29
IYPT 2010 Austria, I. R. Iran IYPT 2010 Austria, I. R. Iran Problem No. ROTATING SPRING Reporter: Reza M. Namin 16 1

IYPT 2010 Austria, I. R. Iran Reporter: Reza M. Namin 1

Embed Size (px)

Citation preview

IYPT 2010 Austria, I. R. IranIYPT 2010 Austria, I. R. Iran

Problem No.

1

ROTATING SPRING

Reporter: Reza M. Namin

16

IYPT 2010 Austria, I. R. Iran2

The problem• A helical spring is rotated about one of its ends around

a vertical axis.

• Investigate the expansion of the spring with and without an additional mass attached to it’s free end.

IYPT 2010 Austria, I. R. Iran3

Main approach• Theory

– Background– Theory base– Developing the equations– Numerical solution

• Experiment– Setup– Parameters, results and comparison

• Conclusion

IYPT 2010 Austria, I. R. Iran4

Theory - Background

• Act of a spring due to tensile force:– Hook's law: F = k ∆L

• F: Force parallel to the spring• k: Spring constant• ∆L: Change of length

– A spring divided to n parts:• F = n k ∆L• μ = k L remains constant

• Circular motion– a = r ω2

• a: Acceleration• r: Distance from the rotating axis• ω: Angular velocity

IYPT 2010 Austria, I. R. Iran5

Theory - Base

• Effective parameters:– ω: Angular velocity– λ : Spring liner density = m / l – M: Additional mass– μ : Spring module = k l– l, l1, l2: Spring geometrical properties

M

l1 l l2

IYPT 2010 Austria, I. R. Iran6

Theory - Base

• Looking for the stable condition in the rotating coordinate system– Accelerated system → figurative force

• Acting forces:– Gravity– Spring tensile force– Centrifugal force

IYPT 2010 Austria, I. R. Iran7

Theory – Developing the equations• Approximation in mass attached

conditions:– Considering the spring to be

weightless:

l M

ω

x

y

Fs

Fc

Mg

l

xFF

xmF

llkF

sc

c

s

2

0 )(

20

mk

kllapx

k

mgll 0min

),max( minlll apx

IYPT 2010 Austria, I. R. Iran8

Theory – Developing the equations• Exact theoretical description:

– Problem: The tension is not even all over the spring…

– Solution: Considering the spring to be consisted of several small springs.

M

IYPT 2010 Austria, I. R. Iran9

Theory – Numerical solution

• Numerical method– Finite-volume approximation:

• Converting the continuous medium into a discrete medium

– Transient (dynamic unsteady) method– Programming developed with QB.

M

dlllT

dlllT

xxmcf

ygmw

iiii

iiii

ii

i

)(

)(

ˆ

ˆ

,1,1

,1,1

2

w

Ti-1

Ti+1

fc

lm

nll /

IYPT 2010 Austria, I. R. Iran10

Theory – Numerical solution

Mesh independency check

80 85 90 95 100 105 110 115 1200.15

0.2

0.25

0.3

0.35

0.4

0.45

n = 5

n = 10

n = 15

Angular velocity (s-1)

Sp

rin

g le

ngt

h (

m)

n: Number of mesh points

As n increases, the result will approach to the correct answer

IYPT 2010 Austria, I. R. Iran11

Theory – Numerical solution

Tension in different points of the spring with different additional mass amounts:

0 2 4 6 8 10 12 14 16 180

0.2

0.4

0.6

0.8

1

1.2

1.4

m = 0m = 2.5gm = 5g

Position in the spring (cm)

Ten

sion

(N

)

IYPT 2010 Austria, I. R. Iran12

Experiment• Finding spring properties

– Direct measurement: Mass & lengths– Suspending weights with the spring to

measure k and μ

• Changing the angular velocity, measuring the expansion– Change of the angular velocity with different

voltages– Measuring the angular velocity with

Tachometer– Measuring the length of the rotating spring

using a high exposure time photo

IYPT 2010 Austria, I. R. Iran13

Experiment setup

The motor, connection to the spring and the sensor sticker

IYPT 2010 Austria, I. R. Iran14

Experiment setup

The rotating spring and tachometer

IYPT 2010 Austria, I. R. Iran15

Experiment setup

Hold and base

IYPT 2010 Austria, I. R. Iran16

Experiment setup

All we had on the table

IYPT 2010 Austria, I. R. Iran17

Experiments

Suspending weights with the spring

Finding k and using that to find μ

0.05 0.06 0.07 0.08 0.09 0.1 0.11 0.120

0.5

1

1.5

2

2.5

f(x) = 33.782655313683 x − 1.84774791757864R² = 0.999226158045033

Spring length (m)

Att

ache

d w

eigh

t (N

)

→K = 33.78 N/m

→μ = K l = 1.824 N

IYPT 2010 Austria, I. R. Iran18

Experiments

Expansion increases with increasing angular velocity

IYPT 2010 Austria, I. R. Iran19

Experiments

Measurement of length in different angular velocities

Comparison with the numerical theory

10 20 30 40 50 60 70 80 900

5

10

15

20

25

ExperimentsNumerical result

Angular velocity (Rad / s)

Spri

ng le

ngth

(cm

)

λ =0.148 kg/mμ =1.824 Nl1 =1.5 cml2 = 1.7 cm

IYPT 2010 Austria, I. R. Iran20

Experiments

Comparing the shape of the rotating spring in theory and experiment

0.0000 0.0500 0.1000 0.1500 0.2000 0.2500 0.3000

-0.1000

-0.0900

-0.0800

-0.0700

-0.0600

-0.0500

-0.0400

-0.0300

-0.0200

-0.0100

0.0000

λ =0.103 kg/mμ =0.369 Nl = 16.3 cml1 =1 cmω = 120 RPM

IYPT 2010 Austria, I. R. Iran21

Experiments

Investigation of the l-ω plot within different initial lengths

100 150 200 250 300 3500

5

10

15

20

25

30

35

40

45Experiment: l = 16.3Experiment: l = 14Experiment: l = 11.5Experiment: l = 7.2Numerical: l = 16.3Numerical: l = 14Numerical: l = 11.5Numerical: l = 7.2

Angular velocity (RPM)

Sp

rin

g le

ngt

h (

cm)

λ =0.103 kg/mμ =0.369 Nl1 =1 cm

IYPT 2010 Austria, I. R. Iran22

Experiments

Comparison between the physical experiments, numerical results and theoretical approximation within different additional masses

0 50 100 150 200 250 300 350 400 4500

5

10

15

20

25

30

35

40

45Exp M = 0

Exp M = 5g

Exp M = 10g

Exp M = 15g

Num M = 0

Num M = 5g

Num M = 10g

Num M = 15g

Appx M = 0

Appx M = 5g

Appx M = 10g

Appx M = 15g

Angular velocity (RPM)

Sp

rin

g le

ngt

h (

cm)

λ =0.103 kg/mμ =0.369 Nl = 5.4cml1 =1 cm

IYPT 2010 Austria, I. R. Iran23

Conclusion• According to the comparison

between the theories and experiments we can conclude:– In case of weightless spring

approximation:

20

mk

kllapx

k

mgll 0min

),max( minlll apx

IYPT 2010 Austria, I. R. Iran24

Conclusion

• In general, the numerical method may be used to achieve precise description and evaluation.

• Some of the results of the numerical method are as follows:

IYPT 2010 Austria, I. R. Iran25

Conclusion

Numerical solution results

Change of the spring hardness

0 50 100 150 200 250 300

-0.0999999999999994

5.82867087928207E-16

0.100000000000001

0.200000000000001

0.300000000000001

0.400000000000001

0.500000000000001

0.600000000000001miu = 0.1

miu = 0.2

miu = 0.3

miu = 0.5

Angular velocity (RPM)

Sp

rin

g le

ng

th (

m)

λ =0.1 Nl = 10 cml1 =1 cm

IYPT 2010 Austria, I. R. Iran

0 50 100 150 200 250 300 3500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Landa = 0.05

Landa = 0.1

Landa = 0.15

Landa = 0.2

Conclusion

Numerical solution results

Change of spring density

μ =0.3 Nl = 10 cml1 =1 cm

IYPT 2010 Austria, I. R. Iran

0 50 100 150 200 2500

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

l = 8cm

l = 10cm

l = 12cm

l = 14cm

Angular velocity (RPM)

Sp

rin

g len

gth

(m

)Conclusion

Numerical solution result

Change of initial length

λ =0.2 kg/mμ =0.3 Nl1 =1 cm

IYPT 2010 Austria, I. R. Iran

Conclusion

Numerical solution results

Change in additional mass

0 20 40 60 80 100 120 140 160 1800

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5m = 0

m = 5g

m = 10g

m = 15g

Angular velocity (RPM)

Sp

rin

g len

gth

(m

)

λ =0.2 kg/mμ =0.3 Nl = 10cml1 =1 cm

IYPT 2010 Austria, I. R. IranIYPT 2010 Austria, National team of I. R. Iran

Thank you