introduction_to_separation_processes

Embed Size (px)

Citation preview

  • 7/27/2019 introduction_to_separation_processes

    1/38

    Chapter 1. Separation Processes

    2012. 1

  • 7/27/2019 introduction_to_separation_processes

    2/38

    Energy Consumption /.

    /.

    : enantiomerically pure components

    Softenon : (R-enantiomer), (S-enantiomer)

    Aspartame : (S, S) , (R, R) Limonen : (S), (R)

  • 7/27/2019 introduction_to_separation_processes

    3/38

    Separations

    Separations Enrichment

    Concentration

    Purification

    Refining

    Isolation

    Separations are important to chemist andchemical engineers Chemist : Small scale (Analytical separation methods)

    Chemical Engineers : Economical, large scale methods

  • 7/27/2019 introduction_to_separation_processes

    4/38

    Industrial Chemical Processes

    Natural raw material

    Plant or animal matter

    Chemical intermediate

    Chemicals of commerce

    Waste products

    Feed

    Batchwise

    Continuous

    Semicontinuous

    Mode of Operation

    Key Operation

    Reaction

    Separation

    Auxiliary Operation

    Heat / Work

    Mixing, Dividing

    Size reduction

    Operation

  • 7/27/2019 introduction_to_separation_processes

    5/38

    Hypothetical vs. Industrial Processes

    Simple ,hypotheticalprocess is not possible

    Impurities in the feed

    Side Reactions

    Separation processes areimportant in real industrialapplication

    5

  • 7/27/2019 introduction_to_separation_processes

    6/38

    Mechanism of Separation

    Mixing : Spontaneous, natural process

    Separation : Not spontaneous process

    Require energy (heat / work)

    Question : Why ?

  • 7/27/2019 introduction_to_separation_processes

    7/38

    General Separation Technique

    Separation by Phase Creation Energy (heat/work) ,

    Separation by Phase Addition 3 (MSA : Mass Separating Agent)

    Separation by Barrier Barrier (membrane)

    Separation by Solid Agent ,

    Separation by Force Field or Gradient ,, ,

  • 7/27/2019 introduction_to_separation_processes

    8/38

    Classification of Separation Techniques

    8

    Barrier

    Force fieldor gradient

    Feed

    Phase 1

    Phase 2

    (i) By Phase Creation

    Feed

    Phase 1

    Phase 2

    Feed

    Phase 1

    Phase 2

    Feed

    Phase 1

    Phase 2

    Feed

    Phase 1

    Phase 2

    (ii) By Phase Addition

    (iii ) By Barrier

    (iV) By Solid Agent (Vi) By Force Field or Gradient

    MSA

    Mass SeparatingAgent

  • 7/27/2019 introduction_to_separation_processes

    9/38

    Driving Force of Separation :Gradient of Concentration

    Rate of Separation : how fast ? Governed bymass transfer

    Extent of Separation : how far ?

    Limited bythermodynamics

    Properties of ImportanceMolecular Properties Thermodynamic and Transport Properties

    Molecular Weight

    Van der Waals Volume

    Van der Waals Area

    Molecular Shape (Accentric Factor)

    Dipole Moment

    Polarizability

    Dielectric Constant

    Electric Charge

    Radius of Gyration

    Vapor Pressure

    Solubility

    Adsorptivity

    Diffusivity

    9

    Handbooks

    Journals

    Electronic Databases

    Commercial Process Simulators

  • 7/27/2019 introduction_to_separation_processes

    10/38

    Separation By Phase Addition or Creation -1

    1

    V/L

    V

    L

    V/L

    V

    L

    Partial Condensation or Vaporization Flash Vaporization

    (Heat Transfer) (Pressure Reduction)

    ESA

    (Energy-Separating Agent)

  • 7/27/2019 introduction_to_separation_processes

    11/38

    Separation By Phase Addition or Creation - 2

    1

    V/L

    L

    L

    Distillation

    (Heat transfer (ESA) or sometimes work transfer)

    When the volatility difference

    among species are not sufficiently

    large

    Most widely used industrial

    separation technique

    Multiple contact between counter

    current flow of V/L in trays (stages) .

    Rectifying section

    Stripping section

    Condenser

    Reboiler

    Reflux

    Reboil

  • 7/27/2019 introduction_to_separation_processes

    12/38

    Distillation Tower

    1

  • 7/27/2019 introduction_to_separation_processes

    13/38

    Separation By Phase Addition or Creation - 3

    13

    V/L

    L

    L

    Azeotropic Distillation

    Liquid entrainer (MSA)

    and Heat Transfer (ESA)

    Recycle MSA

    Makeup MSA

    Recovery of acetic acid from water

    using n-butyl acetate

  • 7/27/2019 introduction_to_separation_processes

    14/38

    Separation By Phase Addition or Creation - 4

    1

    MSA (L)

    L1

    L2

    L1

    LiquidLiquid Extraction

    Liquid solvent(MSA)

    Recovery of Aromatics

    MSA2 (L)

    L

    L

    L

    Liquid-Liquid Extraction

    (Two Solvent)

    Use of Propane and Cresylic acid as solvents to separate

    paraffins from aromatics and naphthenes

    MSA1 (L)

  • 7/27/2019 introduction_to_separation_processes

    15/38

    Separation By Phase Addition or Creation - 5

    1

    Drying Evaporation Crystallization Desublimation

    V (V)

    L/(S) S

    V

    L

    (V)

    L L

    S

    V

    S

    LV

    Removal of water from PVCEvaporationof water from

    Water + Urea

    Crystallization op-Xylenefrom m-Xylene

    Recovery ofphthalic anhydride

    Heat transfer (ESA)

    Heat transfer (ESA) Heat transfer (ESA) Heat transfer (ESA)

  • 7/27/2019 introduction_to_separation_processes

    16/38

    Crystallizer

    1

  • 7/27/2019 introduction_to_separation_processes

    17/38

    Separation By Phase Addition or Creation - 6

    1

    Leaching (Liquid-Solid Extraction) Foam Fractionation

    S

    MSA (L)

    S

    L

    L

    MSA (g)

    L (foam)

    V

    L

    Extraction of sugar using hot water

    Liquid Solvent

    Recovery of detergent from water soln.

    Gas Bubbles (MSA)

    Detergent tend torise with gas bubble

  • 7/27/2019 introduction_to_separation_processes

    18/38

    Separation by barrier

    Use of microporous / nonporousmembrane as semipermeable

    barriers

    Membranes Natural fibers

    Synthetic polymers Ceramics

    Metals

    Liquid films

    Fabrications Flat sheets

    Hollow fibers Spiral-wound sheets

    18

  • 7/27/2019 introduction_to_separation_processes

    19/38

  • 7/27/2019 introduction_to_separation_processes

    20/38

    Separation by barrier - 2

    2

    Microfiltration Ultrafilration Pervaporation

    L

    L

    L

    L

    V

    Microporous membrane Microporous membrane Nonporous membrane

    Pressure gradient Pressure Gradient Pressure Gradient

    Separation of whey from

    cheese

    Separation of azeotropic

    mixtures

    L

    L

    L

    Removal of bacterial

    From drinking water

    L

    0.02-10 mm 1 20 nm

    solventsolvent gas (evaporation)

  • 7/27/2019 introduction_to_separation_processes

    21/38

    Separation by barrier - 3

    2

    Gas permeationLiquid Membrane

    V

    V

    V

    V/L

    V/L

    Nonporous membraneLiquid membrane

    Pressure Gradient Pressure Gradient

    Hydrogen enrichment Removal of hydrogen sulfide

    V/L

    gas

    Gas mixture

    Liquid layer

  • 7/27/2019 introduction_to_separation_processes

    22/38

    Liquid Membrane

    2

  • 7/27/2019 introduction_to_separation_processes

    23/38

    Separation by solid agent

    Solid mass separating agent

    Granular material or packing

    Saturation Periodical regeneration required

    Batchwise or semicontinuous operation

    23

    Molecular sieve Silica gel

    pore

  • 7/27/2019 introduction_to_separation_processes

    24/38

    Separation by solid agent

    2

    Adsorption Chromatography Ion Exchange

    Solid Adsorbent Solid adsorbent or liquid

    Adsorbent on solid support

    Resin with ion-active sites

    Separation of xylene isomers

    and ethylbenzene

    Demineralization of water

    Purification of

    p-xylene

    V/L

    V/L

    V/L V/L

    V/L

    L

    L

    L

  • 7/27/2019 introduction_to_separation_processes

    25/38

    Separation by solid agent

    Adsorption Adsorbent

    Activated carbon

    Aluminum oxide

    Silica gel

    Zeolite adsorbents (Molecularsieve)

    Adsorption / Regeneration

    Regeneration methods Thermal Swing (TSA)

    Pressure Swing (PSA)

    Inert purge stripping Displacement desorption

    25

    Hydrogen PSA Units

  • 7/27/2019 introduction_to_separation_processes

    26/38

    Separation by external field or gradient

    Separation operation Initial or Feed Phase Force field or gradient Industrial Example

    Centrifugation Vapor Centrifugal force Separation of Uranium

    isotope

    Thermal diffusion Vapor or liquid Thermal gradient Separation of chlorine

    isotope

    Electrolysis Liquid Electrical force field Concentration of

    heavy water

    Electrodialysis Liquid Electrical force field

    and membrane

    Desalinization of sea

    water

    Electrophoresis Liquid Electrical force field Recovery of

    hemicelluose

    Field-flow

    fractionaltion

    Liquid Laminar flow in force

    field

    26

  • 7/27/2019 introduction_to_separation_processes

    27/38

    Centrifugation

    27

  • 7/27/2019 introduction_to_separation_processes

    28/38

    Electrodialysis

    2

  • 7/27/2019 introduction_to_separation_processes

    29/38

    Electrophoresis ()

    2

    Using different migration velocities of charged colloidal orsuspended species in a electrical field

    Application : Biochemicals

    Fi ld Fl S ti

  • 7/27/2019 introduction_to_separation_processes

    30/38

    Field Flow SeparationField Flow Fractionation (FFF)

    3

    Micromolecular andcolloidal materials

  • 7/27/2019 introduction_to_separation_processes

    31/38

    Component Recoveries and Product Purity

    Separation process

    No reaction

    Continuous and steady state

    i : 1 ~ C Number of Components

    p : 1~ NProduct phases

    F : feed

    )()1()3()2()1(

    1

    )()(

    ...N

    i

    N

    iiii

    N

    p

    p

    i

    F

    i nnnnnnn

    31

  • 7/27/2019 introduction_to_separation_processes

    32/38

    Example Hydrocarbon Recovery Plant

    3

    Purpose :Production of polymers

    - PP- PB.

    S li F i d S li R i

  • 7/27/2019 introduction_to_separation_processes

    33/38

    Split Fraction and Split Ratio

    Split fraction ( 0 1)

    Split ratio ( 0 very large value)

    )(

    ,

    )1(

    ,

    , F

    ki

    ki

    ki

    n

    nSF

    )1( ,

    ,

    )2(

    ,

    )1(,

    ,

    ki

    ki

    ki

    ki

    ki

    SF

    SF

    n

    nSR

    33

    i : component

    k : separator

    (F) : feed

    (1) : f ir st product (ex: top product)

    (2) : second product (ex : bottom product)

    i product /feed

    i top / bottom

  • 7/27/2019 introduction_to_separation_processes

    34/38

    Separation Power

    )1/()1(

    /

    /

    /)2()1(

    )2()1(

    ,

    ji

    ji

    j

    i

    jj

    iiji

    SFSF

    SFSF

    SR

    SR

    CC

    CCSP

    Key-component split Column SP

    Separation Power

    nC4H10 / iC5H12 C1 137.1

    C3H8/iC4H10 C2 7103

    iC4H10/nC4H10 C3 377.6

    34

    S l i f ibl S i

  • 7/27/2019 introduction_to_separation_processes

    35/38

    Selection of Feasible Separation

    Selection of a best separation processes Selection among a number of feasible candidates

    Two or more operations may be the best

    Important Factors that influence the selectionof feasible separation operations

    Feed conditions

    Product conditions

    Property differences

    Characteristics of separation3

    F h I fl h S l i f F ibl

  • 7/27/2019 introduction_to_separation_processes

    36/38

    Factors that Influence the Selection of FeasibleSeparation Operation

    Feed condition Compositions

    Flow rate

    Temperature

    Pressure

    Phase state

    Product conditions Required purities of products

    Temperatures

    Pressures

    Phase states

    Property differences Molecular

    Thermodynamic

    Transport

    Characteristics of separationoperation

    Ease of scale-upEase of staging

    T, P, Phase-state requirements

    Physical size limiation

    Energy requirement

    36

    Most important

    Can be altered by pump,

    Compressor, heat exchangers,

    Technological and Use Maturity of Separation

  • 7/27/2019 introduction_to_separation_processes

    37/38

    Technological and Use Maturity of SeparationProcesses

    3

    SeparationBy Barrier

    Separation bySolid agent

    Creation of Addition ofSecond Phase Cheap

    Expensive

  • 7/27/2019 introduction_to_separation_processes

    38/38