation at Shawcor

bull Described in ISO 12736 Annex AEssential test for design of thermal insulation

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 5: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

sPP(U gt 3 W msup2 K)

120 150 18080

100

500

1000

1500

2000

2500

3000

200

GsPU(U gt 3 W

msup2 K)UltraFoam

(U gt 2 W msup2 K)

UltraSolid(U gt 3 W msup2 K)

XtremeTemp(U gt 3 W msup2 K)

Wat

er D

epth

[m

]

Design Temperature [degC]

PPFoam(U gt 3 W msup2 K)

5

Shawcor ndash Wet flowline insulation solutions

bull PPFoam

bull 150 degC and 500 m

bull High density foam Nominal density 740 kgm3

Hydrostatic Compression

6

Hydrostatic pressure according to water depth bull

from 1 MPa to 30 MPa

Constant over the pipelinersquos lifetime (bull 30 years)

Initial compression componentbull

Upon installationbull

Considered instantaneousbull

Recoverablebull

Creep compression componentbull

Over entire lifetimebull

Limited recoverybull

ISO bull 12736 calls for determination of

ldquohydrostatic compressive behaviorrdquo of each

layer of insulation

At bull 23 degC and max rated temperature

Shall be determined for each insulation layerbull

Standard for Petroleum and natural gas industries mdash

Wet thermal insulation coatings for pipelines flow lines equipment and subsea structures

MEASUREMENT OF HYDROSTATIC COMPRESSIONTriaxial Compression Test and Simulated Service Test

7

Triaxial Compression Test

8

Method

bull Cylindrical test specimen

bull Contained in cylindrical steel autoclave

bull Piston pressing down on top of sample

bull Produces a tri-axial stress state

bull Mimics the stresses in pipe coating

bull Temperature and pressure constant

bull Compression recorded over time

bull Measures initial compression

bull Measures creep compression

bull Common test on foamed insulation at Shawcor

bull Described in ISO 12736 Annex AEssential test for design of thermal insulation

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 6: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Hydrostatic Compression

6

Hydrostatic pressure according to water depth bull

from 1 MPa to 30 MPa

Constant over the pipelinersquos lifetime (bull 30 years)

Initial compression componentbull

Upon installationbull

Considered instantaneousbull

Recoverablebull

Creep compression componentbull

Over entire lifetimebull

Limited recoverybull

ISO bull 12736 calls for determination of

ldquohydrostatic compressive behaviorrdquo of each

layer of insulation

At bull 23 degC and max rated temperature

Shall be determined for each insulation layerbull

Standard for Petroleum and natural gas industries mdash

Wet thermal insulation coatings for pipelines flow lines equipment and subsea structures

MEASUREMENT OF HYDROSTATIC COMPRESSIONTriaxial Compression Test and Simulated Service Test

7

Triaxial Compression Test

8

Method

bull Cylindrical test specimen

bull Contained in cylindrical steel autoclave

bull Piston pressing down on top of sample

bull Produces a tri-axial stress state

bull Mimics the stresses in pipe coating

bull Temperature and pressure constant

bull Compression recorded over time

bull Measures initial compression

bull Measures creep compression

bull Common test on foamed insulation at Shawcor

bull Described in ISO 12736 Annex AEssential test for design of thermal insulation

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 7: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

MEASUREMENT OF HYDROSTATIC COMPRESSIONTriaxial Compression Test and Simulated Service Test

7

Triaxial Compression Test

8

Method

bull Cylindrical test specimen

bull Contained in cylindrical steel autoclave

bull Piston pressing down on top of sample

bull Produces a tri-axial stress state

bull Mimics the stresses in pipe coating

bull Temperature and pressure constant

bull Compression recorded over time

bull Measures initial compression

bull Measures creep compression

bull Common test on foamed insulation at Shawcor

bull Described in ISO 12736 Annex AEssential test for design of thermal insulation

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 8: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Triaxial Compression Test

8

Method

bull Cylindrical test specimen

bull Contained in cylindrical steel autoclave

bull Piston pressing down on top of sample

bull Produces a tri-axial stress state

bull Mimics the stresses in pipe coating

bull Temperature and pressure constant

bull Compression recorded over time

bull Measures initial compression

bull Measures creep compression

bull Common test on foamed insulation at Shawcor

bull Described in ISO 12736 Annex AEssential test for design of thermal insulation

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 9: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

9

bull Creep rates increase with temperature

bull Thick insulation is split into test

sections (L1 L2 L3 hellip)

bull Average temperature is calculated

for each section

bull Cylindrical test specimen

bull Typically Oslash32 mm x 55 mm

bull Machined to 003 mm tolerance

bull Radial orientation

bull One specimen can be made from

several plugs

bull Diameter is compensated for

thermal expansion - allows a snug

fit in the autoclave

L1

L1

L1

Triaxial Compression Test

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 10: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

10

Triaxial Compression Test

End of Life (typically 30 years) compression is extrapolated

Compression is dependent on pressure temperature foam density and foam morphology

20 years = 175200 h25 years = 219000 h30 years = 262800 h

bull Compression of PPFoam follows a logarithmic trend

bull Typical test duration is 100 h

bull Short duration is verified by long term testing

bull Large library of historical data

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 11: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

11

bull A 28 day test of the pipe at operational conditions

bull Internal operation temperature

bull External water temperature and hydrostatic water pressure

bull Measures heat loss and radial compression

bull Primarily used to verify the U-value (next slide) of the pipe

bull In some cases the SST is used to verify cool-down or thermalcycling performance

bull The SST is not an ageing test

Shawcor CRampD test vessel

bull Heat loss measured through surface of insulated pipe

bull Displacement of pipe surface measured using LVDTs

SST description

Simulated Service Test

bull Shawcor CRampD vesselbull le 6 m pipe specimenbull 7 electrically heated

temperature zonesbull 20 pipe surface heat

flux sensors in 7 zonesbull 12 high resolution

LVDTs in 4 zones

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 12: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

12

LVDT sensitivity

Simulated Service Test

-10

-05

00

05

10

15

20

0 500 1000 1500 2000

Co

mp

ress

ion

[

]

Time [minutes]

Internal heatersturned on

Start pressurization

Thermalexpansion

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 13: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

13

bull The U-value is an engineering concept

bull Convenient for calculating a heat loss rate for a given temperature differential

119880 119877ref =| ሶ119902 119877ref |

|119879o minus 119879i|119877ref - radius of a cylindrical reference surface

ሶ119902 119877ref - heat flux through the referencesurface ie heat loss rate per unit area

|119879o minus 119879i| - the temperature difference driving theheat loss

bull 119879o and 119879i are kept constant during the test

bull Shawcor will measure the heat flux ሶ119902 119877o through theouter surface of the pipe (at 119877o) and calculate ሶ119902 119877ref

ሶ119902 119877ref =119877o119877ref

ሶ119902 119877o

bull 2119877ref is defined by the Client It is always the inner or outer diameter of the steel pipe

bull Shawcor will design an isulation that meets theClientrsquos U-value requirement at 2119877ref

bull Shawcor measure U-value at an accuracy of approx 3

SST U-value

Simulated Service Test

Ro

Ri

Ti

To

Rref

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 14: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

14

SST bull compression is reported as an average over the 28 day test duration

PPFoambull creep compression occurs on a time scale longer than the 28 day test duration

For bull PPFoam less than 50 of the total compression over the lifetime of the pipe may

occur during the test duration

High bull compaction will increase the density of the insulation in turn increasing the U-

value

Operationbull temperature typically drops with time in service and lowers the minimum

downstream temperature where hydrate formation is critical =gt EOL is important

Verybull limited SST compression data is available Must cover a wide range of

temperatures and pressures (and pipelayer geometries and foam densities)

SST compression

Simulated Service Test

Caution required for highcompression materials

bull PPFoam at high pressure and high temperature

bull Other foams with a long term creep trend

OK for low compression materials

bull Glass syntactic PP

bull Solid materials

bull PPFoam at low pressure and

low temperature

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 15: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

15

U-value as function of compression

The bull insulation should meet the U-value criteria at the end of the life(EOL) of the pipeline

Coatingbull compression as function oftime is determined with low uncertaintyand can be extrapolated to EOL

Typicallybull no significant trend to determine EOL U-value

Accurancybull of U-value measurementis 3

Shawcorbull will design insulations thatmeets the U-value at the end of life ofthe pipeline based on EOL compression data

Requiresbull knowledge about the creepcompression rate of the coating

Simulated Service Test

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 16: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

DESIGN CASE STUDYU-value for poor vs improved foam morphology

16

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 17: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

bull SST and triaxial compression measurements taken from full scale pipes

bull Pipes produced with poor foam morphology High compression

bull Pipes with improved foam morphology due to process improvements

bull Test results are directly comparable

bull Same pipe OD

bull Same foam density (740 kgm3)

bull Same test pressure (56 MPa)

bull Same test temperature

bull Similar thicknesses

bull Hypotetical thermal designs were made to illustrate

bull Impact on material consumption

bull Impact on U-value

17

DESIGN CASE STUDY

Poor foam morphologyvs

Improved foam morphology

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 18: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Image Segmentation

bull Identify each foam cell

bull Find the centroid of the cell

bull Measure cell size cell orientation and

aspect ratio

bull Calculate the number density of cells

ie number of foam cells per mm3

bull If applicable Calculate foam transport

properties or mechanical properties

18

Foam Morphology Identification

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 19: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Usebull different foaming agent

Pellet bull size and distribution

Foamingbull agent powder size and

distribution

Nucleationbull mechanism

Fine tune bull loading of foaming agent Too

much will cause course foam structure with

much cell coalescence

Set moderate melt bull temperature High end

temperature will increase foam cell size

and reduce number density

Reducebull mechanical distortion of foam cells

Elongated foam cells have low

compressive strength

Improvement of Morphology

19

Foam Morphology Improvements

Deformation Improved

Low dosage Coalescence

Micrographs have the same scale

bull Same densitybull Cell size down 35 bull Aspect radio down 40

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 20: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

20

Triaxial Test Results 56 MPa

bull Poor foam morphology 81 compression end of test and 12 extrapolated to EOL at 73 degC

bull Improved foam morphology 43 compression end of test and 64 extrapolated to EOL at 73 degC

bull Excellent fit to logarithmic function for all temperatures R2 ge 095

bull Same density plusmn 2

0

1

2

3

4

5

6

7

8

9

001 01 1 10 100 1000

Co

mp

ress

ion

[

]

Time [h]

Poor morphology 30 degC

Poor morphology 50 degC

Poor morphology 73 degC

Improved morphology 30 degC

Improved morphology 50 degC

Improved morphology 73 degC

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 21: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

SST compression data EOL extrapolation

21

SST Compression Test Results 56 MPa

00

05

10

15

20

25

30

35

0 200 400 600

Co

mp

ress

ion

[

]

Time [h]

Before improvement After improvement 1

After improvement 2

y = 01560ln(x) + 02774Rsup2 = 09983

y = 01650ln(x) + 04070Rsup2 = 09997

y = 02713ln(x) + 12126Rsup2 = 09985

00

05

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000C

om

pre

ssio

n[

]Time [h]

30 years Log (After improvement 2)

Log (After improvement 1) Log (Before improvement)

Low compression critical for strapped on units requiring pretension

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 22: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

LayerThickness

[mm]

EOL triaxial compression []

Before opt After opt

FBE 03 00 00

Adhesive 03 00 00

3L 54 10 10

Foam layer 1 30 128 64

Solid intermediate 3 10 10

Foam layer 2 30 102 51

Solid intermediate 3 10 10

Foam layer 3 30 54 34

Solid topcoat 4 10 10

Thickness weighed compr [] 82 44

Tri-axial compression

Before improvement

30 end of test compression

47 EOL compression

After improvement

13 end of test compression

22 EOL compression

Shawcor SST have high accuracy on

compression LVDTs Measurement can

be considered the actual compression of

the pipeline

SST compression

22

Triaxial vs SST Compression 56 MPa

Triaxialbull compression results are conservative compared to SST compression resultsBetter bull models are needed for the relationshipbetween triaxial tests and actual compression (SST)

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 23: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Thermal Insulation Design Process

23

Requirements and Conditions

bull U-value

bull Cool-down time

bull Max compression

bull Max thickness

bull Buoyancy

bull Design temperature

bull Water depth

bull Lifetime

bull Installation type

bull Other input

Design

bull Select insulation system

bull Foam density

bull Compression

bull Thermal properties

bull Proven capability

=gtbull Layer thicknesses

bull U-value

bull Cost

bull Etc

Verification

bull Triaxial compression

bull Other material tests

bull Installation tests

bull Simulated Service Test

bull Other system tests

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 24: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

bull A thermal design defines the thickness of

insulation required to reach an insulation

requirement

bull The most common requirement is U-value

bull Insulation coatings consists of several layers

bull Each layer in the thermal insulation is defined

at start of life (SOL) and end of life (EOL)

bull Thickness

bull Density 120588

bull Thermal conductivity 119896

bull Foam density increases with compression

bull Thermal conductivity increases with

increasing foam density

bull For small changes in density

119896EOL = 119896SOL120588EOL120588SOL

bull U-value increases with increasing thermal

conductivity

U-value

119880 119877ref = 119877ref

119895=1

119899ln(119877119895+1119877119895)

119896119895

minus1

24

Thermal Insulation Design Process

Rj Rj+1

Rref

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 25: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Poor foam morphology U = 236 Wm2K Improved foam morphology U = 236 Wm2K

25

Cost Impact SST compression

5 reduction in thickness and PP consumption with improved foam

12119Coating mass [kgm] 11550Coating mass [kgm]

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 280 0173 740

PP Solid 30 0229 920

PP Foam Mid 280 0174 740

PP Solid 30 0233 920

PP Foam Outer 286 0174 740

PP Solid 40 0236 920

Total 1006

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 270 0180 769

PP Solid 30 0230 925

PP Foam Mid 274 0178 759

PP Solid 30 0234 925

PP Foam Outer 282 0178 755

PP Solid 40 0237 925

Total 984

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 26: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Poor foam morhology Thickness 106 mm Improved foam morphology Thickness 106 mm

26

U-value Impact SST compression

Coating compression 22

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0229 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 289 0180 769

PP Solid 30 0230 925

PP Foam Mid 293 0178 759

PP Solid 30 0234 925

PP Foam Outer 295 0178 755

PP Solid 40 0237 925

Total 1036

236 W(m2K)U-value of LP on OD U-value of LP on OD 225 W(m2K)

Layer Build Start of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0300 1300

Adhesive 03 0219 900

PP Solid 54 0223 920

PP Foam Inner 300 0173 740

PP Solid 30 0228 920

PP Foam Mid 300 0174 740

PP Solid 30 0233 920

PP Foam Outer 300 0174 740

PP Solid 40 0236 920

Total 1060

Layer Build End of Life

Material Thickn [mm] k [W(mK)] Dens [kgm3]

FBE 03 0301 1304

Adhesive 03 0220 903

PP Solid 54 0224 925

PP Foam Inner 273 0190 812

PP Solid 30 0230 925

PP Foam Mid 286 0183 778

PP Solid 30 0234 925

PP Foam Outer 292 0180 762

PP Solid 40 0237 925

Total 1010

Coating compression 47

Matching the SST

compression

5 reduction in U-value

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 27: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

U = 236 Wm2K

47 =gt 22 compression

106 mm =gt 101 mm thickness

1212 kgm PP =gt 1155 kgm PP (5

down)

Thickness 106 mm

47 =gt 22 compression

236 Wm2K =gt 225 Wm2K (5 down)

Compression data

- Only known after test (PQT stage)

+ Actual compression

SST compression data

U = 236 Wm2K

82 =gt 44 compression

116 mm =gt 105 mm thickness

1345 kgm PP =gt 1202 kgm PP (11

down)

Thickness 116 mm

82 =gt 44 compression

236 Wm2K =gt 218 Wm2K (8 down)

Compression data

- Overly conservative

+ Wide range of historical data available

Triaxial compression data

27

What compression data to use in design

In general historical triaxial compression data is used in designHowever 82 would be considered unrealistically high

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 28: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

bull ISO12736 calls for determination of rdquohydrostatic compressive behaviorrdquo

bull Triaxial compression test is a good method for measuring creep compression but

conservative

bull Detailed knowledge of foam compression is essential for accurate thermal designs

bull Triaxial compression data is primary source of compression data for design

bull Future work Better models are needed for the relationship between triaxial test results

and actual compression (SST)

bull U-value EOL can not generally be determined in SST test

bull Poor PPFoam morphology can double foam compression

bull Foam morphology (aspect ratio cell size cell number density) can be quantified using

image segmentation to show foam improvement

bull Foam compressibility can be improved by process improvements

bull Improved foam morphology reduces project cost

28

Summary

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value

Page 29: Influence of foam morphology on end of life U-value for subsea …info.shawcor.com/hubfs/Blog_Posts/AMI_Houston_2017_rev4.pdf · 2017. 10. 7. · Influence of foam morphology on end

Thank you for your attention

QUESTIONSJAN PEDER HEGDAL

Research Manager ndash Global Flow Assurance

Pipeline Performance

Shawcor Norway AS

PO Box 214 N-7301 Orkanger Norway

m +44 (0) 794 966 2302

m +47 902 19 913

e jphegdalshawcorcom

shawcorcom

29

Foam Morphology and End of Life U-value