37
ce of hypoxia on the distribution, behavior, g of zooplankton and planktivorous fish in c ie: Field observations & future directions ank Vanderploeg, GLERL tuart Ludsin, GLERL teve Pothoven, GLERL omas Höök, CILER Univ. of Michigan ames Roberts, Univ. of Michigan teve Ruberg, GLERL oann Cavaletto, GLERL ames Liebig, GLERL regory Lang, GLERL tephen Brandt, GLERL

Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Embed Size (px)

Citation preview

Page 1: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in centralLake Erie: Field observations & future directions

Hank Vanderploeg, GLERLStuart Ludsin, GLERLSteve Pothoven, GLERLTomas Höök, CILER Univ. of MichiganJames Roberts, Univ. of MichiganSteve Ruberg, GLERLJoann Cavaletto, GLERLJames Liebig, GLERLGregory Lang, GLERLStephen Brandt, GLERL

Page 2: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Hypoxia is an old problem in freshwater—Results forCyclops bicuspidatus (Einsle 1965)

This species is very tolerant of low oxygen (~ 0.1mg/L)

Page 3: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

1. Hypoxia will disrupt vertical migration behavior

– Reduce time spent on bottom

2. Hypoxia will influence horizontal movement

– Fish will move into oxygenated, shallow nearshore zones

3. Hypoxia will reduce availability of prey, both ZP & benthic macroinvertebrate prey

– ZP use hypoxia as a refuge from predation– Hypoxia reduces benthic prey abundance

4. Fish consumption & condition will decline

Original Lake ErieFish-Centric Hypotheses

Page 4: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Playing chess with death—a zooplankton-centric view

Scene from Bergman’s “The Seventh Seal”

Page 5: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Death normally comes in two forms: predation and starvation

• Zooplankton vertical migration is strategy to minimize overlap with visually preying invertebrate and vertebrate (fish) predators—conspicuous or unprotected (spineless) zooplankton move to lower light levels

• Move into upper favorable (temperature and food) areas at night.

• Predator abundance is assessed by kairomones.• When many predators, the zooplankter (prey)

must play chess to avoid overlap.

Page 6: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

The Great Lakes have both visual invertebrate & and vertebrate predators—Lake Michigan example

Page 7: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Playing chess with death—the piscine players

Scene from Bergman’s “The Seventh Seal”

Page 8: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Rainbow Smelt August 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

Emerald Shiner August 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

USGS-NAS

Emerald shiner:Epilimnetic planktivore

Rainbow Smelt:Planktivore-benthivore

Dominant planktivores of Lake Erie and their Vanderploeg & Scavia (1979) selectivity coefficients (W´) pre-hypoxia

Prey size

Page 9: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Hypoxia, another form of death, alters the game—some hypotheses:

• Differential tolerance of zooplankton to hypoxia allows some species to enter the hypoxic zone to escape predators—the refuge

• Others will be forced out and trapped in lighted areas above—the hypoxia-light trap.

Page 10: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43

-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43

DissolvedOxygen(mg/l)

0

3

6

9

12

September

Diel Station B

August

Lake Erie

Some results before and after major hypoxia will give us some insights

Page 11: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

General Methods—What we did

Page 12: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

• Trawling (fish species & samples for diet & ration work)

• Zooplankton net and pump sampling (zooplankton)

• Ponar sampling (benthic macroinvertebrates)

• Zooplankton• Temperature• Dissolved oxygen• Light levels• Chlorophyll a

FishBiomass

Introduction to Study Systems & General Methods

Page 13: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Lake Erie Field Program (IFYLE 2005)

Diel (24-hr)Transect (day-night)

Source: Don Coles

EPA-GLNPOR/V Lake Guardian (180’)

NOAA-GLERLR/V Laurentian (80’)

Transect BDiel Station B

Page 14: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

0 5 10 15 20 25D

epth

(m

)0

2

4

6

8

10

12

14

16

18

20

22

24

Water Column Pumping Method

1 min. ea. depth

1 min. ea. depth

5 min.ea.

DO (mg/L)

Water Temp (oC)

2 min. ea. depth

Sept. 2005

shooting for pumping 1 cubic meter of water

Page 15: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

DissolvedOxygen(mg/l)

0

3

6

9

12

-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43

-83.5 -82.5 -81.5 -80.5 -79.5

41.5

42

42.5

43

Transect B

Ho 2: Hypoxia will alter horizontal distribution of abundance– Fish will move into oxygenated, shallow nearshore zones

September

August

October

Lake Erie

Page 16: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

41.7 41.8 41.9 42 42.1

20

10

0

0

3

6

9

12

- 1 1 0

- 9 0

- 7 0

- 5 0

- 3 0

Latitude (degrees)

Dep

th (

m)

Day

41.7 41.8 41.9 42 42.1

20

10

0

NightTemp(º C)

DO(mg/l)

Fish(dB)

6

1 4

2 2

3 0

(August – Pre-Hypoxia)

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

Ho 2: Hypoxia will alter horizontal distribution of abundance

Lake Erie

Ludsin, Vanderploeg & Ruberg, unpub

Page 17: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

0

3

6

9

12

- 1 1 0

- 9 0

- 7 0

- 5 0

- 3 0

Latitude (degrees)

Dep

th (

m)

Temp(º C)

DO(mg/l)

Fish(dB)

6

1 4

2 2

3 0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

(September – Peak Hypoxia)

Ho 2: Hypoxia will alter horizontal distribution of abundance

Day

41.7 41.8 41.9 42 42.1

20

10

0

Night

Lake Erie

Ludsin, Vanderploeg & Ruberg, unpub

Page 18: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

0

3

6

9

12

- 1 1 0

- 9 0

- 7 0

- 5 0

- 3 0

Latitude (degrees)

Dep

th (

m)

Temp(º C)

DO(mg/l)

Fish(dB)

6

1 4

2 2

3 0

41.6 41.7 41.8 41.9

20

10

0

41.6 41.7 41.8 41.9

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

41.7 41.8 41.9 42 42.1

20

10

0

(October – Post Hypoxia)

Ho 2: Hypoxia will alter horizontal distribution of abundance

Day

41.7 41.8 41.9 42 42.1

20

10

0Night

– Reject: Fish move into oxygenated waters, but offshore

Lake Erie

Ludsin, Vanderploeg & Ruberg, unpub

Page 19: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Playing chess with death—Insights from pre-hypoxia (control) & hypoxia distributions and prey selection

Scene from Bergman’s “The Seventh Seal”

Page 20: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future
Page 21: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Diel B, Aug 17, 01:00 EDT

0

5

10

15

20

25

0 5 10 15 20 25

Chl, DO, Zoop, Temp

De

pth

(m

)

0 100 200 300 400 500PAR

Fish biomass(relative)

Zoomass (10 ug/L)

Chl (ug/L)

DO (mg/L)

Temp ('C)

PAR (uE/m2/s)

Page 22: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Diel B, Aug 17, 13:00 EDT

0

5

10

15

20

25

0 5 10 15 20 25Chl, DO, Zoop, Temp

De

pth

(m

)

0 200 400 600 800 1000 1200PAR

Fish biomass(relative)

Zoomass (10 ug/L)

Chl (ug/L)

DO (mg/L)

Temp ('C)

PAR (uE/m2/s)

Page 23: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Copepods mg . m-3

0 10 20 30 40

dep

th

0

4

8

12

16

20

24

Cladocerans mg . m-3

0 100 200

Lake Erie B 8-17-05 DIEL 02:00

BosminaEubosminaDaphnia mendotaeD. longiremis

Predatory Cladocerans mg . m-3

0 10 20 30

4.8 mg/L DO

EPI

META

HYPO

4.8 mg/L DO 4.8 mg/L DO

LeptodoraBythotrephesCercopagis

DiacyclopsMesocyclopsTropocyclopsDiaptomidsEpischuranauplii

Page 24: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Copepods mg . m-3

0 50 100

dep

th

0

4

8

12

16

20

24

DiacyclopsMesocyclopsTropocyclopsDiaptomidsEpischuranauplii

Cladocerans mg . m-3

0 20 40

Lake Erie B 8-17-05 DIEL 14:00

BosminaEubosminaDaphnia mendotaeD. longiremisD. retrocurva

Predatory Cladocerans mg . m-3

0 1 2

EPI

META

HYPO

4.8 mg/L DO 4.8 mg/L DO 4.8 mg/L DO

LeptodoraBythotrephes

Page 25: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future
Page 26: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Diel B, Sept 18, 03:00 EDT

0

5

10

15

20

25

0 5 10 15 20 25

Chl, DO, Zooplankton, Temp

De

pth

(m

)

0 100 200 300 400 500PAR

Fish biomass(relative)

Zoomass (10 ug/L)

Chl (ug/L)

DO (mg/L)

Temp ('C)

PAR (uE/m2/s)

Page 27: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Diel B, Sept 17, 15:00 EDT

0

5

10

15

20

25

0 5 10 15 20 25

Chl, DO, Zooplankton, Temp

De

pth

(m

)

0 100 200 300 400 500PAR

Fish biomass(relative)

Zomass (10 ug/L)

Chl (ug/L)

DO (mg/L)

Temp ('C)

PAR (uE/m2/s)

Page 28: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Predatory Cladocerans mg . m-3

0 1 2 3Copepods mg . m-3

0 100 200

dep

th

0

4

8

12

16

20

24

Cladocerns mg . m-3

0 20 40 60 80

Lake Erie B 9-18-05 DIEL 02:00

DiacyclopsMesocyclopsTropocyclopsDiaptomidsEpischuranauplii

BosminaEubosminaDaphnia mendotaeD. longiremisD. retrocurvaDiaphanasoma

Leptodora

upper epi

lower epi

meta

hypo

1.2 mg/L DO 1.2 mg/L DO 1.2 mg/L DO

Page 29: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Copepods mg . m-3

0 20 40 60 80

dep

th

0

4

8

12

16

20

24

Cladocerans mg . m-3

0 20 40

Lake Erie B 9-17-05 DIEL 14:00

DiacyclopsMesocyclopsTropocyclopsDiaptomidsEpischuranauplii

Predatory Cladocerans mg . m-3

0.0 0.5 1.0

1.2 mg/L DO 1.2 mg/L DO 1.2 mg/L DO

upper epi

lower epi

meta

hypo

BosminaEubosminaDaphnia mendotaeD. longiremisD. retrocurvaDiaphanasoma

Leptodora

Page 30: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Rainbow Smelt August 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

Emerald Shiner August 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

USGS-NAS

Emerald shiner:Epilimnetic planktivore

Rainbow Smelt:Planktivore-benthivore

Selectivity coefficient of Vanderploeg & Scavia (W´) for Emerald shiner and Rainbow Smelt in August 2005

Prey size

Page 31: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Rainbow Smelt September 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

Emerald Shiner September 2005

0.00

0.25

0.50

0.75

1.00

W' Night

Day

USGS-NAS

Emerald shiner:Epilimnetic planktivore

Rainbow smelt:Planktivore-benthivore

Prey size

Selectivity coefficient of Vanderploeg & Scavia (W´) for emerald shiner and rainbow smelt in September 2005

Page 32: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

What’s going on down there?

Present status:Heavy emphasis in IFYLE Hypoxia study on upper

food web (fish and location of fish food)We do know, however:• Mesozooplankton and microzooplankton

distribution relative to hypoxia response is species specific

• Microzooplankton grazing dominates during the summer

• Bacteria-based food web becomes important in hypoxic zone

Page 33: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

What’s going on down there?

For the development of a conceptual framework we’d like to know:

• What is the minimum oxygen concentration a zooplankter (species by species) is willing to enter yet survive under various predation risk scenarios?

• How does feeding and behavior vary with oxygen concentration?

• What is the joint distribution of meso-and microzooplankton around hypoxic zones

• How is production and predation risk affected?

Page 34: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

We know something about Daphnia foraging in hypoxic areas but nothing for copepods, the dominants in the Great Lakes, or for visual

invertebrate predators

From Heisey & Porter (1977)

Page 35: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Some possible lab approaches to define spatial

rules of food web assembly (“indirect effects”)

• Observe location of position of zooplankton in laboratory water columns with gradients of light, temperature, kairomones of potential predators & oxygen

• Directly observe behavior and foraging in hypoxic water columns.

• Observe effect of hypoxia on visual predation (both invertebrate & vertebrate)—have predators watch TV

Page 36: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Inside the lab

Page 37: Influence of hypoxia on the distribution, behavior, and foraging of zooplankton and planktivorous fish in central Lake Erie: Field observations & future

Outside the lab: keeping the predator in focus