29
Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX CONUSS Workshop 2 nd November, 2012

Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Introduction toLattice Dynamics

J.S. TseDepartment of Physics and Engineering PhysicsUniversity of Saskatchewan, Saskatoon, Canada

APS PHEONIX CONUSS Workshop 2nd November, 2012

Page 2: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Dulong  and  Petit's  Law was  discovered  by  these  experimenters  in 1819.  The  law  states  that  for  most  elements  the  specific  heat multiplied by the atomic weight gives a constant number.

Neumann  and  Regnault  found  that  all  compound  bodies  of  similar atomic composition  follow  the  same  law. At  room  temperature, the difference for solids is about 5%.

The  heat  capacity  of  a  material  is  used  to  indicate  that  it  takes different amount of heat to raise the temperature of different materials by a given amount.

Element Specific Heat Atomic Weight Atomic Heat

Zinc .0955 65 25.95Iron .1138 56 26.64Tin .0562 118 27.72Copper .0951 63.5 25.24Lead .0314 207 27.17Silver .0570 108 25.73Gold .0324 196 26.54

The Dulong Pettit’s Law

Page 3: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Dulong  and  Petit's  Law was  discovered  by  these  experimenters  in 1819.  The  law  states  that  for  most  elements  the  specific  heat multiplied by the atomic weight gives a constant number.

Neumann  and  Regnault  found  that  all  compound  bodies  of  similar atomic composition  follow  the  same  law. At  room  temperature, the difference for solids is about 5%.

The  heat  capacity  of  a  material  is  used  to  indicate  that  it  takes different amount of heat to raise the temperature of different materials by a given amount.

Element Specific Heat Atomic Weight Atomic Heat

Zinc .0955 65 25.95Iron .1138 56 26.64Tin .0562 118 27.72Copper .0951 63.5 25.24Lead .0314 207 27.17Silver .0570 108 25.73Gold .0324 196 26.54

The Dulong Pettit’s Law

Heat is

 a form

 of ENERG

Y!!

Page 4: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

The acoustic velocity is related to the change in pressure and density of the substance

Hooke’s law

How do we know there are vibrations in matters (gas, liquid and solid)?

Sound and vibrationWhere the energy gone?

Page 5: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Heat capacity is a measure of how much materials can store up heat as they change temperature.

Where the heat had gone? Or How heat can be stored in a solid ?

Dulong–Petit law (1819) states that the gram‐atomic heat capacity (specific heat times atomic weight) of an element is a constant; that is, it is the same for all solid elements, about six calories per gram atom.

Cp J/mol.K

Al 24.3

Fe 25.7

Ni 26.8

Cu 24.4

Pb 26.9

Ag 25.5

C 10.9

Water 75.3

The molar specific heat of a solid at high temperatures can be explained using the equipartition theorem. The energy associated with vibrational motion (e.g. in the x direction),

this corresponds to an average vibrational energy of 6(12 kBT ) = 3kBT per atom. Therefore, the total internal energy (E) of a solid consisting of N atoms is 3NkBT = 3nRT. The molar specific heat of a solid at constant volume is

Heat Capacity

( = 24.94 JK‐1)

Page 6: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

There is a temperature dependence (i.e. distribution) of the oscillators!Introduce Bose-Einstein distribution,

the total internal energy of the solid

U  Σ niεi

NumberDistribution

EnergyDistribution

Heat Capacity – Einstein model

ωhωh

ωhωh

E

Energy levels are equally spaced!

Page 7: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Einstein

Einstein Approximation: all modes (oscillators) have the same frequency ⇒ωE

Debye approximation: In the low temperature limit acoustic modes dominate. i.e. there is distribution of vibration modes !

Therefore the total internal energy should be,

Einstein statistic

Heat Capacity – Einstein/Debye model

Page 8: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

the total energy in the lattice vibrations is of the form

expressed in terms of the phonon modes by expressing the integral in terms of the mode number n.

the integral takes the form

Phonon in a box

let

Page 9: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

( ) ckkj =ω

Debye assumed a dispersion relationship(phonon in a box)

and a phonon distribution function

( ) drkdg 24π∝ωωtherefore,

( ) 2ω=ω Dg

with a cutoff frequency, ωD

ωD ωE

Heat Capacity ‐ Debye model

Page 10: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

What can we learn from Debye temperature?

Page 11: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Ne

Phonon band structure

Density of states, g ω      dn/dE 1/ dE/dn

Page 12: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Phonon band structure

Page 13: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

SR X-ray

Page 14: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Force constant, Hooke’s Law

, 1,i j N=

, , ,x y zα β =

2 i iij tot

i j j j

E F Fu u u u

α ααβ

α β β β

∂ ∂Φ = = − ≈ −

∂ ∂ ∂

, ( )1( )j L iij i j L iq R R

Li j

D q eM Mαβ αβ

++ − −= Φ∑

Dynamic matrix is the Fourier transformation of force constants

Diagonalize Dynamic matrix to get phonon dispersions, and DOS

iFα

juβ

Theoretical lattice dynamics

Debye approximation

Einstein approximation

( ) ckkj =ω

Page 15: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Matt Smith, et al, Inorganic Chemistry, 2005, 44,5562

Selection rules:

• Infrared Only “u” modes are activeI ∝ |∂μ/∂q|2

• Raman Only “g” modes are activeI ∝ |∂α/∂q|2

• NRVS All modes are activeI ∝ VDOS

Selection rules

Page 16: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

NRVS

D.D. Klug, J.S. Tse, et.al., PNAS, 99, 12526 (2002)

Infrared

CO

pyridine

B.K. Rai, et.al., Biophys. J., 82, 2951 (2002)

Doming modes

Page 17: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

H.K. Mao, et.al., Science 292, 914 (2001)

Properties derived from sound velocity

( ) ( )2 2

2 3 2 3 3

1 1 22 2s L T

V Vg gv v v

ω ωω ωπ π

⎛ ⎞= ⇒ = +⎜ ⎟

⎝ ⎠

Fe

Page 18: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

HCP Fe

H.K. Mao, et.al., Science 292, 914 (2001)

Properties derived from vibrational density of states

Page 19: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

70 GPa

Hematite Fe2O3

J.F. Lin, J.S. Tse, et.al., Phys. Rev. B 84, 064424 (2011). 

Page 20: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

70 GPa

Hematite Fe2O3

J.F. Lin, J.S. Tse, et.al., Phys. Rev. B 84, 064424 (2011). 

Page 21: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Why it works for multi‐component systems?

Page 22: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Soft mode and Gruneisen parameter

Page 23: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

150 GPa

50 GPa

20 GPa

0 10 20 30 40 50 60 70

0.00

0.05

0.10

0.15

VD

OS

(sta

tes/

meV

)

Frequency (meV)

Expt. 153 GPa

0 10 20 30 40 50 600.00

0.05

0.10

0.15

VD

OS

(sta

tes/

meV

)

Frequency (meV)

50 GPa

0 10 20 30 40 500

500

1000

1500 20 GPa

DO

S (a

.u.)

Energy (meV)

Experiment Theory

C.A. Murphy, et.al., Geophys. Res. Lett., 38, L24306 (2011)

Page 24: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

anharmonicity

Page 25: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX
Page 26: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

W. Luo, et.al., PNAS, 107, 9962 (2010 )

Finite temperature lattice dynamics

JS Tse, et.al., Nature Sci. rep., 2, 372 (2012).

Ca

Page 27: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX
Page 28: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

Elements of the periodic table which have known Mössbauer isotopes (shown in red font).

Mossbauer Nuclei

Page 29: Introduction toLattice Dynamics · Introduction toLattice Dynamics J.S. Tse Department of Physics and Engineering Physics University of Saskatchewan, Saskatoon, Canada APS PHEONIX

H2O

Kr

D.D. Klug, J.S. Tse, et.al., Phys. Rev. B 83, 184116 (2011)

Anomalous Thermal Conductivity