25
t INPOP planetary ephemerides: Recent results in testing gravity A. Fienga 1 J. Laskar 2 P. Exertier 1 H. Manche 2 M. Gastineau 2 1 eoAzur, Observatoire de la Cˆote d’Azur, France 3 IMCCE, Observatoire de Paris, France 50 th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP 1 / 26

INPOP planetary ephemeridesÊ: Recent results in testing ...moriond.in2p3.fr/J15/transparencies/3_tuesday/1_morning/2_fienga.… · tugraz INPOP planetary ephemerides: Recent results

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • tugraz

    INPOP planetary ephemerides: Recent results intesting gravity

    A. Fienga1

    J. Laskar2 P. Exertier1 H. Manche2 M. Gastineau2

    1GéoAzur, Observatoire de la Côte d’Azur, France

    3IMCCE, Observatoire de Paris, France

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    1 / 26

  • tugraz

    The planetary ephemerides today

    DE430,EPM2011, INPOP13c: what they have in common ...

    Numerical integration of the (Einstein-Imfeld-Hoffmann, c−4 PPN approximation)equations of motion.

    ẍPlanet =∑A6=B

    µBrAB‖rAB‖3

    + ẍGR(β, γ, c−4) + ẍAST ,300 + ẍJ�2

    Adams-Cowell in extended precision

    8 planets + Pluto + Moon + asteroids (point-mass, ring),GR, J�2 , Earth rotation (Euler angles, specific INPOP)

    Moon: orbit and librations

    Simultaneous numerical integration TT-TDB, TCG-TCB

    Fit to observations in ICRF over 1 cy (1914-2014)

    GAIA ESA planetary ephemerides, Asteroid physics,Tests of gravity

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    2 / 26

  • tugraz

    The Solar system and the tests of gravity

    With such accuracy, the solar system is still the ideal lab for testinggravity

    0

    5

    10

    15

    20

    25

    30

    35

    40

    1970 1975 1980 1985 1990 1995 2000 2005 2010Year

    (cm

    )

    LLR WRMS based on INPOP10a

    5 cm

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    3 / 26

  • tugraz

    and the modified gravity comes ...!

    For example,

    Theories Phenomenology Object

    Standard Model violation of EP Moon-LLR

    MOND d$̇supp, dΩ̇supp planets

    Scalar field theories Ġ/G Moon-LLR, planetsvariation of β, γ planets

    Dark Energy Ġ/G Moon-LLR, planetsAWE/chameleons variation of β, γ planetsDark Matter linear drift of AU planets

    asupp Moon-LLR,planets

    d$̇supp, dΩ̇supp planetsISL d$̇supp planets,Moon-LLRf(r) asupp planets

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    4 / 26

  • tugraz

    INPOP and gravity tests

    In Planetary and Lunar ephemerides (like INPOP), GR plays a role in

    ∆tSHAP = (1 + γ)GM�(t)lnl0 + l1 + t

    l0 + l1 − t

    ∆$̇PLA =2π(2γ − β + 2)GM�(t)

    a(1− e2)c2+

    3πJ2R2�

    a2(1− e2)c2+ ∆$̇AST

    ∆$̇Moon =2π(2γ − β + 2)GM�(t)

    a(1− e2)c2+ ∆$̇GEO + ∆$̇SEL + ∆$̇S,PLA

    GR tests are then limited by

    Contributions by J�2 , Asteroids, 2γ − β + 2Lunar and Earth physics

    BUTDecorrelation with all the planetsBenefit of PE global fit versus single space mission

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    5 / 26

  • tugraz

    Specific INPOP developments for testing gravity

    Variations/Estimations of PPN β, γ, Sun J�2 (Fienga et al. 2011)

    Simulation of a Pioneer anomaly type of acceleration → ẍconstant (Fienga et al. 2011)

    Supplementary advance of perihelia $̇ and nodes Ω̇ → R($(ti ),Ω(ti )) → MONDconstraints (Fienga et al. 2011)

    Equivalence Principle @ astronomical scale

    → ẍj =mGj

    mIjF (xi , ẋi ,m

    Gi , ...) = (1 + η)F (xi , ẋi ,m

    Gi , ...)

    With µ� = GM�, µj = GMj for planet j

    Ṁ�M�

    and ĠG with˙µ�µ�

    = ĠG +Ṁ�M�

    andµ̇jµj

    = ĠG

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    6 / 26

  • tugraz

    more than 1 century of data

    Mercury: independent analysis ofMESSENGER data (Verma et al. 2014)

    Saturn: Cassini VLBI and radio tracking

    Jupiter: Galileo VLBI and 5 s/c flybys

    Venus, Mars: VEX, MEX, MGS, MRO,MO, ...

    α δ ρS/C VLBI 1990-2010 V, Ma, J, S 1/10 mas 1/10 mas

    S/C Flybys 1976-2014 Me, J, S, U, N 0.1/1 mas 0.1/1 mas 1/30 m

    S/C Range 1976-2014 Me, V, Ma 2/30 m

    Direct range 1965-1997 Me,V 1 km

    Optical 1914-2014 J, S, U, N, P 300 mas 300 mas

    LLR 1980-2014 Moon 1cm

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    7 / 26

  • tugraz

    INPOP13C accuracy versus to DE, EPM (I)

    Name # Perturbers # fitted masses Ring GM�

    TNO Main belt TNO Main belt TNO Main belt

    INPOP13c 0 150 0 150 0 F F

    DE430 0 343 0 343 0 0 F

    EPM2011 21 301 0 21 + 3 density classes F F

    Differences in dynamical modeling and adjustments

    INPOP13c data sets ≈ DE430 data sets BUT

    2 specific data analysis for MESSENGER

    new JPL analysis for CASSINI → Independent analysis in progress

    EPM2011 older data sets without MESSENGER data and recently published

    Cassini VLBI

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    8 / 26

  • tugraz

    INPOP13C accuracy versus to DE, EPM (II)

    Differences in angles [mas] Differences in range [m]

    (INPOP13c - DE430)

  • tugraz

    Tests of gravity

    ẍPlanet =∑A6=B

    µBrAB‖rAB‖3

    + ẍGR(β, γ, c−4) + ẍAST ,300 + ẍJ�2

    With µ� = GM�, µj = GMj for planet j

    Ṁ�M�

    and ĠG with˙µ�µ�

    = ĠG +Ṁ�M�

    andµ̇jµj

    = ĠG

    ∀ti ,M�(ti ) andG (ti )→µ(ti ), µ�(ti ) → ẍPlanet , ẍAst , ẍMoon

    What values of ˙µ�µ� (and thenṀ�M�

    or ĠG ) BUT also PPN β, γ and

    J�2 are acceptable / INPOP13c accuracy ?

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    10 / 26

  • tugraz

    2 approaches based on INPOP13c

    1 - Global fit including ˙µ�µ� , PPN β, γ and J�2

    Planet CI, 290 GMast ,GMring , GM�, EMRAT + GRFull data samples including Messenger and Cassini data

    Correlations between parameters

    Correlated datasets

    2 - Monte Carlo simulation

    about 36000 runs

    optimized by a genetic algorithm

    With Ṁ�M� = (−0.92± 0.46)× 10−13 yr−1 → ĠG (Pinto et al. 2013),(Pitjeva et al. 2012)

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    11 / 26

  • tugraz

    GR Global fit

    Correlations between parameters (Ashby et al. 2007), (Fienga et al. 2009), (Iorio et al.2011)

    ∆$̇ = 2π(2γ−β+2)µ�(t)a(1−e2)c2 +

    3πJ�2 R2�

    a2(1−e2)c2 + ∆$̇AST

    → Full modeling with 290 GMast and Limited modeling with 60 GMast

    Correlated datasets (Konopliv et al. 2011), (Kuchynka et al. 2012)

    S/C electronic delay → bias by s/cJPL data analysis (MO,MRO) →Mis-calibration per station → bias bystation DSS

    Independant analysis (MEX, VEX,MGS, MESSENGER): mean rangeper station and per data arc

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    12 / 26

  • tugraz

    GR Global fit: results

    Method PPN β − 1 PPN γ − 1 Ġ/G J�2× 105 × 105 × 1013 yr−1 × 107

    Limited -12.8 ± 5.4 10.2 ± 6.6 1.12 ± 0.40 2.23 ± 0.2Limited + SC + DSS -4.45 ± 9.1 10.1 ± 2.4 1.12 ± 0.34 2.23 ± 0.2Full -4.9 ± 5.1 -2.0 ± 5.1 -0.54± 0.51 2.27 ± 0.3Full + SC + DSS -4.4 ± 5.3 -0.81 ± 4.5 0.42 ± 0.53 2.27 ± 0.25INPOP13a (Verma et al. 2014) 0.2 ± 2.5 -0.3 ± 2.5 0.0 2.40 ± 0.20

    First INPOP Full fit of the 4 GR parameters all together

    Stable estimation for J�2

    Greater uncertainties for β and γ vs (Verma et al. 2014)

    Sensivity of 3 GR β, γ and Ġ/G to dynamical modeling

    ∆χ2 ≈ 1%

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    13 / 26

  • tugraz

    MC simulations”Real” uncertainty/LS estimations + ”my theory proposes this violation of GR. Is it compatible with INPOP ?”

    Grid of sensitivity for GRP determinations(Fienga et al. 2009, 2011), (Verma et al. 2014)

    GRP: PPN β,γ, $̇, Ω̇, asupp, Ġ/G , J�2

    Construction of different INPOP for different values of GRP

    For each value of GRP , all parameters (IC planets, GMAst ,GM�) of INPOP are fitted.

    Iteration = all correlations are taken into account2 selection criteria

    1 C1 = Postfit residuals /INPOP → GRP intervals with ∆residuals < 50%

    2 C2 = ∆χ2 < 3%

    What values of GRP are acceptable at the level of data accuracy ?

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    14 / 26

  • tugraz

    INPOP13a and tests of GR: PPN β and γ

    INPOP13a (Verma et al. 2014):

    (β − 1)× 105 = 0.2± 2.5 , (γ − 1)× 105 = −0.3± 2.5 , J�2 × 107 = 2.40± 0.20

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    15 / 26

  • tugraz

    Direct Monte Carlo of µ̇/µ, J�2 , β, γ

    4000 INPOP runs with random

    selection of (µ̇/µ, J�2 , β, γ)

    1 run = 4 iterations (1hr/iteration@ 16 itanium processors)

    Selection of INPOP(µ̇/µ, J�2 , β, γ)

    inducing differences to INPOP13a

    residuals < 50 %

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    16 / 26

  • tugraz

    Direct Monte Carlo of µ̇/µ, J�2 , β, γ

    Only 15 % INPOP(µ̇/µ,J�2 , β, γ) < 50 %1.4% for INPOP() < 25 %

    No clear gaussiandistribution especiallyfor β and γ

    → Optimisation of the MCby a genetic algorithm

    < J�2 > (2.21 ± 0.29) × 10−7

    W-test = 0.984

    < β − 1 > (-0.8 ± 8.2)× 10−5 ?0.969

    < γ − 1 > (0.2± 8.2)× 10−5 ?0.968

    < Ġ/G > (0.04± 2.46)*× 1013 yr−1 (0.27± 1.66)**

    0.987

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    17 / 26

  • tugraz

    Simple Genetic Algorithm with mutation (SGAM)

    1 individual = INPOP (µ̇/µ, J�2 , β, γ)

    1 chromosome = a set of (µ̇/µ, J�2 , β, γ)

    2 crossovers + 1/10 mutation (= new random value each over 10)

    2 selection criteria : (O-C) < 50% and ∆χ2 < 3%

    35 800 runs with 4000 MC simulation as population 0

    set i [(µ̇/µ)i , (J�2 )i , βi , γi ]

    set j [(µ̇/µ)j , (J�2 )j , βj , γj ]

    1 crossover [(µ̇/µ)i , (J�2 )i ,βj , γj ]

    [(µ̇/µ)j , (J�2 )j ,βi , γi ]

    2 crossovers [(µ̇/µ)i , (J�2 )j ,βi , γj ]

    [(µ̇/µ)j , (J�2 )i ,βj , γi ]

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    18 / 26

  • tugraz

    35 800 runs with SGAM

    @ PSL mesocentre : NEC 1472 kernels on 92 nodes2 nodes allocated for INPOP12 runs (= 12 x 4 iterations) @ 1hr / node4000 MC simulation = population 0 @ SGAM30 generationsC1 convergency reached @ 18th (12125 runs)C2 convergency reached @ 25th

    C1 C2

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    19 / 26

  • tugraz

    Improvement of gaussianity

    C1 C2

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    20 / 26

  • tugraz

    Improvement of gaussianity

    → Proper definitionof mean and 1-σ

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    21 / 26

  • tugraz

    Decrease of σ of the GRP distribution with thenumber of runs

    C1 C2

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    22 / 26

  • tugraz

    PPN β, γ, µ̇/µ, J�2

    Method PPN β − 1 PPN γ − 1 Ġ/G J�2× 10−5 × 10−5 × 1013 yr−1 × 107

    LS -4.4 ± 5.5 -0.81 ± 4.5 0.42 ± 0.53 2.27 ± 0.3MC -0.8 ± 8.2 0.2 ± 8.2 0.04 ± 2.46 2.21 ± 0.29MC + SGAM C1 -0.5 ± 6.3 -1.2 ± 4.4 0.4 ± 1.4 2.26 ± 0.11MC + SGAM C2 -0.01 ± 7.1 -1.7 ± 5.2 0.5 ± 1.6 2.22 ± 0.14MC + SGAM C1,C2 -0.25 ± 6.7 -1.5 ± 4.8 0.5 ± 1.6 2.24 ± 0.125

    Ġ/G ≈ 2 ×10−13 yr−1 β − 1 ≈ 7 ×10−5 γ − 1 ≈ 5 ×10−5EP η = 4β − γ − 3≈ 2×10−4

    J�2 = (2.24± 0.15)× 10−7

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    23 / 26

  • tugraz

    PPN β, γ, µ̇/µ, J�2Method PPN β − 1 PPN γ − 1 Ġ/G J�2

    × 10−5 × 10−5 × 1013 yr−1 × 107LS -4.4 ± 5.5 -0.81 ± 4.5 0.42 ± 0.53 2.27 ± 0.3MC + SGAM C1 -0.5 ± 6.3 -1.2 ± 4.4 0.4 ± 1.4 2.26 ± 0.11MC + SGAM C2 -0.01 ± 7.1 -1.7 ± 5.2 0.5 ± 1.6 2.22 ± 0.14MC + SGAM C1,C2 -0.25 ± 6.7 -1.5 ± 4.8 0.5 ± 1.6 2.24 ± 0.125K11-DE 4 ± 24 18 ± 26 1.0 ± 2.4 fixed to 1.8P13-EMP -2 ± 3 4 ± 6 0.29 ± 1.25 2.0 ± 0.2INPOP13a 0.2 ± 2.5 -0.3 ± 2.5 0.0 2.4 ± 0.2F13-DE 0.0 0.0 0.0 2.1 ± 0.70W09-LLR 12 ± 11 fixed 0.0 fixedM05-LLR 15 ± 18 fixed 6 ± 8 fixedB03-Cass 0.0 2.1 ± 2.3 0.0L11-VLB 0.0 -8 ± 12 0.0 fixedPlanck +WP+BAO -1.42± 2.48Heliosismo. 2.206 ± 0.05

    Ġ/G ≈ 2 ×10−13 yr−1 β − 1 ≈ 7 ×10−5 γ − 1 ≈ 5 ×10−5J�2 = (2.24± 0.15)× 10−7 EP η = 4β − γ − 3≈ 2×10−4

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    24 / 26

  • tugraz

    Conclusions

    β − 1 ≈ 7 ×10−5 γ − 1 ≈ 5 ×10−5EP η = 4β − γ − 3≈ 2×10−4

    Ġ/G ≈ 2 ×10−13 yr−1 J�2 = (2.24± 0.15)× 10−7

    Short term improvement:

    Saturn: Full reprocessing of Cassini 10 years data

    Jupiter: JUNO mission in 2015/2016

    Mars: MO,MEX,MRO

    In the coming years: GAIA, Bepi-Colombo, JUICE

    50th Rencontres de Moriond Gravitation: 100 years after GR Testing gravity with INPOP

    25 / 26