79
141 Pulmonary Rehabilitation John R. Bach, MD 1 Synonyms None ICD-9 Codes E0450 Invasive mechanical ventilation E0461 Noninvasive mechanical ventilation E0482 Mechanical insufflations-exsufflation

Isi Tugas Dr. Jalalin

Embed Size (px)

DESCRIPTION

rehabilitasi medik

Citation preview

141Pulmonary RehabilitationJohn R. Bach, MD

SynonymsNoneICD-9 CodesE0450Invasive mechanical ventilationE0461Noninvasive mechanical ventilationE0482Mechanical insufflations-exsufflation

41

1

DEFINITIONPulmonary rehabilitation has been defined as the art of medical practice wherein an individually tailored, multidisciplinary program is formulated through which accurate diagnosis, therapy, emotional support, and education stabilize or reverse both the physiopathology and psychopathology of pulmonary diseases in an attempt to return the patient to the highest possible functional capacity allowed by his or her pulmonary handicap and overall life situation.1-2 Program goals are to reverse the cycle of dyspnea and deconditioning, to optimize airway secretion management and respiratory muscle function, to reduce frequency of hospitalizations and pulmonary complications, to address psychosocial factors to facilitate rehabilitation and community integration, and to improve daily function. 1-4 Candidates for outpatient pulmonary rehabilitation include pediatric and adult individuals who can benefit from these goals, who have respiratory muscles or pulmonary dysfunction that limits their activities or life expectancy, and whose conditions are sufficiently stable for outpatient management.Overview of Contrasting Pathologic Processes and Approaches and OutcomesIn development of a prescription for an outpatient pulmonary rehabilitation program, it is essential to distinguish between pulmonary dysfunction due to lung or airways disease or oxygenation impairment and impairment of alveolar ventilation in the presence of essentially normal lung parenchyma. Patients with oxygenation impairment are often hypoxic with a normal carbon dioxide level. Patients with ventilator impairment retain carbon dioxide from muscle dysfunction, activity overload, or central hypoventilation. With this classification scheme, a clinician can better generate a focused outpatient pulmonary rehabilitation prescription. Subsequently, this chapter outlines treatment based on classification. Conditions associated with oxygenation impairment are listed in table 141-1. Whereas either one or the other almost always predominates, when impairments overlap, the prescription must reflect approaches for both conditions.5Potential outcomes of outpatient pulmonary rehabilitation include decrease hospitalization, decreased morbidity and mortality, decreases symptoms, improved quality of life, increased functional activity, improved neuropsycological condition, increase ability to work, effective use of assistive respiratory technology. Each prescription is individual specific and is adjusted according to the patients progress.IncidenceThe prevalence of chronic obstructive pulmonary disease (COPD) in the adult population is approximately 4% to 6% in men and 1% to 3% in women. In the 1996 National Health Interview Survey, approximately 14 million adults had chronic bronchitis. COPD is the fourth leading cause of death in the United States and the most common cause of oxygenation impairment. 6,7

Table 141-1 Conditions Associated with Oxygenation Impairment and Ventilatory ImpairmentCondition with predominant oxygenation impairmentChronic obstructive pulmonary diseaseAsthmaRespiratory failure associated with weakness of respiratory muscles (ventilator impairment) has an incidence of 1 in 800, the approximate incidence of patients with neuromuscular diseases. However, both acute and chronic respiratory failure also results from respiratory muscle dysfunction associated with central nervous system diseases such as cerebrovascular disease and traumatic brain injury. Almost 50% of home mechanical ventilation users have primarily ventilatory impairment because their prognosis with ventilator use in much better than that of ventilator users with primarily oxygenation impairment. Attempts are being made to objectify the need for and prescription of ventilators for home use.8

Emphysema and emphysema that follows lung volume reduction surgeryCystic fibrosisBronchiectasisSome restrictive diseases (e.g., pulmonary fibrosis, primary parenchymal disease)Condition with predominant ventilator impairmentMyopathiesDuschene muscular dystrophyBecker muscular dystrophyLimb-girdle muscular dystrophyEmery-Dreifuss muscular dystrophyFacioscapulohumeral muscular dystrophyCongenital, autosomal recessive, myotonic muscular dystrophy\Generalized nondystrophic myopathiesCongenital, metabolic, inflammatory myopathiesMyasthenia GravisMixed connective tissue disease myopathiesNeurologic disordersAmyotrophic lateral sclerosisSpinal cord dysfunctionSpinal muscular atrophiesMotor neuron diseasesPoliomyelitisHereditary sensory motor neuropathiesPhrenic nerve neuropathies, Guillain-Barre syndromeMultiple sclerosisFriedreich ataxia

Inflammatory Bowel Disease-Associated (Chron Disease and Ulcerative Colitis) Arthritis

MyelopathiesBotulismSleep-disordered breathingCentral and congenital hypoventilation syndromesHypoventilation associated with diabetic microangiopathyDown syndromeFamilial dysautonomiaMusculoskeletalThoracic wall deformitiesKyphoscoliosisAnkylosing spondylitisOsteogenesis imperfectaRigid spine syndromeSpondyloepiphyseal dysplasia congenitalRestrictive lung diseasesObesity hypoventilationDiseases of the pleura and chest wallTuberculosisMilroy disease

SYMPTOMSSymptoms of oxygenation impairment include dyspnea on exertion or during routine activities of daily living, anxiety, depression, headaches, and difficulty with concentration.9 Patient may have chronic sputum production, coughing, wheezing, chest pains that vary with the respiratory cycle, weight loss, orthopnea, sleep disturbances, and low endurance. A constellation of allergy symptoms may also be seen. Associated symptoms may include fever and hemoptysis, as in patients with bronchiectasis.Patients with predominant ventilator impairment most commonly complain of fatigue. Other symptoms can include exertional dyspnea, weight loss, sleep disturbances, low endurance, morning headaches, and frequent arousals. For patients who use a wheelchair or scooter, minimal symptoms are common until anxiety or inability to fall asleep occurs during otherwise benign intercurrent respiratory tract infections-a harbinger of respiratory failure.10 Episodes of acute respiratory failure are common for patients with neuromuscular weakness with an ineffective cough.PHYSICAL EXAMINATIONPredominant Oxygenation ImpairmentFor patients with lung or airways disease, the physical examination depends on the underlying pathologic process (see Table 141-1). For patients with COPD, the examination may reveal plentiful sputum production, auxiliary respiratory muscle use, and barrel chest. Auscultation reveals wheezes, rales, or hyperresonant lung sounds. Evaluation with pulse oxymetry during rest and exercise will often demonstrate worsening oxygenation impairment with activity.6Predominant Ventilatory ImpairmentAll generalized neuromuscular diseases cause varying degrees of weakness of the inspiratory (breathing), expiratory (coughing), and bulbar-innervated (speech, swallowing, and air protection) muscles. Patients may have increased respiratory rate, shallow breathing, diaphragmatic or paradoxical breathing, accessory respiratory muscle use, nasal flaring, peribuccal or generalized cyanosis, flushing or pallor, drooling, difficulty in control of airway secretions, dysphagia, or nasality of speech.5

FUNCTIONAL LIMITATIONSBaseline levels of function, including exercise tolerance and ability to perform activities of daily living, may be greatly diminished. There may be difficulty with control of airways secretions, difficulty with chewing and swallowing of the food, and decreased social interaction. Many patients require ventilator use to rest inspiratory muscles to avoid or to diminish respiratory sumptoms. Activities of daily life may be diminished by generalized muscle dysfunction or by specific impairment of respiratory muscles. For example, tachypnea does not allow patients sufficient time to chew and swallow. This results to malnutrition that further decreases respiratory function. Management with ventilatory assistance by a simple mouthpiece diminishes tachypnea and often results in better nutrition and improved strength (Fig. 141-1).DIAGNOSTIC STUDIESDiagnostic testing distinguishes between predominant ventilator impairment and predominant oxygenation impairment. With predominant oxygenation impairment, patients have at least one of the following: respiratory limitation to exercise at 75% of predicted maximum oxygen consumption; irreversible airway obstruction with a forced expiratory volume in 1 second (FEV1) of less than 200 mL or an FEV1 to forced vital capacity ratio (FEV1/FVC ratio) of less than 60%; or pulmonary vascular disease with carbon monoxide diffusion capacity of less than 80% of predicted.With predominant ventilator impairment, patients have at least one of the following: hypercapnia, respiratory limitation to exercise at 75% of predicted maximum oxygen consumption; or diminished vital capacity with normal to high FEV1/FVC ratio, diminished cough peak flows, decreased maximum inspiratory and expiratory pressures, and low lung volume measurements (i.e., total lung capacity, functional residual capacity, and residual volume). Many such patients have thoracic wall deformity. It is extremely important to measure unassisted as well as assisted cough flows for these patients because they most often develop respiratory failure as a result of ineffective coughing.10 Assisted cough flows are created by air stacking consequtively delivered volumes of air provided through a manual resuscitator to the maximum volume that can be held with a closed glottis. At this point, an abdominal thrust is delivered in conjunction with glottis opening. The expelled air is measured as a cough flow into a peak flow meter.

FIGURE 141-1. A 17-year-old with mild spinal muscular atrophy type 1 who is continuously ventilator dependent uses a mouthpiece during daytime hours and a nasal interface during sleep.Tests to Determine Candidates for Rehabilitation for Predominant Oxygenation ImpairmentActive patients who are still be able to walk several blocks but who have noted yearly decreases in exercise tolerance or who have recently begun to require ongoing medical attention for pulmonary symptoms or complications are ideal candidates for outpatient pulmonary rehabilitation.Clinical exercise testing can be determine the extent of the patients functional impairment due to pulmonary disease. It can diagnose and measure functional reserve and the capacity to perform exercise, the factors that limit exercise, and the reasons for exercise-related symptoms.11-13 Clinical exercise testing permits the clinician to determine whether the primary disability is pulmonary, cardiac, or exercise-induced bronchospasm.13 The last two diagnoses and even purely restrictive pulmonary syndromes are commonly mistaken for COPD. When it is performed both before and after the rehabilitation program, clinical exercise testing documents the patients progress.Vital signs, electrocardiography, oxygen consumption, carbon dioxide production, respiratory quotient, ventilatory equivalent, minute ventilation, and metabolic rate are monitored during clinical exercise testing, which is done with use of treadmill, stationary bicycle, or upper extremity ergometry. All patients undergo a 3-, 6-, or 12-minute walk test. The patient is instructed to gradually increase speed and duration on subsequent walking exercise tests.11-15 A clinical exercise test advances until oxygen consumption fails to increase; maximum allowable heart rate for age is reached; or electrocardiographic changes, chest pain, severe dyspnea, or fatigue occurs. Oxymetry is performed to determine the need for supplemental oxygen therapy during reconditioning exercise (pulse oxyhemoglobin saturation [SpO2] SpO2 < 90% to 95%) or on a long-term basis (PO2 < 60 mm Hg). When metabolic energy cost studies are not available, maximum exercise tolerance may be estimated from pulmonary function data. 11-13, 16Predominant Ventilatory ImpairmentPatients with primarily ventilator impairment undergo spirometry to measure vital capacity in sitting and supine positions and maximum insufflations capacity , unassisted and assisted cough peak flows by peak flow meter, end-tidal carbon dioxide measurements, and pulse oximetry.17 Sitting minus supine vital capacity greater than 20% provides a strong indication of diaphragm weakness out of proportion to accessory inspiratory muscle dysfunction . When the vital capacity is less than 80% of normal, the patient is trained to perform maximal insufflation techniques, such as air stacking as noted before. Air stacking along with manually and mechanically assisted coughing is aimed at maintaining adequate airway secretion clearance and preventing atelectasis and pneumonia. Cough peak flows of less than 270 L/min indicate initiation of the oximetry-respiratory aid protocol to be described later. Symptoms of nocturnal hypoventilation, end-tidal carbon dioxide above 45 mm Hg, or daytime or nocturnal oxygen desaturation below 95% warrant a nocturnal trial of noninvasive intermitten positive pressure ventilation.17

Differential DiagnosisDecondiotingCardiac dysfunctionPulmonary infectionObesity

TREATMENT

Initial

Predominant Oxygenation ImpairmentThe main treatment for pulmonary rehabilitation is summarized in Table 141-2. The patient and caregivers are educated in preventive care measures. Smoking

TABLE 141-2 Pulmonary RehabilitationBasic outpatient pulmonary rehabilitation programIntial assesment of :Respiratory disease processUnderlying medical disorderGeneral medical disorderFunctional statusPatients goalsSelect treatment goalsInterdisciplinary team managementMedication optimizationAdjustment of supplemental oxygen therapyAirway secretion elimination techniques and devicesSmoking cessation programExercise program :Ventilatory muscle trainingEndurance and strength trainingBreathing retrainingAlternative breathing techniquesEnergy conservation techniqueThe terapeutic modalitiesAdaptive devices mobility equipmentPsychosocial conselingPatien and caregive educationMaintenance program

Airway secretion elimination techniques and devicesSmoking cessation programExercise program :Ventilatory muscle trainingEndurance and strength trainingBreathing retrainingAlternative breathing techniquesEnergy conservation techniqueThe terapeutic modalitiesAdaptive devices mobility equipmentPsychosocial conselingPatient and caregive educationMaintenance program

cessation is emphasized to reduce chronic phlegm production and to decrease the rate of annual loss of FEV1, to the level of nonsmokers.18,19 Avoidance of atmospheric or vocational pollutants and of other aggravating factors, such as pollen, aerosols, excessive humidity, stress, large meals, and ill contacts with respiratory infections, is suggested. Adherence to medications as prescribed and reporting of any problems with medications to the clinician are encouraged. Recommended vaccinations include annual influenza vaccinations and the pneumococcal vaccinations, provided there are no contraindications.19,20 Nutritional counseling reinforces good nutrition with adequate calorie intake, carbohydrate balance, and adequate hydration.5,21,22Medical therapy involves optimal pharmacologic management of reversible bronchospasm when it is present, including the use of bronchodilators such as anticholinergics, methylxanthine derivatives, sympathomimetics, and combination medications (Table 141-3). An improvement in FEV1 greater than 20% is significant with bronchodilator use. Inhaled adrenergics and anticholinergics appear to benefit many patients despite little objective evidence of improvement. Training for proper administration of nebulizers or inhalers is important to promote optimal medication deposition and to prevent inefficient use. Other medications, such as expectorants, mucolytics, corticosteroids, antibiotics, and disodium cromoglycate, are used along with humidification and brochial toilet, as warranted, to prepare the patient for optimal participation in the therapeutic exercise program.Respiratory secretion management is critical for treatment and preventive care. This involves training in the techniques of chest percussion, in postural drainage, and with huffing ventilatory and airway secretion clearance devices. In addition, autogenic drainage is a technique of breathing low tidal volumes between the functional residual capacity and residual volume, followed by taking increasingly larger tidal volumes and forced expirations to mobilize and to evacuate mucus. Positive end expiratory pressure breathing techniques theoretically mobilize secretions by coughing or forced expirations with alveolar pressure and volume pushing behind mucous plugs. Flutter breathing with a flutter device applied to the mouth uses two mucus-evacuating techniques: positive end expiratory pressure and oscillation. Devices that provide mechanical vibration or oscillation to the thorax include the Hayek Oscillator (Breasy Medical Equipment Inc., Stamford, Conn); ThAIRapy System (American Biosystem Inc., St. Paul, Minn); and intrapulmonary percussive ventilator, which provides aerosolized medications as high-flow percussive mini-bursts of air delivered to the airways (Percussionaire Corp. Sandpoint, Idaho).Early medical attention for respiratory tract infections is very important. Broad-spectrum antibiotics and glucocorticoids should be considered. Home oxygen therapy is used for oxygenation-impaired patients with lung disease if the PO2 is less than 60 mmHg and when it remains so far more than 2 months after an acute exacerbation. This type of therapy decreases reactive pulmonary hypertension and polycythemia, improves cognition, prolongs survival, and may decrease hospitalizations. Transtracheal oxygen delivery avoids waste around the nose and mouth, avoids the dead space of the nasopharynx, and prevents discomfort and drying associated with nasal cannulas and facemasks. High-altitude travel may require 0,5 L/min of additional supplemental oxygen.Patients with COPD have a high incidence of sleep disordered breathing, that is, obstructive and central apneas, for which continous positive airway pressure or bilevel positive airway pressure can also be useful to provide some ventilatory assistance, inspiratory muscle rest, and counter auto-positive end expiratory pressure for hypercapnic COPD patients.TABLE 141-3 Commonly Prescribed Medications

CategoryRepresentative TypesMain Respiratory Clinical EffectsMain Side Effects

BronchodilatorAnticholinergicRelief of bronchospasm by relaxation of bronchial smooth muscleSee under specific medicines

Sympathomimetics

Methylxanthine derivatives

Combinations

AnticholinergicIpratropiumRelief of bronchospasm by relaxation of bronchial smooth muscleHeadache dry mouth dizziness dyspnea gastrointestinal disturbance

TiotropiumRelief of bronchospasmTachycardia palpitations gastrointestinal distress nervousness dry mouth tremor

From Physician Desk Reference 61sted Montvale NI Medical Economics 2007

Predominant Ventilatory ImpairmentAbdominal binders are useful for tetraplegic and thoracic level paraplegic spinal cord patients to increase diaphragmatic excursion and vital capacity. However, whereas inspiratory muscle strength or vital capacity in patients with primarily ventilatory impairment, chest wall and lung mobilization has, and it is critical to maintain sufficient excursion to allow the increased lung volumes necessary for effective coughing.Although bilevel positive airway pressure can be used by patients with primarily ventilatory impairment, it is appropriate only for those who do not have sufficient bulbar innervated muscle function for air stacking. When bilevel positive airway pressure is used for these patients, polysomnographic titration is irrelevant. The bilevel positive airway pressure inspiratory expiratory pressure span should be sufficient to rest inspiratory muscles, that is, be 18 to 20 cm H2O. Any patients with bulbar-innervated muscle function for air stacking. When bilevel positive airway pressure is used for these patients, polysomnographic titration is irrelevant. The bilevel positive airway pressure inspiratory-expiratory pressure span should be sufficient to rest inspiratory muscles, that is, be 18 to 20 cm H2O. Any patients with bulbar-innervated musculature sufficient for air stacking should use volume-cycled ventilators rather than bilevel positive airway pressure machines. Modifications are made for mask discomfort and air leakage. Portable volume ventilators can provide greater inspiratory muscle assistance when it is needed, such as for patients with obesity hypoventilation.5Psycosocial counseling addresses symptoms of depression, anxiety, and stress as well as social impediments to good progress. The goal is to break the influence of these psycosocial issues on the cycle of respiratory decline.9Mechanical insufflation-exsufflation is used to assist expiratory muscles to increase cough flows to prevent pneumonia. It provides 10 L/sec of expiratory flow directly to the airways through the upper airways or through tracheostomy (CoughAssist, JH Emerson Co., Cambridge, Mass). Mechanically assisted coughing is used in conjuction with an exsufflation-timed abdominal thrust, combining the manual with the mechanical.17

RehabilitationAn outpatient pulmonary rehabilitation program incorporates physical medicine intervention, evaluation for respiratory equipment, and rehabilitation by an interdisciplinary approach. The interdisciplinary team can include the patient, medical and nursing staff, respiratory therapists, physical therapists, occupational therapists, speech therapists, social workers, and a nutritionist. In addition, psychology or psychiatry services, recreational therapists, and vocational rehabilitation may be integrated as part of the team.Exercise training for endurance, strength and function-specific activities is prescribed (Table 141-4). The progress is monitored and modifications to the prescription are made on the basis of the patients increasing aerobic capacity with intensive exercise training. Scheduling for reevaluations of the prescription depends on each patient; the early stages of the program and any acute medical issues affect the need for possible prescription modifications. Frequency, duration, intensity, and specificity are general exercise components. Frequency of exercise is generally advised three to five times a week for training effect to be seen. Patients should also be taught about their respiratory equipment.Predominant Oxygenation ImpairmentCarefully prescribed exercise provides the greatest benefits for reducing dyspnea and respiratory rate and increasing exercise tolerance, maximum oxygen consumption, 6 and 12 minute walk distance, activities of daily living, work output, mechanical efficiency, and possibly gas exchange.23,27 Anxiety and depression are also significantly decreased, and cognition and sense of well-being are improved.Low-intensity training can be prescribed on the basis of objective or subjective measures. Objective measures involve calculation of the maximal oxygen consumption or maximum heart rate. If open-circuit spirometry and metabolic cart are available, specific target intensity may be 50% of peak rate of oxygen uptake. Heart rate parameters may be most useful for patients with cardiac conditions. TABLE 141-4 Types of Exercise

Type of ExerciseExample

Ventilatory muscle trainingInspiratory resistive exercise maximum sustained ventilation, inspiratory resistive loading, inspiratory threshold loading, sustained hyperpnea

Strength training Upper extremity exercise pulleys, elastic bands, supervised circuit training, weightlifting with low resistance

Lower extremity exercise supervised circuit training, weightlifting with low resistance

Endurance trainingUpper extremity exercise unsupported upper extremity activities ranging from activities of daily living to athletic activities, supervised arm cycling low impact aerobics, pool therapy

Lower extremity exercise incremental treadmill program, supervised walking cycling and stair climbing program low impact aerobics, pool therapy.

Several formulas are used. One is the desired exercise intensity multiplied by the maximum predicted heart rate. Hence, if the desired exercise intensity is defined as 60% of maximum predicted heart rate (HR), then Target HR = 0,60 x (Hrmax = 220-age)Another is the Karvonen formula. For the target heart rate range for 50% to 85%.HR reserve = [(HRmax HRrest) x 0,50] + HRrest = [(HRmax HRrest) x 0,85] + HrrestInitial targets can be 50% (range, 50% to 80%) of either objective measure or the level tolerated by the patient.13When objective measures are not applicable, as in the case of patients taking negative chronotropic medications (e.g, blockers or calcium channel blockers) and heart transplant recipients, subjective measures may be more predictive of exercise tolerance. In addition, because patients are often limited by exertional dyspnea, subjective measures may be more desirable.13Subjective measures of exercise tolerance, such as the Borg rating of perceived exertion scale or dyspnea rating scales, allow patients to guide the program on the basis of their symptoms alone. The Borg rating of perceived exertion scale from 6 to 20 is linearly related to heart rate. This is illustrated by multiplying the chosen scale number by 10 to obtain the estimated predicted heart rate. For example, when the patient chooses the number 10 on the scale to describe exertion symptoms, heart rate is estimated by the following equation:10 x 10 = 100 (10)The original Borg scale uses this method.13,28Training specificity is determined by the patients goal for daily activities and occupational pursuits. Daily activities in mobility and exercise programs are tailored accordingly. Depending on the patients form on mobility and baseline level of function, specific mobility and endurance exercise programs can include walking, stair climbing, low-impact aerobics, stationary bicycling, and pool activities. For mobility, work, and recreational pursuits, assistive devices to improve daily activities may include wheelchair, walker, or cane. Strength training increases function in daily activities, mobility, and specific occupation-related tasks. Intermingled with endurance, strength, and task-specific training are energy conservation techniques that provide the patient with more energy efficient methods to perform daily activities. Increased endurance for exercise can occur independently of changes in ventilator muscle endurance. Review of the training program is made with the patient and caregiver. A plan is agreed on and is flexible to change, according to the patients tolerance. The patient is made responsible for a progressive program to reinforce adherence and independence. Breathing retraining exercises are used with the goals of modifying the breathing pattern to decrease the work of breathing and improving the cough mechanism. Pursed lip breathing and diaphragmatic breathing decrease the respiratory rate, coordinate the breathing pattern, and tend to prevent collapse of smaller bronchi. Air shifting is performed several times per hour. It involves a deep inspiration that is held with the glottis closed for 5 seconds. The air shifts to lesser ventilated areas of the lung and may help prevent microatelectasis. The subsequent expiration is through pursed lips. Pursed lip breathing aids in relaxation as well. Other relaxation exercises, such as Jacobson exercises and biofeedback, can be used to decrease tension and anxiety.29,30

TABLE 141-5 Pulmonary Hygiene Options 11,14,43InhalersBronchodilatorsInhaled steroidLeukotriene inhibitorsMucolyticsMethods of airway secretion eliminationOral, nasal, or transtracheal suctioningChest percussion and postural drainagePositive expiratory pressure breathingFlutter mucus clearance devicesFor hypercapnic patients, interspersing periods of respiratory muscle rest with exercise of specific respiratory muscle groups is a principle of pulmonary rehabilitation. Rest can be achieved by overnight useof nasal bilevel positive airway pressure. Improved daytime gas values, increased vital capacity, decreased fatigue, and increased well-being have been reported in such programs.

Mechanical vibration devices to the chest wallIntrapulmonary percussive ventilation with aerosolized medicationsMechanical insufflations-exsufflation applicationsAutogenic drainageManual assisted coughAbdominal binder

After the acute rehabilitation period, continued surveilance and attention to abstinence from smoking, bronchial hygiene (Table 141-5), breathing retraining, physical reconditioning, oxygen therapy, and airway secretion mobilization have been shown to reduce hospital admissions, length of hospital stays, and cost. The benefits of pulmonary rehabilitation on exercise performance and quality of life are greatest during the first year and last up to 5 years.26,27,35-37Predominant Ventilatory Impairment

The primary interventions for patients with generalized muscle weakness are the use of respiratory muscle aids and facilitation of habilitation to disability rather than rehabilitation. Cough peak flows greater than 160 L/min are the minimum needed for airway secretion clearance and hence indicate safety for removal of tracheostomy tube whether the patient is ventilator dependent or not. Ninety percent of episodes of acute respiratory failure are caused by ineffective coughing during otherwise benign upper respiratory tract infections; therefore, when assisted peak cough flows have decreased to less than 270 L/min, patients are prescribed oximeters and trained in air stacking of consecutively delivered volumes of air provided through mouth or nasal interfaces from a manual resuscitator (ambu bag) to improve cough flows.38 they also taught manually assisted coughing (abdominal thrusts timed to glottic opening after maximal lung insufflation). They are introduced to mechanical insufflation-exsufflation (CoughAssist) provided at +35 to +50 to -35 to -50 cm H2O pressure drops, with abdominal thrusts applied during exsufflations. Patients must have rapid (less than 2-hour) access to portable volume ventilators, CoughAssist, and various mouthpieces and nasal interfaces when they develop respiratory muscle aid-oximetry protocol to prevent respiratory failure, patients and care providers are instructed to use continuous pulse oxyhemoglobin saturation (SpO2) monitoring at the first sign of upper respiratory tract infection. Any decreases in SpO2 of less than 95% indicate either hypoventilation or the presence of airway mucus accumulation that must be cleared to prevent atelectasis, pneumonia, and respiratory failure. Patients learn to use noninvasive ventilation or manually and mechanically assisted coughing to maintain sufficient alveolar ventilation and airway secretion clearance to keep SpO2 at 95% or higher and thereby avoid respiratory failure. They are also told to use SpO2 monitoring whenever fatigued, short of breath, or ill. They are instructed to use manually and mechanically assisted coughing, as needed, to maintain normal SpO2 at all times.

When symptomatic, nocturnal SpO2 decreases below 95% are common, and patients are encouraged to use nocturnal nasal intermittent positive-pressure ventilation for the first time to assist lung ventilation during chest infections and need it continuously without ever requiring hospitalization, in many cases despite having no measurable vital capacity for decaded.35,36

Procedures

Training in the use of nebulizers, hand-held inhalers, chest percussion and postural drainage, and respiratory equipment is important during the outpatient pulmonary rehabilitation program. Self-directed patients should be independent in training their ventilators and CoughAssist devices according to time of day and clinical situation.

SurgeryLung volume reduction surgery is performed for patients with severe function-limiting emphysema with the goal of improving gas exchange, exercise capacity, lung function, and quality of life. Candidates for lung volume reduction surgery, patients who have had lung volume reduction surgery, and lung transplantation and post-lung transplantation patients may be prescribed an inpatient or outpatient pulmonary rehabilitation program, depending on the patients goals and medical stability.37,38 Among patients with pulmonary dysfunction who have significant nutritional deficiencies by oral intake, alternative routes for nutrition, such as percutaneous gastrostomy tube, are considered.Patients with respiratory muscle impairment are taught the use of inspiratory and expiratory muscle aids (i.e., mouthpiece and nasal noninvasive mechanical ventilation and mechanically assisted coughing) before surgery so that they can be extubated to the use of these aids after surgery, even when they are not capable of independently ventilating their lungs.39 tracheostomy is needed only when bulbar-innervated muscle dysfunction is so severe that patients aspirate saliva to the extent that SpO2 cannot be maintained at 95% or higher. In general, this occurs only for the patients with advanced bulbar amyotropic lateral sclerosis.40POTENTIAL DISEASE COMPLICATIONS

Potential disease complications play a significant role in the outpatient pulmonary rehabilitation prescription. In generating a prescription, it is important to consider the patients specific diagnosis and potential complications. Complications of chronic respiratory disease depend on the effects of progression of the primary pathologic process and natural aging on respiratory muscle function and lung tissues. Nutritional deficits, psychosocial issues, and comorbidities can also play an important role.

Predominant Oxygenation Impairment

Patients with primarily oxygenation impairment due to lung or airways disease often have intermittent exacerbations with episodes of acute respiratory failure. These often require acute hospitalization and invasive management. They are largely caused by inability to mobilize peripherally trapped airway secretions. There are many secretion mobilization systems to help mobilize airway secretions, but there is no clear evidence that one system works better than any other. The least expensive and simplest methods to supplement airway secretion mobilization efforts, such as use of a flutter valve, positive expiratory pressure mask, and chest vibrators, are probably as effective as expensive chest vibrating and oscillating devices.41 supplemental methods of respiratory therapeutic secretion mobilization that can be taught include chest percussion and postural drainage, huffing, and active cycle of breathing. The last is the most inexpensive technique of airway secretion mobilization because no assistive device is used. The patient simply breathes slowly and shallowly at lung volumes well below functional residual capacity and, once reaching it, take a deep breath and huffs out secretions. Other important strategies for these patients are to administer and to monitor compliance with antibiotics, bronchodilators, oxygen, mucolytics, and other medications.

Predominant Ventilaroy Impairment

The evaluation for long-term airway protection with a tracheostomy is a common clinical scenario. However, because patients with no measurable vital capacity or any volitional skeletal muscle movement for more than 50 years do not require tracheostomy,42,43 obviously one is not needed for inspiratory or expiratory muscle failure but rahter for failure of bulbar-innervated musculature alone. Once aspiration of saliva cause the SpO2 baseline value to decrease and to remain less than 95%, 90% of patients undergo tracheotomy or are deceased within 2 months.40 this, however, occurs only for patients with advanced bulbar amyotropic lateral sclerosis, for children with type 1 spinal muscular atrophy without sufficient home care,44 for occasional patient with facioscapulohumeral muscular dystrophy, and very few others. Such patients almost invariably have maximum assisted peak cough flows of less than 160 L/min and are incapable of air stacking because of failure of glottic closure.45

POTENTIAL TREATMENT COMPLICATIONS

Potential treatment complications can result from oxygen toxicity, barotrauma from ventilator use, comorbidities such as concominant cardiac or atherosclerotic peripheral vascular disease, and pharmacologic treatment. Routine evaluation of a patients medication profile by the treating clinician is necessary. Immobility due to muscle weakness or acute illness can also exacerbate pulmonary secretion stasis and cause deep venous thromboses, cardiac deconditioning, skin ulceration, bone decalcification, and muscoskeletal contractures. Each individuals progress with mobilization, exercise, and daily activity facilitation programs is monitored, and prescriptions are modified accordingly.

References1. Hodgkin J, Farrell M, Gibson S, et al. American Thoracic Society. Medical Section of American Lung Association. Pulmonary rehabilitation. Am Rev Respir Dis 1981;124:663-666.2. American Thoracic Society. Pulmonary rehabilitation-1999. Am J Respir Crit Care Med 1999;159:1666-1682.3. American College of Chest Physicians and American Association of Cardiovascular and Pulmonary Rehabilitation: joint ACCP/AACVPR evidence-based guidelines. Chest 1997;112:1363-1396.4. Holden D, Stelmach KD, Curtis PS, et al. The impact of a rehabilitation program on functional status of patients with chronic lung disease. Respir Care 1990;35:332-341.5. Bach JR. Rehabilitation of the patient with respiratory dysfunction. In DeLisa JD, ed. Rehabilitation Medicine: Principles and Practice. Philadelphia, Lippincott-Raven, 2005:1843-1866.6. Higgins MW, Thom T. Incidence, prevalence, and mortality: intra and intercountry differences. In Hensley MJ, Saunders NA, eds. Clinical Epidemiology of Chronic Obstructive Pulmonary Disease. New York Marcel Dekker, 1989:23-43.7. Fienleib M, Rosenberg HM, Collins JG, et al. trends in COPD morbidity and mortality in the United States. Am Rev Respir Dis 1989;140:S9-S18.8. Koga T, Watanabe K, Sano M, et al. The breathing intolerance index for ventilator use. Am J Phys Med Rehabil 2006;85:24-30.9. Smoller JW, Pollack MH, Otto MW, et al. Panic anxiety, dyspnea and respiratory disease: theoretical and clinical considerations. Am J Respir Crit Care Med 1996;154:6-17.10. Bach JR, Rajaraman R, Ballanger F, et al. Neuromuscular ventilator insufficiency: the effect of home mechanical ventilator use vs. oxygen therapy on pnuemonia and hospitalization rates. Am J Phys Med Rehabil 1998;77:8-19.11. American College of Sports Medicine. Guidelines for Exercises Testing and Prescription, 5th ed. Philadelphia, Williams & Wilkins, 1995.12. Jones NL. Current concepts: new tests to assess lung function. N Engl J Med 1975;293:541-544.13. Jones NL, Campbell EJM. Clinical Exercise Texting, 2nd ed. Philadelphia, WB Saunders, 1982:158.14. Guyatt GH, Thompson P.J, Berman LB, et al. How should we measure function in patients with chronic heart and lung disease? J Chronic Dis 1985;38:517524.15. American Association of Cardiovascular and Pulmonary Rehabilitation Programs, 2nd ed. Champaign, Ill, Human Kinetics, 1998.16. Carlson DJ, Ries AL, Kaplan RM. Prediction of maximum exercise tolerance in patients with COPD. Chest 1991;100:307-311.17. Gomez-Merino E, Bach JR. Duchenne muscular dystrophy: prolongation of life by noninvasive respiratory muscle aids. Am J Phys Med Rehabil 2002;81:411-415.18. Camili AE, Burrows B, Knudson RJ, et al. Longitudinal changes in forced expiratory volume in one second in adults. Effects of smoking and smoking cessation. Am Rev Respir Dis 1987; 135:794-799.19. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep 1997;46(RR-8):1-24.20. Bridges CB, Winquist AG, Fukuda K, et al. Prevention and control of influenza: recommendation of the Advisory Committee on Immunization Practices. MMWR Recomm Rep 2000;49(RR-3):1-38.21. Wilson DO, Rogers RM, Wright EC, Anthonisen NR. Body weight in chronic obstructive pulmonary disease. Am Rev Respir Dis 1989;139:1435-1438.22. Askanazi J, Weissman C, Rosenbaum SH, et al. Nutrition and the respiratory system. Crit Care Med 1982;10:153-172.23. Gozal D. Nocturnal ventilatory supports in patients with with cystic fibrosis: comparison with supplemental oxygen. Eur Respir J 1997;10:1999-2003.24. Giminez M, Servera E, Vergara P, et al. Endurance training in patients with chronic obstructive pulmonary disease: a comparison of high versus moderate intensity. Arch Phys Med Rehabil 2000;81:102-109.25. Carter R, Nicotra B, Clark L, et al. Exercise conditioning in rehabilitation of patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 1988;69:118-122.26. Troosters T, Gosselink R, Decramer M. Short and long-term effects of outpatients rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Am J Med 2000;109:207-212.27. Make B. Pulmonary rehabilitation and outcome measure. In Baum GL, Crapo JD, Celli BR, Karlinsky JB, eds. Textbook of Pulmonary Diseases, 6th ed. Philadelphia, Lippincott-Raven, 1998:987-1006.28. Noble BJ, Borg GA, Jacobs I, et al. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med Sci Sports Exerc 1983;15:523-528.29. Reina-Rosenbaum R, Bach JR, Penek J. The cost/benefits og outpatients based pulmonary rehabilitation. Arch Phys Med Rehabil 1997;78:240-244.30. Khan AU. Effectiveness of biofeedback and counterconditioning in the treatment of bronchial asthma. J Psychosom Res 1977;21:97-104.31. Elliot MW, Mulvey D, Mozham J, et al. Domiciliary nocturnal nasal intermittent positive pressure ventilation in COPD: mechanisms underlying changes in arterial blood gas tensions. Eur Respir J 1991;4:1044-1052.32. Gay P, Hubmayr RD, Stroetz RW. Efficacy of nocturnal nasal positive pressure ventilation combined with oxygen therapy and oxygen monotherapy in patients with severe COPD. Am J Respir Crit Care Med 1996;154:353-358.33. Hudson LD, Tyler ML, Petty T. Hospitalization need during an outpatient rehabilitation program for chronic airway obstruction. Chest 1976;70:606-610.34. Roselle S, DAmico FJ. The effect of home respiratory therapy on hospital re-admission rates of patients with chronic obstructive pulmonary disease. Respir Care 1990;35:1208-1213.35. Holle RH, Williams DV, Vandree JC, et al. Increased muscle efficiency and sustained benefits in an outpatients community hospital-based pulmonary rehabilitation program. Chest. 1988;94:1161-1168.36. Ilowite J, Niederman M, Fein A, et al. Can benefits seen in pulmonary rehabilitation be sustained long term? Chest 1991;!00:182.37. Mall RW, Medieros M. Objective evaluation of result of a pulmonary rehabilitation program in a community hospital. Chest 1988;94:1156-1160.38. Bach JR, Gonzalves M, Paez S. Expiratory flows maneuvers of patients with neuromuscular diseases. Am J Phys Med Rehabil 2006;85:105-111.39. Bach JR, Sabharwal S. High pulmonary risk scoliosis surgery: role of noninvasive ventilation and related techniques. J Spinal Disord Tech 2005;18:527-530.40. Bach JR, Bianchi C, Aufiero E. Oximetry and prognosis in amyotrophic lateral sclerosis. Chest 2004;126:1502-1507.41. Hardy KA. A review of airways clearance: new techniques, indications, and recommendations. Respir Care 1994;39:440-455.42. Bach JR, Alba AS, Saporito LR. Intermittent positive pressure ventilation via the mouth as an alternative to tracheostomy for 257 ventilator users. Chest 1993;103:174-182.43. Bach JR. ed. Noninvasive Mechanical Ventilation . Philadelphia, Hanley & Belfus, 2002.44. Bach JR, Baird JS, Plosky D, et al. Spinal muscular atrophy type 1: management and outcomes. Pediatr Pulmonol 2002;34:16-22.45. Kang SW, Bach JR. Maximum insufflation capacity. Chest 2000;118:61-65.

141Rehabilitasi ParuJohn R. Bach, MD

SynonymsTidak adaICD-9 CodesE0450Ventilasi mekanik invasifE0461Ventilasi mekanik noninvasifE0482Insuflasi dan eksuflasi mekanik

DEFINISIRehabilitasi paru didefinisikan sebagai seni dalam praktik kedokteran dimana secara individual, seseorang ditangani secara menyeluruh melalui diagnosis yang akurat, terapi, dukungan emosional, dan edukasi baik pada fisiopatologi maupun psikopatologi penyakit-penyakit paru dengan tujuan untuk mengembalikan kapasitas maksimal paru fungsional yang masih memungkinkan pada kelainan paru yang diderita dan pada semua situasi. 1-2 Tujuan rehabillitasi paru adalah untuk memperbaiki keadaan dispneu dan keadaan dekondisi, mengoptimalkan sekresi pernapasan dan fungsi otot pernapasan, mengurangi kejadian rawat inap dan komplikasi paru, mengatasi faktor-faktor psikososial, memfasilitasi rehabilitasi dan hubungan dengan masyarakat, dan meningkatkan fungsi kemandirian.1-4 Pasien rawat jalan yang dapat menjalani rehabilitasi paru yaitu pasien anak dan dewasa yang berkeinginan untuk mendapat manfaat seperti yang telah disebutkan sebelumnya, pasien yang mengalami disfungsi otot pernapasan atau disfungsi paru yang mempengaruhi aktivitas dan harapan hidup dan pasien yang kondisinya cukup stabil untuk menjalani manajemen rawat jalan.Perbandingan antara Proses Patologis, Penanganan, dan HasilPada perkembangan terapi untuk pasien yang menjalani terapi rehabilitasi paru, sangat penting untuk membedakan antara disfungsi paru karena penyakit paru atau saluran napas atau gangguan oksigenasi maupun gangguan pada ventilasi alveolar dengan keadaan parenkim paru yang normal. Pasien dengan gangguan oksigenasi seringkali mengalami hipoksia dengan kadar CO2 normal. Pasien dengan gangguan ventilasi mempertahankan CO2 dari disfungsi otot, aktivitas yang berlebihan, atau hipoventilasi sentral. Klasifikasi ini memungkinkan klinisi untuk memfokuskan terapi rehabilitasi paru yang tepat untuk setiap pasien. Selanjutnya, bab ini akan menguraikan terapi berdasarkan klasifikasi di atas. Kondisi yang berhubungan dengan gangguan oksigenasi dijabarkan pada tabel 141-1. Jika pada suatu kondisi atau beberapa kondisi saling mendominasi, ketika terjadi tumpang tindih, maka terapi yang diberikan harus mencakup untuk semua kondisi tersebut. 5Hasil yang diharapkan dari terapi rehabilitasi paru yaitu penurunan angka kejadian rawat inap, penurunan morbiditas dan mortalitas, penurunan gejala, peningkatan kualitas hidup, peningkatak aktivitas fungsional, peningkatan kondisi neuropsikologis, peningkatan kemampuan kerja, dan pemanfaatan efektif dari teknologi pendukung pernapasan. Setiap terapi yang diberikan merupakan terapi spesifik untuk setiap individu dan disesuaikan dengan kondisi pasien.InsidensiPrevalensi penyakit paru obstruktif kronis (PPOK) pada kelompok dewasa sekitar 4% sampai 6% pada laki-laki, dan !% sampai 3 % pada perempuan. Berdasarkan National Health Interview Survey tahun1996, sekitar 14 juta orang menderita bronkitis kronik. PPOK merupakan penyebab kematian keempat di US dan penyebab tersering pada gangguan oksigenasi.6,7

Table 141-1 Kondisi yang berhubungan dengan gangguan oksigenasi dan gangguan ventilasiKeadaan dengan kondisi utama gangguan oksigenasiPenyakit paru obstruktif kronisAsmaGagal napas yang berhubungan dengan kelemahan otot-otot pernapasan (gangguan ventilasi) terjadi pada sekitar 1 dari 800 orang pasien dengan penyakit neuromuskular. Meskipun demikian, baik gagal napas akut maupun kronik juga dapat berasal dari disfungsi otot pernapasan yang berhubungan dengan penyakit sistem saraf pusat seperti penyakit serebrovaskular dan cedera otak. Hampir 50% pasien rawat jalan yang dianjurkan menggunakan ventilasi mekanik didiagnosis dengan gangguan ventilasi karena prognosisnya lebih baik daripada yang mengalami gangguan oksigenasi. Telah dilakukan berbagai upaya untuk menentukan indikasi diperlukannya rehabilitasi paru dan penggunaan terapi ventilator yang tepat untuk pasien rawat jalan.8

Emfisema dan emfisema yang diakibatkan operasi reduksi volume paru Fibrosis kistikBronkiektasisPenyakit restriktif (contohnya. Fibrosis paru, penyakit parenkim primer)Keadaan dengan kondisi utama gangguan ventilasiMiopatiDuschene muscular dystrophyBecker muscular dystrophyLimb-girdle muscular dystrophyEmery-Dreifuss muscular dystrophyFacioscapulohumeral muscular dystrophyCongenital, autosomal recessive, myotonic muscular dystrophy\Generalized nondystrophic myopathiesMiopati kongenital, metabolik, atau inflamasi Myasthenia GravisMixed connective tissue disease myopathiesKelainan neurologisAmyotrophic lateral sclerosisDisfungsi medulla spinalis Atrofi otot spinalPenyakit motor neuronPoliomyelitisHereditary sensory motor neuropathiesNeuropati nervus phrenicus, sindrom Guillain-Barre Multiple sclerosisFriedreich ataxia

Inflammatory Bowel Disease-Associated (Chron Disease and Ulcerative Colitis) Arthritis

MielopatiBotulismeSleep-disordered breathingSindrom hipoventilasi sentral dan kongenital Hipoventilasi yang berhubungan dengan mikroangiopati diabetikumDown syndromeFamilial dysautonomiaMuskuloskeletalDeformitas dinding thoraksKifoskoliosisAnkylosing spondylitisOsteogenesis imperfectaRigid spine syndromeKongenital spondyloepiphyseal dysplasia Penyakit paru restriktifHipoventilasi obesitasPenyakit pada pleura dan dinding dadaTuberkulosisPenyakit Milroy

GEJALAGejala dari gangguan oksigenasi meliputi dispneu saat beraktivitas atau dalam kegiatan sehari-hari, cemas, depresi, sakit kepala, dan sulit berkonsentrasi.9 Pasien dapat mengalami produksi sputum kronik, batuk, mengi, nyeri dada yang bervariasi sesuai siklus pernapasan, penurunan berat badan, orthopneu, gangguan tidur, dan kelemahan daya tahan. Kumpulan gejala alergi juga mungkin terlihat. Gejala lain yang mungkin berhubungan misalnya demam dan hemoptisis dapat terjadi, seperti pada pasien dengan bronkiektasis.Pasien dengan kondisi utama gangguan ventilasi umumnya mengeluh kelelahan. Keluhan lain dapat berupa dispneu saat aktivitas, penurunan berat badan, gangguan tidur, kelemahan daya tahan, sakit kepala pada pagi hari, dan ketidakstabilan emosi. Untuk pasien yang menggunakan kursi roda atau skuter, gejala minimal sangatlah umum terjadi sampai kecemasan atau ketidakmampuan untuk tidur muncul selama infeksi saluran napas berulang sampai tanda gagal napas.10 Kondisi gagal napas akut umumnya diderita oleh pasien dengan kelemahan neuromuskular dengan batuk yang tidak efektif.PEMERIKSAAN FISIKGangguan OksigenasiBagi pasien dengan penyakit paru atau saluran pernapasan, pemeriksaan fisik tergantung pada proses patologis yang mendasarinya (lihat tabel 141-1). Pada pasien dengan PPOK, umumnya ditemukan produksi sputum yang masif, penggunaan otot bantu pernapasan dan barrel chest. Pada auskultasi ditemukan mengi, ronkhi, atau suara napas hipersonor. Evaluasi dengan pulse oksimeter selama fase istirahat dan aktivitas sering menunjukkan perburukan gangguan oksigenasi saat beraktivitas.6Gangguan VentilasiSemua penyakit neuromuskular umum menyebabkan derajat kelemahan kemampuan inspirasi (bernapas), ekspirasi (batuk), dan inervasi otot bulbar (bicara, menelan, dan proteksi udara) yang bervariasi. Pasien dapat mengalami peningkatan laju pernapasan, pernapasan dangkal, pernapasan diafragma atau paradoksal, penggunaan otot bantu pernapasan tambahan, napas cuping-hidung, sianosis peribuccal atau sianosis sentral, pucat, pengeluaran air liur, kesulitan dalam mengontrol pernapasan, disfagia, atau bicara sengau.KETERBATASAN FUNGSILevel dasar dari fungsi tubuh, termasuk toleransi latihan dan kemampuan untuk melakukan aktivitas sehari-hari, dapat sangat berkurang. Sangat mungkin terdapat kesulitan dalam mengontrol sekresi pernapasan, kesulitan mengunyah dan menelan makanan, dan penurunan interaksi social. Banyak pasien memerlukan penggunaan ventilator guna mengistirahatkan otot inspirasi untuk menghindari atau untuk meringankan gejala pada saluran napas. Aktivitas sehari-hari akan sangat terganggu akibat disfungsi umum otot pernapasan atau gangguan spesifik pada otot pernapasan. Sebagai contoh, takipneu menyebabkan pasien kekurangan waktu untuk mengunyah dan menelan. Keadaan ini menyebabkan malnutrisi yang lebih lanjut memperburuk fungsi pernapasan. Manajemen dengan bantuan ventilator berbentuk corong sederhana dapat membantu mengurangi takipneu dan berefek pada perbaikan gizi dan meningkatkan daya tahan (Gbr. 141-1).STUDI DIAGNOSTIKUji diagnostik dapat membedakan antara keadaan pasien dengan kondisi utama gangguan ventilasi dan gangguan oksigenasi. Pasien dengan gangguan oksigenasi, setidaknya memiliki satu dari gejala berikut ini: keterbatasan pernapasan dengan latihan pada 75% prediksi maksimal konsumsi oksigen, obstruksi jalan napas ireversibel dengan volume ekspirasi paksa dalam 1 detik (FEV1) kurang dari 200 mL atau rasio FEV1 berbanding kapasitas vital paksa (FEV1/FVC) kurang dari 60%; atau penyakit pembuluh darah paru dengan kapasitas difusi CO kurang dari 80% dari prediksi.Pasien dengan gangguan ventilasi, setidaknya memiliki satu dari gejala berikut ini: hiperkapnia, keterbatasan pernapasan dengan latihan pada 75% prediksi maksimal konsumsi oksigen normal; atau penurunan kapasitas vital dengan rasio FEV1/FVC normal sampai tinggi, penurunan cough peak flow, penurunan tekanan maksimum inspirasi dan ekspirasi, dan pengukuran volume paru yang rendah (misalnya, kapasitas total paru, kapasitas residu fungsional, dan volume residu). Banyak pasien dengan gejala ini yang mengalami deformitas dinding dada. Sangat penting untuk mengukur cough flow tanpa atau dengan bantuan untuk pasien dengan kondisi tersebut karena seringkali terjadi gagal napas sebagai akibat dari batuk yang inefektif.10 Cough flows dengan bantuan dihasilkan dari penumpukan volume udara yang dihantarkan melalui resusitator manual dan diubah menjadi volume maksimal yang dapat diterima oleh glottis yang tertutup. Pada keadaan ini, dorongan abdominal dihantarkan sebagai respon dengan pembukaan glottis. Udara yang dikeluarkan diukur sebagai cough flow pada alat ukur peak flow.

GAMBAR 141-1. Seorang laki-laki berusia 17 tahundengan atrofi otot spinal ringan tipe 1yang secara terus menerus menggunakan ventilator berbentuk corong pada siang hari dan sebuah nasal interface saat tidur.Uji Klinis untuk Menentukan Pasien yang Perlu Menjalani Rehabilitasi dengan Kondisi Utama Gangguan OksigenasiPasien yang merupakan target ideal untuk dilakukan rehabilitasi paru yaitu pasien yang masih dapat berjalan beberapa blok namun sudah terdeteksi mengalami penurunan toleransi dalam aktivitas setiap tahunnya atau pasien yang baru membutuhkan penanganan medis untuk gejala paru atau komplikasi yang dideritanya.Uji latihan klinis dapat menentukan sejauh mana pasien mengalami gangguan fungsional akibat penyakit paru yang diderita. Hal ini dapat membantu diagnosis dan menentukan tahanan fungsional dan kapasitas untuk melakukan aktivitas, menentukan faktor yang membatasi aktivitas, dan menentukan latihan yang tepat sesuai dengan gejala.11-13 Uji latihan klinis memudahkan klinisi untuk menentukan kelainan yang diderita berasal dari paru, jantung, atau bronkospasme yang disebabkan oleh latihan.13 Dua diagnosis terakhir dan bahkan gejala paru restriktif seringkali disalahartikan sebagai PPOK. Baik dikerjakan sebelum maupun sesudah program rehabilitasi, uji latihan klinis digunakan menilai kemajuan pasien.Tanda vital, elektrokardiografi, konsumsi oksigen, produksi karbon dioksida, hasil pernapasan, kesamaan ventilasi, ventilasi permenit, dan laju metabolisme dinilai saat uji latihan klinis dilakukan, baik dengan menggunakan treadmill, sepeda statis, atau ergometer ekstrimitas atas. Semua pasien menjalani tes berjalan selama 3, 6, atau 12 menit. Pasien diinstruksikan untuk menambah kecepatan dan durasi secara berkala pada tes berjalan. 11-15 Uji latihan klinis tetap ditingkatkan sampai konsumsi oksigen gagal untuk mencapai kenaikan; nadi maksimal sesuai umur tercapai; atau terdapat perubahan pada gambaran elektrokardiografi, nyeri dada, dispneu berat, atau kelelahan. Oksimetri digunakan untuk menggambarkan keadaan yang membutuhkan oksigen tambahan selama rekondisi berlangsung (pulse saturasi oksihemoglobin [SpO2] SpO2 < 90% sampai 95%) atau pada keadaan (PO2 < 60 mm Hg) yang berlangsung lama. Jika uji metabolic tidak tersedia, toleransi latihan maksimal dapat diperkirakan dari data paru fungsional. 11-13, 16Gangguan VentilasiPasien dengan kondisi utama gangguan ventilasi menjalani tes spirometri untuk menentukan kapasitas vital saat duduk, posisi supinasi dan kapasitas insuflasi maksimal, unassisted dan assisted cough peak flows dengan menggunakan peak flow meter, pengukuran volume tidal karbon dioksida, dan pulse oximetry.17 Selisih antara kapasitas vital pada posisi duduk dengan posisi supinasi yang lebih dari 20% merupakan indikasi kuat terjadinya kelemahan diafragma dan disfungsi pada otot bantu pernapasan. Ketika kapasitas vital kurang dari 80% dibandingkan normal, pasien dilatih untuk melakukan teknik insuflasi maksimal, seperti air stacking yang telah disebutkan sebelumnya. Air stacking yang dilakukan secara manual maupun mekanik selama proses bantuan batuk dimaksudkan untuk mempertahankan sekresi klirens pernapasan yang adekuat dan mencegah atelektasi dan pneumonia. Cough peak flows yang kurang dari 270 L/menit mengindikasikan untuk dilakukan inisiasi pemberian protokol oximetry-respiratory aid yang akan dijabarkan kemudian. Gejala hipoventilasi nokturnal, end-tidal CO2 diatas 45 mm Hg, atau desaturasi oksigen siang atau malam hari dibawah 95% mengindikasikan percobaan pemberian ventilasi tekanan positif berulang noninvasif. 17

Differential DiagnosisDekondisiDisfungsi jantungInfeksi paruObesitas

PENATALAKSANAAN

Awal

Gangguan Oksigenasi

Tatalaksana utama dalam rehabilitasi paru terangkum dalam tabel 141-2. Pasien dan pemberi pelayanan diedukasi mengenai perawatan dan pencegahan.

TABLE 141-2 Rehabilitasi paruProgram rehabilitasi paru dasarPenilaian awal terhadap:Proses penyakit respiratorikKelainan medis yang mendasariKelainan medis umum

Status fungsionalTujuan terapi pada pasienMemilih tujuan terapiTeknik dan alat pengeluaran sekresi pernapasanProgram penghentian merokokProgram latihan:Latihan ventilasi ototLatihan ketahanan dan kekuatanLatihan pernapasanTeknik pernapasan alternatifTeknik penyimpanan energiModalitas terapiPenggunaan mobilitas alat yang adaptifKonseling psikososialEdukasi pasien dan pemberi pelayananProgram maintenanceInterdisciplinary team managementMedication optimizationAdjustment of supplemental oxygen therapyAirway secretion elimination techniques and devicesSmoking cessation programExercise program :Ventilatory muscle trainingEndurance and strength trainingBreathing retrainingAlternative breathing techniquesEnergy conservation techniqueThe terapeutic modalitiesAdaptive devices mobility equipmentPsychosocial conselingPatien and caregive educationMaintenance program

Pengehentian konsumsi rokok sangat ditekankan untuk mengurangi produksi dahak kronis dan menurunkan nilai FEV1, ke level nonperokok.18,19 Disarankan menghindari polusi dan faktor pengganggu lainnya seperti serbuk, aerosol, kelembaban berlebihan, stres, makanan berat dan kontak dengan infeksi pernafasan. Kepatuhan dalam menjalani pengobatan dan konsultasi bila ada masalah kepada klinisi snagat diharapkan. Vaksinasi disarankan termasuk vaksinasi influenza dan pneumokokkus, jika tidak ada kontraindikasi.19,20 Pengaturan gizi dengan nutrisi yang baik dan intake kalori, keseimbangan karbohidrat, dan hidrasi yang adekuat. 5,21,22Terapi klinis termasuk optimalisasi dalam manajemen farmakologis jika terjadi bronkospasme, termasuk penggunaan bronkodilator seperti antikolinergik, derivate metilxantin, simpatomimetik, dan pengobatan kombinasi (Tabel 141-3). Peningkatan FEV1 lebih dari 20% sangat signifikan dengan penggunaan bronkodilator. Penggunaan adrenergik dan antikolinergik secara inhalasi menunjukkan manfaat pada banyak pasien meskipun bukti objektif yang menyertai sedikit. Pelatihan untuk pemberian nebulisasi yang tepat sangat penting untuk mencapai pengobatan yang obtimal dan menghindari penggunaan yang tidak efisien. Pengobatan lain seperti ekspektoran, mukolitik, kortikosteroid, antibiotic, dan disodium cromoglicat digunakan sesuai dengan kelembaban dan kebersihan bronchial yang telah terjamin untuk mempersiapkan pasien menjalani terapi latihan.Manajemen sekresi pernapasan sangat penting untuk pengobatan dan proses penyembuhan pasien. Hal ini menyangkut teknik latihan perkusi dada, drainase postural, ventilasi minimal dan alat klirens sekresi pernapasan. Selain itu, drainase autogenik adalah teknik bernapas dengan menggunakan volume tidal rendah antara kapasitas residual fungsional dan volume residu yang diikuti oleh pengambilan volume tidal yang semakin besar dan ekspirasi paksa untuk memobilisasi dan mengeluarkan mukus. Tekanan positif dan ekspirasi secara teoritis memobilisasi sekresi dengan batuk atau ekspirasi paksa dengan tekanan alveolar dan volume yang mendorong dari bagian belakang mucus. Pernapasan getar dengan bantuan alat getar digunakan pada mulut menggunakan dua teknik evakuasi mucus: tekanan positif dan ekspirasi serta isolasi.Alat yang dapat digunakan yaitu Hayek Oscillator (Breasy Medical Equipment Inc., Stamford, Conn); ThAIRapy System (American Biosystem Inc., St. Paul, Minn); and ventilator perkusif intrapulmoner, yang mencakup pengobatan aerosol sebagai aliran perkusif yang kuat dengan bentuk spray udara yang masuk ke saluran pernapasan (Percussionaire Corp. Sandpoint, Idaho).Deteksi dini pada adanya infeksi saluran pernapasan sangatlah penting. Pemberian antibiotik spectrum luas dan glukokortikoid dapat dipertimbangkan. Oksigen terapi rumahan dapat digunakan pada pasien denganpenyakit paru jika PO2 kurang dari 60 mmHg dan telah berlangsung selama lebih dari 2 bulan setelah eksaserbasi akut. Jenis terapi ini menurunkan hipertensi pulmonal reaktif dan polisitemia, meningkatkan kognisi, memperpanjang hidup, dan dapat menurunkan kejadian rawat inap. Pemasangan oksigen transtracheal menghindari kotoran di sekitar hidung dan mulut, menghindari "dead space" nasofaring, dan mencegah ketidaknyamanan dan kekeringan terkait dengan penggunaan kanula hidung dan masker. Perjalanan dengan tekanan tinggi memerlukan tambahan oksigen sekitar 0,5 L/ menit.Pasien dengan PPOK memiliki insiden yang tinggi terhadap gangguan pernapasan saat tidur yaituapneu obstruktif dan sentral dimana tekanan pernapasan positif atau tekanan pernapasan bilevel dapat bermanfaat sebagai bantuan pernapasan, pengistirahatan otot inspirasi pernapasan, dan kontra auto-positif tekanan akhir ekspirasi untuk pasien PPOK hiperkapnia.TABEL 141-3 Pengobatan umum

GolonganCara kerjaEfek utamaEfek samping

BronkodilatorAntikolinergikMeredakan bronkospasme dengan relaksasi otot polos bronkusLihat kemasan obat

Simpatomimetik

Derifat metilxantin

Kombinasi

AntikolinergikIpratropium

Meredakan bronkospasme dengan relaksasi dari otot polos bronchialSakit kepala, mulut kering, pusing, gangguan gastrointestinal

TiotropiumMeredakan bronkospasmeTakikardi, palpitasi, distress gastrointestinal, gugup, mulut kering, tremor.

Dari Referensi Physician Desk Edisi 61 Montvale NI Medical Economics 2007

Gangguan VentilasiPengikat perut berguna untuk pasien tetraplegik dan paraplegik setinggi thorax untuk meningkatkan peregangan diafragma dan kapasitas vital. Namun, kekuatan otot inspirasi atau kapasitas vital pada pasien dengan gangguan ventilasi, mobilisasi dinding dada dan paru-paru sangat penting untuk mempertahankan pelebaran yang sesuai ketika volume paru-paru meningkat untuk mengeluarkan batuk yang efektif.Walaupun tekanan positif bilevel pernapasan dapat digunakan oleh pasien dengan gangguan ventilasi, namun ini hanya sesuai untuk pasien yang tidak memiliki kondisi bulbus yang mempersarafi otot yang berfungsi untuk menarik udara. Ketika tekanan positif bilevel pernapasan dapat digunakan pada pasien ini, titrasi polisomnografi menjadi tidak relevan. Tekanan positif bilevel pernapasan inspirasi dan ekspirasi saat otot berelaksasi harus berada pada 18 sampai 20 cm H2O. Setiap pasien dengan persarafan bulbar otot yang baik untuk menarik udara lebih disarankan menggunakan ventilator volume-cycled daripada tekanan positif bilevel pernapasan. Modifikasi dibuat untuk masker yang tidak nyaman dan adanya kebocoran udara. Ventilator volume portabel dapat memberikan bantuan pada otot inspirasi ketika dibutuhkan, seperti untuk pasien dengan obesitas hipoventilasi.5Konseling psikososial untuk gejala depresi, kecemasan, dan stress dapat mengatasi gejala social dan menciptakan kemajuan yang baik pada pasien. Tujuannya adalah untuk menghilangkan pengaruh gejala psikososial ini pada penurunan siklus pernapasan.9Insuflasi dan eksuflasi mekanik digunakan untuk membantu otot ekspirasi pernapasam untuk meningkatkan arus batuk untuk mencegah pneumonia. Digunakan 10 L/ detik dari aliran ekspirasi yang langsung menuju saluran napas melalui saluran napas atas maupun trakeostomi (CoughAssist, JH Emerson Co., Cambridge, Mass). Bantuan mekanis batuk digunakan sebagai bantuan pada tekanan perut dengan mengkombinasikan antara eksuflasi manual dan mekanik.17RehabilitasiSebuah program rawat jalan rehabilitasi paru menggabungkan intervensi fisik, evaluasi peralatan pernapasan, dan rehabilitasi dengan pendekatan interdisipliner. Tim interdisipliner dapat mencakup pasien, staf medis dan keperawatan, terapis pernapasan, terapis fisik, terapis okupasi, terapis bicara, pekerja sosial, dan ahli gizi. Selain itu, psikologi atau psikiatri, terapis rekreasi, dan rehabilitasi vokasional yang dapat diintegrasikan sebagai bagian dari tim. Pelatihan aktivitas untuk daya tahan, kekuatan dan aktivitas fungsi spesifik dijelaskan pada (Tabel 141-4). Kemajuan dimonitor dan modifikasi dibuat berdasarkan peningkatan kapasitas aerobik pasien dengan latihan intensif. Jadwal pengubahan pola latihan bergantung pada masing-masing pasien; tahap awal program dan masalah medis akut dapat mendasari perubahan pada pola latihan. Komponen latihan meliputi frekuensi, durasi, intensitas dan spesifisitas. Frekuensi latihan disarankan sebanyak 3-5 kali seminggu. Pasien juga harus diajarkan tentang kebutuhan pernapasan mereka.Gangguan OksigenasiLatihan yang diberikan secara perlahan dapat memberi manfaat yang besar pada pasien diantaranya adalah mengurangi dispneu dan laju pernapasan dan meningkatkan toleransi terhadap latihan, meningkatkan konsumsi oksigen maksimum, meningkatkan kemampuan berjalan 6-12 menit, meningkatkan aktivitas sehari-hari, pekerjaan, efisiensi mekanik, dan pertukaran gas optimal. 23,27 Kecemasan dan depresi juga menurun secara signifikan, dan kognisi serta kesejahteraan pasien meningkat.Latihan dengan intensitas rendah dapat ditentukan atas dasar pemahaman objektif atau subjektif. Pemahaman objektif melibatkan perhitungan konsumsi oksigen maksimal atau detak jantung maksimal. Jika spirometri berbentuk open-circuit dan metabolik cart tersedia, intensitas sasaran spesifik yang ditargetkan adalah 50% dari penyerapan oksigen maksimal. Parameter denyut jantung mungkin paling berguna untuk pasien dengan kondisi jantung.

TABEL 141-4 Tipe latihan

Tipe latihanContoh

Latihan ventilasi ototInspiratory resistive exercise maximum sustained ventilation, inspiratory resistive loading, inspiratory threshold loading, sustained hyperpnea

Latihan kekuatanUpper extremity exercise pulleys, elastic bands, supervised circuit training, weightlifting with low resistance

Lower extremity exercise supervised circuit training, weightlifting with low resistance

Latihan ketahananUpper extremity exercise unsupported upper extremity activities ranging from activities of daily living to athletic activities, supervised arm cycling low impact aerobics, pool therapy

Lower extremity exercise incremental treadmill program, supervised walking cycling and stair climbing program low impact aerobics, pool therapy.

Beberapa rumus yang digunakan. Salah satunya adalah intensitas latihan yang diinginkan dikalikan dengan prediksi denyut jantung maksimum. Oleh karena itu, jika intensitas latihan yang diinginkan didefinisikan sebagai 60% dari prediksi denyut jantung maksimum (HR), maka:Target HR = 0,60 x (HRmax = 220-umur)Lainnya adalah formula Karvonen. Untuk target kisaran detak jantung 50% menjadi 85%.Cadangan HR = [(HRmaks - HRistirahat) x 0,50] + HRistirahat = [(HRmaks - HRistirahat) x 0,85] + HRistirahat

Target awal bisa 50% (kisaran 50% sampai 80%) dari baik ukuran objektif atau tingkat toleransi oleh pasien.Ketika pemahaman objektif tidak berlaku, seperti dalam kasus pasien yang memakai obat kronotropik negatif (misalnya, bloker atau calcium channel blockers) dan penerima transplantasi jantung, tindakan subjektif mungkin lebih pada penyesuaian toleransi latihan. Selain itu, karena pasien sering dibatasi oleh dispneu saat aktivitas, tindakan subjektif mungkin lebih disarankan.13Tindakan subjektif dari toleransi latihan, seperti penilaian skala tenaga atau penilaian dyspneu pada pasien, memungkinkan pasien untuk menentukan program berdasarkan gejala mereka sendiri. Skala Borg dari 6 sampai 20 berbanding lurus dengan detak jantung. Hal ini digambarkan dengan mengalikan jumlah skala yang dipilih dengan 10 untuk mendapatkan perkiraan denyut jantung. Misalnya, ketika pasien memilih nomor 10 pada skala untuk menggambarkan gejala, denyut jantung diperkirakan dengan persamaan berikut:10 x 10 = 100 (10)Skala Borg asli menggunakan metode ini.13,28Spesifisitas latihan ditentukan oleh tujuan yang diharapkan pada pasien untuk menjalani kehidupan sehari-hari dan menjalani pekerjaan. Jadi mobilitas kegiatan sehari hari pasien disesuaikan dengan program latihan yang diberikan. Program latihan mobilitas dan daya tahan seperti berjalan, memanjat tangga, senam aerobic yang low-impact, sepeda stasis dan terapi kolam renang dapat diberikan tergantung dari tingkat mobilitas dan fungsional dasar tiap pasien. Untuk mobilitas, pekerjaan, dan kegiatan rekreasi, alat-alat bantu untuk meningkatkan kegiatan sehari-hari mungkin termasuk kursi roda, walker, atau tongkat. Latihan kekuatan berfungsi untuk meningkatkan fungsi aktivitas sehari hari, mobilitas, dan pekerjaan spesifik. Penggabungan untuk melatih ketahanan, kekuatan, dan pekerjaan spesifik yaitu suatu teknik konservasi energi yang berguna pada aktivitas sehari-hari. Peningkatan ketahanan pada latihan dapat tercapai secara mandiri dilihat dari perubahan ketahanan otot ventilator. Rangkuman dari program latihan dibuat oleh pasien dan pemberi terapi. Rencana latihan disepakati oleh kedua belah pihak dan dapat secara fleksibel diganti, disesuaikan dengan kondisi pasien. Dengan cara ini pasien diajak untuk ikut bertanggung jawab terhadap kepatuhan dan kemandiriannya dalam menjalani program latihan. Latihan pernapasan digunakan untuk mencapai tujuan modifikasi pernapasan untuk mengurangi kerja pernapasan dan meningkatkan mekanisme batuk. Pengerutan bibir dalam pernapasan dan pernapasan diafragma dapat menurunkan laju pernapasan, koordinasi pola pernapasan, dan cenderung mencegah bronkus yang lebih kecil untuk kolaps. Pergantian udara dilakukan beberapa kali perjam. Hal tersebut melibatkan inspirasi dalam yang ditahan selama 5 detik dengan glottis tertutup. Udara berpindah ke daerah ventilasi paru yang lebih rendah dan dapat mencegah mikroatelectasis. Pengkerutan bibir selama proses bernapas dapat membantu proses relaksasi. Latihan relaksasi lainnya seperti latihan Jacobson dan biofeedback, dapat digunakan untuk mengurangi ketegangan dan kecemasan.29,30

TABEL 141-5 Rekomendasi perawatan hygiene paru 11,14,43InhalerBronkodilatorsSteroid inhalasi Inhibitor leukotrienMukolitikMetode pengeluaran sekresi udara pernapasanSuction oral, nasal, atau transtrakhealPerkusi dada dan drainase posturalPernapasan tekanan positifAlat getar klirens mucus Untuk pasien hiperkapnia, periode jeda untuk relaksasi otot pernapasan dengan latihan spesifik untuk otot pernapasan adalah dasar dari rehabilitasi paru. Relaksasi dapat dicapai dengan penggunaan tekanan udara positif bilevel secara nasal semalaman. Data mengenai peningkatan nilai pertukaran udara, peningkatan kapasitas vital, penurunan kelelahan, dan peningkatan kesejahteraan telah banyak dilaporkan sebagai hasil dari program tersebut.

Alat vibrasi mekanik untuk dinding dadaPengobatan aerosol dalam ventilasi perkusif intrapulmonerPenggunaan insuflasi-eksuflasi mekanikDrainase autogenikBantuan batuk manualPengikat abdominal

Setelah dilakukan rehabilitasi akut, lalu dilanjutkan dengan pemantauan dan perhatian khusus terhadap ketiadaan merokok, kebersihan bronkhial (Tabel 141-5), latihan pernapasan, rekondisi fisik, terapi oksigen, dan mobilisasi pertukaran udara terbukti dapat mengurangi kejadian rawat inap, waktu perawatan, dan biaya. Manfaat rehabilitasi paru pada kinerja latihan dan kualitas hidup yang sangat dirasakan oleh pasien yaitu sepanjang tahun pertama dan bertahan hingga 5 tahun berikutnya. 26,27,35-37Gangguan Ventilasi

Intervensi primer untuk pasien dengan kelemahan otot keseluruhan adalah dengan menggunakan pengobatan otot pernapasan dan memfasilitasi habilitasi pada ketidakmampuan daripada rehabilitasi. Puncak arus batuk yang lebih besar dari 160 L/menit merupakan kebutuhan minimal untuk pembersihan sekresi saluran pernapasan dan mengindikasikan suatu kondisi aman untuk melepas tracheostomy tube baik pasien merupakan ventilator dependen maupun tidak. Sembilan puluh persen dari episode gagal napas akut dikarenakan oleh batuk yang tidak efektif saat terjadi infeksi saluran pernapasan ringan; oleh karena itu ketika puncak arus batuk dengan bantuan menurun kurang dari 270 L/menit, pasien dipantau dengan oksimeter dan dilatih untuk menghirup udara yang diperlukan secara berkala melalui mulut atau hidung dari sebuah resusitator manual (ambu bag) untuk meningkatkan arus batuk.38 Mereka juga diajarkan bantuan batuk manual (Sentakan abdominal untuk membuka glottis setelah insuflasi paru maksimal). Mereka juga dikenalkan dengan insuflasi-eksuflasi mekanik (CoughAssist) tersedia dari +35 ke +50 ke -35 ke -50 cm penurunan tekanan H2O, dengan sentakan abdominal digunakan selama eksuflasi. Pasien harus dengan cepat (kurang dari 2 jam) menggunakan ventilator volume portabel, CoughAssist, dan bermacam mouthpiece dan nasal interface ketika mereka mengembangkan metode latihan otot pernapasan-oksimetri untuk mencegah gagal napas, pasien dan pemberi terapi disarankan untuk menggunakan pulse oxyhemoglobin saturation (SpO2) berkelanjutan untuk memonitor tanda awal adanya infeksi saluran pernapasan atas. Penurunan SpO2 kurang dari 95% menunjukkan keadaan hipoventilasi atau adanya akumulasi mucus yang harus dibersihkanuntuk mencegah atelecktasis, pneumonia, dan gagal napas. Pasien belajar untuk menggunakan ventilasi noninvasif atau bantuan batuk manual atau mekanik untuk mempertahankan ventilasi alveolar efektif dan klirens sekresi pernapasan untuk menjaga kadar SpO2 sebesar 95% atau lebih dan sekaligus mencegah gagal napas. Pasien juga diajarkan untuk menggunakan SpO2 untuk memonitor keadaan mereka saat kelelahan, pernapasan pendek, atau sakit. Mereka disarankan untuk menggunakan bantuan batuk manual atau mekanik saat diperlukan untuk mempertahankan SpO2 normal setiap saat.

Saat menunjukkan gejala, umumnya terjadi penurunan SpO2 nokturnal dibawah 95%, dan pasien dianjurkan untuk menggunakan ventilasi tekanan positif intermiten nasal nokturnal untuk pertama kali sebagai bantuan ventilasi paru selama infeksi paru dan digunakan secara terus menerus tanpa rawat inap, pada banyak kasus tanpa pengkurran kapasitas vital selama beberapa decade.35,36

Prosedur

Latihan dengan menggunakan nebulizers, hand-held inhalers, perkusi dada dan drainase postural, dan perlengkapan pernapasan sangat penting selama program rehabilitasi paru pada pasien rawat jalan. Inisiatif pasien dalam latihan ventilator dan penggunaan alat CoughAssist sesuai waktu dan situasi klinis sangat penting dalam proses rehabilitasi.PembedahanPembedahan untuk mengurangi volume paru dilakukan pada pasien dengan emfisema berat dengan tujuan meningkatkan pertukaran gas, kapasitas latihan, fungsi paru, dan kualitas hidup. Pasien yang diindikasikan untuk dilakukan pembedahan yaitu pasien yang pernah menjalani operasi serupa, dan transplantasi paru dan pasien post transplantasi paru dengan atau tanpa program rehabilitasi program, tergantung pada tujuan rehabilitasi pasien dan stabilitas medis.37,38 Diantara pasien dengan disfungsi paru yang mengalami kekurangan gizi karena intake oral yang kurang dapat diberikan rute alternatif pemberian makanan seperti melalui gastrostomy tube perkutan.Pasien dengan kerusakan otot pernapasan diajarkan untuk menggunakan bantuan otot inspirator dan ekspirator (contohnya ventilasi mekanik noninvansif melalui mulut dan nasal dan bantuan batuk secara mekanik) sebelum bedah sehingga mereka bisa di ekstubasi untuk menggunakan alat bantu ini setelah bedah, bahkan ketika mereka tidak dapat secara independen memventilasi paru mereka.39 Tracheostomy dibutuhkan hanya ketika disfungsi otot-inervasi bulbar yang parah sehingga membuat pasien teraspirasi saliva yang kemudian membuat SpO2 tidak dapat dipertahankan pada kisaran 95% atau lebih tinggi. Umumnya, hal ini hanya terjadi untuk pasien dengan sklerosis lateral amiotropik lanjut.40

KOMPLIKASI PENYAKIT

Komplikasi penyakit berperan penting dalam perencanaan rehabilitasi pasien rawat jalan. Dalam perencanaan, sangat penting untuk mempertimbangkan diagnosis spesifik pasien dan komplikasi yang mungkin timbul. Komplikasi dari penyakit respirasi kronik tergantung pada efek progresivitas dari proses patologis primer dan penuaan alami dari fungsi otot pernapasan dan jaringan paru. Defisiensi nutrisi, masalah psikososial, dan factor komorbid juga berperan penting.

Gangguan Oksigenasi

Pasien dengan gangguan oksigenasi primer karena penyakit paru atau saluran napas sering mengalami eksaserbasi berulang dengan episode gagal napas akut. Hal ini sering menyebabkan pasien dirawat dan diberikan manajemen invasif. Hal ini biasanya disebabkan karena ketidakmampuan memobilisasi sekresi udara pernapasan yang terjebak di perifer. Banyak sistem mobilisasi sekresi yang dapat digunakan, namun tidak ada bukti yang jelas bahwa satu sistem bekerja lebih baik daripada yang lain. Metode yang paling murah dan sederhana untuk memobilisasi sekresi udara pernapasan, seperti penggunaan katup getar, masker pernapasan tekanan positif dan vibrator dada, merupakan alat yang mungkin efektif sebanding dengan chest vibrating yang mahal dan oscillating devices lainnya.41 Metode tambahan pada mobilisasi sekresi pernapasan terapeutik yang dapat digunakan mencakup perkusi dada dan drainase postural, huffing, dan siklus pernapasan aktif. Yang terakhir merupakan teknik yang paling murah karena tidak ada penggunaan alat bantu. Pasien hanya perlu bernapas perlahan dan dalam sampai batas kapasitas fungsional residu; sehingga secara bertahap meningkatkan volume tidal mendekati kapasitas fungsional residu dan begitu sampai, langsung bernapas dengan dalam dan sekresi tiba-tiba. Strategi penting lainnya untuk pasien ini yaitu dengan pemberian dan pemantauan kepatuhan terhadap antibiotic, bronkodilator, oksigen, mukolitik, dan pengobatan lainnya.

Gangguan Ventilasi

Evaluasi proteksi jalur napas jangka panjang dengan trakeostomi merupakan umum dilakukan. Namun, pasien tanpa kapasitas vital yang terukur atau pergerakan otot rangka yang sadar lebih dari 50 tahun tidak membutuhkan trakeostomi.42,43 Sangat jelas tidak dibutuhkan pada kegagalan otot inspirasi maupun ekspirasi namun lebih kepada kegagalan otot persarafan bulbar sendiri. Segera setelah aspirasi saliva menyebabkan batas bawah SpO2 dan tetap dibawah 95%, 90% pasien dengan trakeostomi akan meninggal dalam kurun waktu.40 Hal ini hanya terjadi pada pasien dengan bulbar amiotropic lateral sklerosis yang parah, pada anak dengan spinal muskular atropi tipe 1 tanpa perawatan rumah yang tepat, pada pasien tertentu dengan facioscapulohumeral muskular distrophi, dan sedikit lainnya. Pasien seperti itu sering memiliki bantuan aliran batuk maksimal kurang dari 160 L/min dan tidak mampu melakukan air stacking karena kegagalan penutupan glotis.45

KOMPLIKASI PENGOBATAN

Komplikasi pengobatan yang dapat terjadi akibat keracunan oksigen, barotraumas akibat penggunaan ventilator, faktor komorbid seperti jantung konkomitan atau penyakit atherosclerosis pembuluh darah perifer, dan pengobatan farmakologis. Evaluasi rutin pada pengobatan pasien oleh klinisi sangatlah penting. Imobilitas karena kelemahan otot atau penyakit akut dapat menyebabkan eksaserbasi paru stasis dan menyebabkan thrombosis vena dalam, dekondisi jantung, ulserasi kulit, dekalsifikasi tulang, dan kontraktur muskuloskeletal. Setiap kemajuan individual dengan program mobilisasi, latihan, dan aktivitas sehari-hari dimonitor dan terapi modifikasi diberikan sesuai dengan kebutuhan masing-masing pasien.

References1. Hodgkin J, Farrell M, Gibson S, et al. American Thoracic Society. Medical Section of American Lung Association. Pulmonary rehabilitation. Am Rev Respir Dis 1981;124:663-666.2. American Thoracic Society. Pulmonary rehabilitation-1999. Am J Respir Crit Care Med 1999;159:1666-1682.3. American College of Chest Physicians and American Association of Cardiovascular and Pulmonary Rehabilitation: joint ACCP/AACVPR evidence-based guidelines. Chest 1997;112:1363-1396.4. Holden D, Stelmach KD, Curtis PS, et al. The impact of a rehabilitation program on functional status of patients with chronic lung disease. Respir Care 1990;35:332-341.5. Bach JR. Rehabilitation of the patient with respiratory dysfunction. In DeLisa JD, ed. Rehabilitation Medicine: Principles and Practice. Philadelphia, Lippincott-Raven, 2005:1843-1866.6. Higgins MW, Thom T. Incidence, prevalence, and mortality: intra and intercountry differences. In Hensley MJ, Saunders NA, eds. Clinical Epidemiology of Chronic Obstructive Pulmonary Disease. New York Marcel Dekker, 1989:23-43.7. Fienleib M, Rosenberg HM, Collins JG, et al. trends in COPD morbidity and mortality in the United States. Am Rev Respir Dis 1989;140:S9-S18.8. Koga T, Watanabe K, Sano M, et al. The breathing intolerance index for ventilator use. Am J Phys Med Rehabil 2006;85:24-30.9. Smoller JW, Pollack MH, Otto MW, et al. Panic anxiety, dyspnea and respiratory disease: theoretical and clinical considerations. Am J Respir Crit Care Med 1996;154:6-17.10. Bach JR, Rajaraman R, Ballanger F, et al. Neuromuscular ventilator insufficiency: the effect of home mechanical ventilator use vs. oxygen therapy on pnuemonia and hospitalization rates. Am J Phys Med Rehabil 1998;77:8-19.11. American College of Sports Medicine. Guidelines for Exercises Testing and Prescription, 5th ed. Philadelphia, Williams & Wilkins, 1995.12. Jones NL. Current concepts: new tests to assess lung function. N Engl J Med 1975;293:541-544.13. Jones NL, Campbell EJM. Clinical Exercise Texting, 2nd ed. Philadelphia, WB Saunders, 1982:158.14. Guyatt GH, Thompson P.J, Berman LB, et al. How should we measure function in patients with chronic heart and lung disease? J Chronic Dis 1985;38:517524.15. American Association of Cardiovascular and Pulmonary Rehabilitation Programs, 2nd ed. Champaign, Ill, Human Kinetics, 1998.16. Carlson DJ, Ries AL, Kaplan RM. Prediction of maximum exercise tolerance in patients with COPD. Chest 1991;100:307-311.17. Gomez-Merino E, Bach JR. Duchenne muscular dystrophy: prolongation of life by noninvasive respiratory muscle aids. Am J Phys Med Rehabil 2002;81:411-415.18. Camili AE, Burrows B, Knudson RJ, et al. Longitudinal changes in forced expiratory volume in one second in adults. Effects of smoking and smoking cessation. Am Rev Respir Dis 1987; 135:794-799.19. Prevention of pneumococcal disease: recommendations of the Advisory Committee on Immunization Practices. MMWR Recomm Rep 1997;46(RR-8):1-24.20. Bridges CB, Winquist AG, Fukuda K, et al. Prevention and control of influenza: recommendation of the Advisory Committee on Immunization Practices. MMWR Recomm Rep 2000;49(RR-3):1-38.21. Wilson DO, Rogers RM, Wright EC, Anthonisen NR. Body weight in chronic obstructive pulmonary disease. Am Rev Respir Dis 1989;139:1435-1438.22. Askanazi J, Weissman C, Rosenbaum SH, et al. Nutrition and the respiratory system. Crit Care Med 1982;10:153-172.23. Gozal D. Nocturnal ventilatory supports in patients with with cystic fibrosis: comparison with supplemental oxygen. Eur Respir J 1997;10:1999-2003.24. Giminez M, Servera E, Vergara P, et al. Endurance training in patients with chronic obstructive pulmonary disease: a comparison of high versus moderate intensity. Arch Phys Med Rehabil 2000;81:102-109.25. Carter R, Nicotra B, Clark L, et al. Exercise conditioning in rehabilitation of patients with chronic obstructive pulmonary disease. Arch Phys Med Rehabil 1988;69:118-122.26. Troosters T, Gosselink R, Decramer M. Short and long-term effects of outpatients rehabilitation in patients with chronic obstructive pulmonary disease: a randomized trial. Am J Med 2000;109:207-212.27. Make B. Pulmonary rehabilitation and outcome measure. In Baum GL, Crapo JD, Celli BR, Karlinsky JB, eds. Textbook of Pulmonary Diseases, 6th ed. Philadelphia, Lippincott-Raven, 1998:987-1006.28. Noble BJ, Borg GA, Jacobs I, et al. A category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Med Sci Sports Exerc 1983;15:523-528.29. Reina-Rosenbaum R, Bach JR, Penek J. The cost/benefits og outpatients based pulmonary rehabilitation. Arch Phys Med Rehabil 1997;78:240-244.30. Khan AU. Effectiveness of biofeedback and counterconditioning in the treatment of bronchial asthma. J Psychosom Res 1977;21:97-104.31. Elliot MW, Mulvey D, Mozham J, et al. Domiciliary nocturnal nasal intermittent positive pressure ventilation in COPD: mechanisms underlying changes in arterial blood gas tensions. Eur Respir J 1991;4:1044-1052.32. Gay P, Hubmayr RD, Stroetz RW. Efficacy of nocturnal nasal positive pressure ventilation combined with oxygen therapy and oxygen monotherapy in patients with severe COPD. Am J Respir Crit Care Med 1996;154:353-358.33. Hudson LD, Tyler ML, Petty T. Hospitalization need during an outpatient rehabilitation program for chronic airway obstruction. Chest 1976;70:606-610.34. Roselle S, DAmico FJ. The effect of home respiratory therapy on hospital re-admission rates of patients with chronic obstructive pulmonary disease. Respir Care 1990;35:1208-1213.35. Holle RH, Williams DV, Vandree JC, et al. Increased muscle efficiency and sustained benefits in an outpatients community hospital-based pulmonary rehabilitation program. Chest. 1988;94:1161-1168.36. Ilowite J, Niederman M, Fein A, et al. Can benefits seen in pulmonary rehabilitation be sustained long term? Chest 1991;!00:182.37. Mall RW, Medieros M. Objective evaluation of result of a pulmonary rehabilitation program in a community hospital. Chest 1988;94:1156-1160.38. Bach JR, Gonzalves M, Paez S. Expiratory flows maneuvers of patients with neuromuscular diseases. Am J Phys Med Rehabil 2006;85:105-111.39. Bach JR, Sabharwal S. High pulmonary risk scoliosis surgery: role of noninvasive ventilation and related techniques. J Spinal Disord Tech 2005;18:527-530.40. Bach JR, Bianchi C, Aufiero E. Oximetry and prognosis in amyotrophic lateral sclerosis. Chest 2004;126:1502-1507.41. Hardy KA. A review of airways clearance: new techniques, indications, and recommendations. Respir Care 1994;39:440-455.42. Bach JR, Alba AS, Saporito LR. Intermittent positive pressure ventilation via the mouth as an alternative to tracheostomy for 257 ventilator users. Chest 1993;103:174-182.43. Bach JR. ed. Noninvasive Mechanical Ventilation . Philadelphia, Hanley & Belfus, 2002.44. Bach JR, Baird JS, Plosky D, et al. Spinal muscular atrophy type 1: management and outcomes. Pediatr Pulmonol 2002;34:16-22.45. Kang SW, Bach JR. Maximum insufflation capacity. Chest 2000;118:61-65.