17
1 InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California, Santa Barbara, CA 93106-9560 D Loubychev, A Snyder, Y Wu, J M Fastenau, W K Liu IQE Inc., 119 Technology Drive, Bethlehem, PA 18015 [email protected], 805-893-3273 International Symposium on Compound Semiconductors 2011

InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

1

InGaAs/InP DHBTs in a planarized, etch-back technology for base contacts

Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark RodwellECE Department, University of California, Santa Barbara, CA 93106-9560

D Loubychev, A Snyder, Y Wu, J M Fastenau, W K LiuIQE Inc., 119 Technology Drive, Bethlehem, PA 18015

[email protected], 805-893-3273

International Symposium on Compound Semiconductors 2011

Page 2: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

2

Outline

• HBT Scaling Laws

• Refractory base ohmics

• Fabrication

• DHBT – Epitaxial Design and Results

• Summary

Page 3: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

3

Ohmic contacts

Lateral scaling

Epitaxial scaling

Bipolar transistor scaling laws

To double cutoff frequencies of a mesa HBT, must:

(emitter length Le)

We

Tb TcWbc

Keep constant all resistances and currentsReduce all capacitances and transit delays by 2

RCf

tr 2

1

exitbnbb vTDT 22

satcc vT 2

eex AR /contact

contacts

contactsheet

612 AL

W

L

WR

e

bc

e

ebb

cccb /TAC 2

cbmax, /)( cbieeffc TVAvI

effcbeffbb CR

ff

,,

max8

Page 4: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

4

InP bipolar transistor scaling roadmap

Emitter

256 128 64 32 Width (nm)

8 4 2 1 Access ρ (Ω·µm2)

Base

175 120 60 30 Contact width (nm)

10 5 2.5 1.25 Contact ρ (Ω·µm2)

Collector 106 75 53 37.5 Thickness (nm)

Current density 9 18 36 72 mA/µm2

Breakdown voltage 4 3.3 2.75 2-2.5 V

fτ 520 730 1000 1400 GHz

fmax850 1300 2000 2800 GHzP

erfo

rman

ceD

esig

n

Rodwell, Le, Brar, Proceedings of IEEE, 2008

Page 5: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

5

• Pd contacts diffuse in base (p-InGaAs)

• Contact resistance ↑ for thin base

• Limits base thickness

Scaling Limitation

100 nm InGaAs grown in MBE

15 nm Pd diffusion

Need for non-diffusive, refractory base metal

Contact diffusionTEM by E Lobisser

Ashish Baraskar

Page 6: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

6

Refractory base ohmics

Doping Metal Type c (W-mm2)

1.5E20 Mo As deposited 2.5

1.5E20 Ru/Mo As deposited 1.3

1.5E20 W/Mo As deposited 1.2

1.5E20 Ir/Mo As deposited 1.0

2.2E20 Ir/Mo As deposited 0.6

2.2E20 Ir/Mo Annealed 0.8

Ashish Baraskar et al., EMC 2010

Refractory metal base contacts

Require a blanket deposition and etch-back process

Ashish Baraskar et al., Int. MBE 2010

Page 7: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

7

Emitter process flow

Mo contact to n-InGaAs for emitter

W/TiW/SiO2/Cr dep

SF6/Ar etch

SiNx Sidewall

SiO2/Cr removal

InGaAs Wet Etch

Second SiNx

Sidewall

InP Wet Etch

W/TiW interface acts as shadow mask for base lift off

Collector formed via lift off and wet etch

BCB used to passivate and planarize devices

Mo

base

N- collector

InP substrate

sub collector

emitter

emitter cap

n+ InGaAs

n InP

emitter cap

emitter

base

SiO2/Cr

TiW

MoW

SiN (SW)

emitterbase base

Page 8: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

8

W

Mo

InGaAs

p+ InGaAs Base

Ti0.1W0.9

InP

W

Mo

InGaAs

p+ InGaAs Base

Ti0.1W0.9

InP

Base process flow – I

PR

Blanket refractory metal PR Planarization

Isotropic Dry etch of metal

Removes any Emitter-Base short

Page 9: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

9

W

Mo

InGaAs

p+ InGaAs Base

Ti0.1W0.9

InP

W

Mo

InGaAs

p+ InGaAs Base

Ti0.1W0.9

InP

SiNx

Base process flow – II

Lift-off Ti/Au

Low base metal resistance

Blanket SiNx mask

Etch base contact metal in the field

Page 10: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

10

Base Planarization

Planarization: Emitter projecting

from PR for W dry etch

Etch Back

Planarization Boundary

Page 11: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

11

Epitaxial Design

T(nm) Material Doping (cm-3) Description

10 In0.53Ga0.47As 81019 : Si Emitter Cap

15 InP 51019 : Si Emitter

15 InP 21018 : Si Emitter

30 InGaAs 9-51019 : C Base

4.5 In0.53Ga0.47 As 91016 : Si Setback

10.8 InGaAs / InAlAs 91016 : Si B-C Grade

3 InP 6 1018 : Si Pulse doping

81.7 InP 91016 : Si Collector

7.5 InP 11019 : Si Sub Collector

7.5 In0.53Ga0.47 As 21019 : Si Sub Collector

300 InP 21019 : Si Sub Collector

Substrate SI : InP

Vbe = 1 V, Vcb = 0.7 V, Je = 25 mA/mm2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 50 100 150 200

En

erg

y (

eV

)

Distance (nm)

Emitter

Collector

Base

Low Base doping

Good refractory ohmics not possible

Pd/W contacts used

Page 12: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

12

Results - DC Measurements

BVceo = 2.4 V @ Je = 1 kA/cm2

β = 26

JKIRK = 21 mA/mm2

@Peak f,fmax

Je = 17.9 mA/mm2

P = 30 mW/mm2

Gummel plot

Common emitter I-V

0

10

20

30

0 0.5 1 1.5 2 2.5

Je (

mA

/mm

2)

Vce

(V)

P = 25 mW/mm2

Peak f/f

max

Ib = 200 mA

Ib,step

= 200 mA

10-7

10-5

10-3

10-1

0 0.2 0.4 0.6 0.8 1

I c,

I b (

A)

Vbe

(V)

Ic

Ib

Solid Line: Vcb

= 0 V

Dashed Line: Vcb

= 0.7 V

nc = 1.76

nb = 3.29

Page 13: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

13

1-67 GHz RF Data

Ic = 22.4 mA

Vce = 1.67 V

Je = 17.9 mA/mm2

Vcb = 0.7 V

Single-pole fit to obtain cut-off frequencies

0

10

20

30

109

1010

1011

1012

Ga

in (

dB

)

freq (Hz)

U

H21

MSG

fmax

= 690 GHz

f = 410 GHz

Aje

= 0.22 × 5.7 mm2

Page 14: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

14

Equivalent Circuit

Hybrid- equivalent circuit from measured RF data

Rex = 6 Wmm2

Ccb,x = 4.48 fF

Ccb,i = 1.3 fF

Rcb = 17 kW

Rc = 1.7 W

Rex = 4.7 W

Rbe = 42 W

Rbb = 24 W

Cje + Cdiff = (15 + 241) fF gmVbee-j

0.73Vbeexp(-j0.15ps)

Base

Emitter

Col

Ccg = 6.8 fF

Ccb,x = 4.48 fF

Ccb,i = 1.3 fF

Rcb = 17 kW

Rc = 1.7 W

Rex = 4.7 W

Rbe = 42 W

Rbb = 24 W

Cje + Cdiff = (15 + 241) fF gmVbee-j

0.73Vbeexp(-j0.15ps)

Base

Emitter

Col

Ccg = 6.8 fF

freq (1.000GHz to 67.00GHz)

S(1

,1)

freq (100.0MHz to 67.00GHz)

S_para

mete

r_D

eem

bed_P

NA

..S

11d

S_para

mete

r_D

eem

bed_P

NA

..S

22d

S(1

,2)*

5S

(2,1

)/12

S_para

mete

r_D

eem

bed_P

NA

..S

12d*5

S_para

mete

r_D

eem

bed_P

NA

..S

21d/1

2S

(2,2

)

S21/12

S12x5

S11S22

--- : Measured

x : Simulated

freq (1.000GHz to 67.00GHz)

S(1

,1)

freq (100.0MHz to 67.00GHz)

S_para

mete

r_D

eem

bed_P

NA

..S

11d

S_para

mete

r_D

eem

bed_P

NA

..S

22d

S(1

,2)*

5S

(2,1

)/12

S_para

mete

r_D

eem

bed_P

NA

..S

12d*5

S_para

mete

r_D

eem

bed_P

NA

..S

21d/1

2S

(2,2

)

S21/12

S12x5

S11S22

--- : Measured

x : Simulated

Page 15: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

15

TEM

Large undercut in base mesa

Pd/W adhesion issue

High Rbb

Low fmax 0.1 mm

Pd/W adhesion issue

Large mesa undercut

Page 16: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

16

Summary

• Demonstrated a planarized, etch back process for refractory base contacts

• Demonstrated DHBTs with peak f / fmax = 410/690 GHz

• Higher base doping, thinner base and refractory base ohmicsneeded to enable higher bandwidth devices

Page 17: InGaAs/InP DHBTs in a planarized, etch-back technology for ...Vibhor Jain, Evan Lobisser, Ashish Baraskar, Brian J Thibeault, Mark Rodwell ECE Department, University of California,

17

Questions?

Thank You

This work was supported by the DARPA THETA program under HR0011-09-C-006.

A portion of this work was done in the UCSB nanofabrication facility, part of NSF funded NNIN network and MRL Central Facilities supported by the MRSEC Program of the NSF under award No. MR05-20415