45
PERHITUNGAN, PERENCANAAN, DESAIN TRAFO PADA PABRIK PENGOLAHAN LOGAM A. Penentuan Kapasitas Daya Terpasang Untuk menentukan kapasitas daya dari trafo kita harus mengetahui jumlah beban total dari suatu perencanaan. Pada perencanaan instalasi gardu induk sekolah ini diketahui total beban yang dibagi dalam beberapa kelompok, yaitu: Beban kelompok 1 : 750 kVA Beban kelompok 2 : 500 kVA Beban kelompok 3 : 500 kVA Beban kelompok 4 : 400 kVA Untuk menentukan daya terpasang pada sekolah harus memperhatikan pengembangan industri beberapa tahun kedepan. a. Menentukan Faktor Kebutuhan Setiap Jenis Bangunan mempunyai factor kebutuhan beban yang berbeda-beda, karena pada laporan ini saya memilih sekolah, maka dengan melihat pada tabel factor kebutuhan, factor kebutuhan yang ada pada pabrik pengolah logem yaitu 0,5 – 0,7 dan dipilih 0,85. Jenis Bangunan Faktor Kebutuhan Rumah Tinggal : Perumahan Flat tanpa pemanas Flat dg pemanas 0,4 0,6 0,8-1,0 Bangunan Umum : Hotel dll Kantor Departemen store 0,6-0,8 0,5-0,8 0,7-0,9

jaringan tegangan menengah.docx

Embed Size (px)

DESCRIPTION

tugas smt3

Citation preview

Page 1: jaringan tegangan menengah.docx

PERHITUNGAN, PERENCANAAN, DESAIN TRAFO PADA PABRIK PENGOLAHAN LOGAM

A. Penentuan Kapasitas Daya TerpasangUntuk menentukan kapasitas daya dari trafo kita harus mengetahui jumlah beban total dari suatu perencanaan. Pada perencanaan instalasi gardu induk sekolah ini diketahui total beban yang dibagi dalam beberapa kelompok, yaitu:

Beban kelompok 1 : 750 kVABeban kelompok 2 : 500 kVABeban kelompok 3 : 500 kVABeban kelompok 4 : 400 kVA

Untuk menentukan daya terpasang pada sekolah harus memperhatikan pengembangan industri beberapa tahun kedepan.

a. Menentukan Faktor KebutuhanSetiap Jenis Bangunan mempunyai factor kebutuhan beban yang berbeda-beda, karena pada laporan ini saya memilih sekolah, maka dengan melihat pada tabel factor kebutuhan, factor kebutuhan yang ada pada pabrik pengolah logem yaitu 0,5 – 0,7 dan dipilih 0,85.

Jenis Bangunan Faktor Kebutuhan

Rumah Tinggal :

Perumahan

Flat tanpa pemanas

Flat dg pemanas

0,4

0,6

0,8-1,0

Bangunan Umum :

Hotel dll

Kantor

Departemen store

Sekolah

Rumah sakit

0,6-0,8

0,5-0,8

0,7-0,9

0,6-0,7

0,5-0,75

Industri logam 0,5-0,7

Industri makanan 0,7-0,9

Industri semen 0.8-0,9

Lift 0,5

Page 2: jaringan tegangan menengah.docx

Crane 0,7

b. Menetukan Kebutuhan Beban MaksimumUntuk menentukan kebutuhan beban maksimum maka daya total yang terpasang dikalikan dengan factor kebutuhan masing-masing industri.Beban maks = Stotal x fk

= 2150 kVA x 0,57= 1225,5 kVA

dianggap bahwa daya maksimum 1225,5 kVA merupakan beban 100%

c. Menentukan kapasitas daya terpasanguntuk menentukan daya terpasang maka kita harus memperhatikan factor pengembangan sekolah beberapa tahun mendatang dan supaya trafo dapat dibebani 100% dari beban maksimum maka daya total di kalikan dengan 120%, dimana 20 % merupakan daya cadangan supaya sewaktu-waktu ada pengembangan beban dan kita tidak perlu mengganti trafo yang baru.Kapasitas Daya terpasang = Daya total (Stotal) + cadangan 20 %

= Smax x 120%= 1225,5 kVA x 120%= 1470,6 Kva

B. PEMILIHAN TRAFO

Dari besarnya kebutuhan daya diatas, dapat ditentukan TDL(tarif dasar listrik) nya, yaitu 1525 kVA.Untuk memilih besarnya kapasitas daya trafo, besarnya nilai daya terpasang dikali 80%, supaya jika besarnya penggunaan beban mencapai beban terpasang, maka trafo masih pada keadaan kerja 80%.Daya trafo = 1470,6/0,8

= 1838,25 kVAkarena dipasaran tidak ada trafo dengan daya tersebut, dipilih trafo yang ada dipasaran yaitu sebesar 2000 kVA .Sehingga trafo yang digunakan adalah trafo dengan merk TRAFINDO dengan daya 2000 kVA, tegangan primer 20kVA dengan tegangan sekunder 400V, dengan spesifikasinya sebagai berikut ;

SPESIFIKASI TRAFO TRAFINDO

Page 3: jaringan tegangan menengah.docx

Rated Power • Sn(kVA) : 2000

Rated Primary Voltage Um (kV) :

20

Voltage impedance % : 7.00

Efficiency at 75 C PF : 1.0 100% 98,78

No-load Loss • Po(W) : 3600

Load Loss • Pk(W) : 21000

Noise Level • 1m LpA (db) : 61

Data mekanik ada

Setelah melihat spesifikasi diatas, saya memeilih trafo dengan merk Trafindo dengan beberapa alasan:1. Produk Trafindo mencantukan data-data yang lengkap.2. Produk Trafindo adalah buatan Indonesia sehingga dalam pemesanannya mudah

dan ekonomis.3. Produk Trafindo harganya lebih efisien daripada produk lainnya4. Setingan untuk perubahan iklim, sesuai dengan iklim di Indonesia.

C. Perhitungan Arus Nominal pada transformator

a. In Primer pada trafo 2000 kVA

¿= 2000kVA

√3×20kV=57,73 A

b. In Sekunder pada trafo 2000 kVA

¿= 2000kVA

√3×400V=2886,75 A

C. Menentukan In pada masing-masing cabang

a. Kelompok 1 S = 750 kVA d. Kelompok 4 S = 1500 kVA

Page 4: jaringan tegangan menengah.docx

¿= 750kVA

√3×380V=1139,5 A ¿= 400kVA

√3×380V=607,73 A

b. Kelompok 2 S = 500 kVA

¿= 500kVA

√3×380V=759,67 A

c. Kelompok 3 S = 1000 kVA

¿= 500kVA

√3×380V=759,69 A

PERHITUNGAN PENGHANTAR 1) Perhitungan penghantar pada SKTM.

Kabel tersebut menghubungkan antara JTM menuju gardu PLN, untuk perhitungannya adalah sebagai berikut:

In =

2000 KVA

√3 .20000

= 57,73 A. KHA = 1,25 In

= 72,16 Ampere

Dari table KHA penghantar kabel tanah NA2XSEYBY didapat luas penampang

penghnatar sebesar 35 mm2

KHA 132A ditanah.2) Penghantar saluran sekunder menuju MVMDP.

In = 2886,75 AKha = 1,25 x In

= 3608,43 AUntuk area ini, jenis kabel yang digunakan adalah NYY 8(1x185)mm2

. Dan dengan menyusunnya pada rak kabel, maka untuk perhitungan kha nya adalah sbb:Kha/kabel = 490AN kabel = 8d/ factor = 0,94kha tot = 490 x 8 x 0,94

= 3684,8ADan untuk komponen busbar, kami menggunakan busbar tembaga telanjang dengan ukuran 3(10x100)mm dengan kha 3600A.

Page 5: jaringan tegangan menengah.docx

Penghantar neutral pada area ini adalah NYY 4(1x180)mm2. Dan busbar 3(5x100)mm. Karena, besarnya penghantar fasa >35mm2.

3) Penghantar saluran 1In = 1139,5 AKha = 1,25 x In

= 1424,37 AUntuk area ini, jenis kabel yang digunakan adalah NYY 4(1x150)mm2

. Dan dengan menyusunnya pada rak kabel, maka untuk perhitungan kha nya adalah sbb:Kha/kabel = 430AN kabel = 4d/ factor = 0,96kha tot = 430 x 4 x 0,96

= 1651,2ADan untuk komponen busbar, kami menggunakan busbar tembaga telanjang dengan ukuran 2(60x10)mm dengan kha 1720A.Penghantar neutral pada area ini adalah NYY 2(1x150)mm2. Dan busbar 1(60x10)mm. Karena, besarnya penghantar fasa >35mm2

4) Penghantar saluran 2In = 759,67 AKha = 1,25 x In

= 949.58 AUntuk area ini, jenis kabel yang digunakan adalah NYY 4(1x150)mm2

. Dan dengan menyusunnya pada rak kabel, maka untuk perhitungan kha nya adalah sbb:Kha/kabel = 430AN kabel = 4d/ factor = 0,94kha tot = 430 x 4 x 0,94

= 1616,8ADan untuk komponen busbar, kami menggunakan busbar tembaga telanjang dengan ukuran 2(60x10)mm dengan kha 1720A.Penghantar neutral pada area ini adalah NYY 2(1x150)mm2. Dan busbar 1(60x10)mm. Karena, besarnya penghantar fasa >35mm2

5) Penghantar saluran 3In = 759,67 AKha = 1,25 x In

= 949.58 AUntuk area ini, jenis kabel yang digunakan adalah NYY 4(1x150)mm2

. Dan dengan menyusunnya pada rak kabel, maka untuk perhitungan kha nya adalah sbb:Kha/kabel = 430AN kabel = 4

Page 6: jaringan tegangan menengah.docx

d/ factor = 0,94kha tot = 430 x 4 x 0,94

= 1616,8ADan untuk komponen busbar, kami menggunakan busbar tembaga telanjang dengan ukuran 2(60x10)mm dengan kha 1720A.Penghantar neutral pada area ini adalah NYY 2(1x150)mm2. Dan busbar 1(60x10)mm. Karena, besarnya penghantar fasa >35mm2

6) Penghantar saluran 4In = 607,73 AKha = 1,25 x In

= 759,66 AUntuk area ini, jenis kabel yang digunakan adalah NYY 2(1x150)mm2

. Dan dengan menyusunnya pada rak kabel, maka untuk perhitungan kha nya adalah sbb:Kha/kabel = 430AN kabel = 2d/ factor = 0,89kha tot = 430 x 2 x 0,89

= 756,4ADan untuk komponen busbar, kami menggunakan busbar tembaga telanjang dengan ukuran 2(40x5)mm dengan kha 836A.Penghantar neutral pada area ini adalah NYY 1x150mm2. Dan busbar 1(40x5)mm. Karena, besarnya penghantar fasa >35mm2

Page 7: jaringan tegangan menengah.docx
Page 8: jaringan tegangan menengah.docx
Page 9: jaringan tegangan menengah.docx
Page 10: jaringan tegangan menengah.docx
Page 11: jaringan tegangan menengah.docx

PENENTUAN RATING PENGAMAN

Untuk penentuan rating pengaman merupakan hal yang sangat penting karena hal tersebut mempengaruhi fungsi dan keandalan pengaman tersebut, oleh karena itu penentuannya harus benar-benar cermat. Hal tersebut dipengaruhi oleh kebutuhan beban yang dipengaruhi oleh factor-faktor antara lain

1) Diversity Factor (FD ): :Diversity atau ke tak serempakan merupakan perbandingan antara jumlah

seluruh beban maksimum dari setiap bagian system dengan beban max dari seluruh system sebagai suatu kelompok beban

Diversity Factor :

JumlahSeluruhBebanMaxDaribagian−BagianSistemBebanMaxDariSeluruhSistem

2) Coincidence Factor :Yaitu factor keserempakan beban yang nilainya dapat dihitung dengan rumus

sebagai berikut:

Coincidence Factor (FC ):

1FD

3) Demand Factor :Demand factor atau factor kebetuhan didefinisikan sebagai perbandingan antara

daya terpakai maksimum dengan daya yang disambung, yaitu:

fD =

P maxPinst x 100%

dimana

fD = Demand Factor (factor kebutuhan). Pmax = Daya terpakai maksimum. Pinst = daya tersambung.

4) Load factor : yaitu perbandingan antara beban rata-rata dalam suatu jangka waktu tertentu dengan beban maksimum dalam jangka waktu tersebut, yaitu:

Load factor(fl ) :

bebanmax(Pav )bebanrata−rata(Pmax )

Page 12: jaringan tegangan menengah.docx

Dalam perencanaan ini perhitungan pemakaian beban ditentukan dengan cara memakai metode demand factor, dan untuk nilai daya terpakai maksimum nilai tersebut dalam latihan perencanaan ini ditentukan dengan cara dimisalkan, yaitu:

1) Beban kelompok 1Pmax = 427,5 KVA

Pinst = 513 KVA

fD =

427 ,5513 x 100% = 83 % sehingga

In =

0,83 x 513 KVA

√3380 = 646 A

Maka rating pengaman dipilih menurut rating yang ada dipasaran. Yaitu 800 A(NT08), untuk spesifikasi pengaman yang digunakan silahkan melihat lampiran pengaman.

2) Beban kelompok 2Pmax = 285 KVA

Pinst = 342 KVA

fD =

285342 x 100% = 83 % sehingga

In =

00,83 x 342 KVA

√3380 = 431A

Maka rating pengaman dipilih dibulatkan ke atas (yang lebih besar) menurut rating yang ada dipasaran. Yaitu 600 A(NB600H). untuk spesifikasi pengaman yang digunakan silahkan melihat lampiran pengaman.

3) Beban kelompok 3Pmax = 285 KVA

Pinst = 342 KVA

fD =

285342 x 100% = 83 % sehingga

In =

00,83 x 342 KVA

√3380 = 431A

Page 13: jaringan tegangan menengah.docx

Maka rating pengaman dipilih dibulatkan ke atas (yang lebih besar) menurut rating yang ada dipasaran. Yaitu 600 A(NB600H). untuk spesifikasi pengaman yang digunakan silahkan melihat lampiran pengaman.

4) Beban kelompok 4Pmax = 228 KVA

Pinst = 273,6 KVA

fD = 83% sehingga

In =

0,83 x 273,6 KVA

√3380 = 345 A

Maka rating pengaman dipilih dibulatkan ke atas (yang lebih besar) menurut rating yang ada dipasaran. Yaitu 400 A(NB400H). untuk spesifikasi pengaman yang digunakan silahkan melihat lampiran pengaman.

5) Sedangkan rating pengaman utama adalah

: setelan tertinggi pengaman +∑ ¿ ¿In yang lain

: 630 A + 431 + 431+345= 1837

Sehingga dipilih pengaman dengan rating 2000A(NW20). untuk spesifikasi pengaman yang digunakan silahkan melihat lampiran pengaman.

Page 14: jaringan tegangan menengah.docx

PEMILIHAN PERALATAN YANG

DIGUNAKAN KUBIKEL

KUBIKEL INCOMING (IMC)

1) Disconnector dan earthing switch (positive three rotating contact), DS dilengkapi dengan switch pembumian untuk keamanan pada waktu perbaikan dan perawatan.

2) Kontak Bantu pada disconnector ( 2NO + 2 NC ), digunakan sebagai kotak Bantu untuk lampu tanda.

3) Busbar tiga fasa (400 A), Busbar yang paling kecil adalah 400 A. sehingga dipilih busbar dengan ratig 400 A.

4) Indicator tegangan. Digunakan untuk melihat tegangan masuk.5) Heater, digunakan untuk pemanas dalam kubikel, untuk mencegah terjadinya

kelembaban yang terlalu tinggi sehingga mencegah terjadinya short sircuit yang diakibatkan oleh uap air dalam panel kubikel.

6) Connection pads for dry cable.7) Disconnector operating mechanism.8) Trafo arus.

Trafo arus yang digunakan harus sesuai dengan jenis kubikel yang digunakan dalam rancangan ini digunakan panel Incoming jenis IMC, sehingga dengan melihat data pada catalog Schneider didapat data sebagai berikut:

Type CT : ARM2/N2F. Panels type : IMC. Un CT (kV) : 24. Ith (kA) : 12,5 Time : 1. Primary Current : 50 A. Secondary current : 5-5. Secondary type : measure-protection. 1st Secondary : 7,5VA cl.0,5s<10. 2nd : 10VA 5P10

9) Peralatan proteksi dan metering.Untuk keandalan peralatan dan proteksi digunakan SEPAM + SERIES 20.

KUBIKEL OUTGOING (DM1-A)

1) Gas circuit breaker (SF-6

Page 15: jaringan tegangan menengah.docx

2) Kontak Bantu pada CB ( 2NO + 2 NC ), digunakan sebagai kotak Bantu untuk lampu tanda.

3) Busbar tiga fasa (400 A), Busbar yang paling kecil adalah 400 A. sehingga dipilih busbar dengan ratig 400 A.

4) Disconnector dan earthing switch (positive three rotating contact), DS dilengkapi dengan switch pembumian untuk keamanan pada waktu perbaikan dan perawatan.

4) Indicator tegangan. Digunakan untuk melihat tegangan masuk.5) Heater, digunakan untuk pemanas dalam kubikel, untuk mencegah terjadinya

kelembaban yang terlalu tinggi sehingga mencegah terjadinya short sircuit yang diakibatkan oleh uap air dalam panel kubikel.

6) Connection pads for dry cable.7) CB operating mechanism RI.8) Disconnector operating mechanism CC.9) Trafo arus.

Trafo arus yang digunakan harus sesuai dengan jenis kubikel yang digunakan dalam rancangan ini digunakan panel Incoming jenis DM1-A, sehingga dengan melihat data pada catalog Schneider didapat data sebagai berikut:

Type CT : ARM3/N2F. Panels type : DM1-DM2. Un CT (kV) : 24. Ith (kA) : 12,5 Time : 1. Primary Current : 25-50 A. Secondary current : 5-5. Secondary type : measure-protection. 1st Secondary : 7,5VA cl.0,5s<10. 2nd : 10VA 5P10

10) Peralatan proteksi dan metering.Untuk keandalan peralatan dan proteksi digunakan SEPAM + SERIES 20.

KUBIKEL METERING (ICM 2)

1) Disconnector dan earthing switch (positive three rotating contact), DS dilengkapi dengan switch pembumian untuk keamanan pada waktu perbaikan dan perawatan.

2) Kontak Bantu pada disconnector ( 2NO + 2 NC ), digunakan sebagai kotak Bantu untuk lampu tanda.

3) Busbar tiga fasa (400 A), Busbar yang paling kecil adalah 400 A. sehingga dipilih busbar dengan ratig 400 A.

Page 16: jaringan tegangan menengah.docx

4) Disconnector operating mechanism CS.5) Trafo tegangan.

Trafo tegangan yang digunakan harus sesuai dengan jenis kubikel yang digunakan dalam rancangan ini digunakan panel Incoming jenis ICM 2, sehingga dengan melihat data pada catalog Schneider didapat data sebagai berikut:

Type VT : VR2Qn/S1. Panels type : CM. Un (kV) : 24. Primary voltage (kV) : 20/V3 Secondary voltage (kV) : 20/V3 1st Secondary : 30 VA cl.05. 2nd secondary : 10VA 5P10

6) Peralatan proteksi dan metering. kWh meter double tariff + timer kV meter + SSV.

Page 17: jaringan tegangan menengah.docx

PERHITUNGAN, PERENCANAAN, DESAIN PENTANAHAN

A. Pentanahan Body Trafo, Sangkar Faraday, Body Cubicle

Pada pentanahan body trafo, sangkar faraday,body cubicle harus mempunyai tahanan maksimum 5 ohm. Dalam pentanahan ini menggunakan sistem pentanahan elektroda batang tunggal dengan catatan:

Elektroda ditanam pada tanah ladang dengan tahanan jenis ( ρ ): 100 ohm/m

Luas penampang elektroda adalah 120 mm2

L=π . r2

120=3 ,14 . r2

r=√1203 ,14

r=6 ,18mm Menggunakan sistem pentanahan elektroda batang tunggal Panjang elektroda ( l ) = 3,5 meter Elektroda ditanam sedalam panjang elektroda

R pentanahan =

ρ2. π . ℓ ( ln

4 La

−1)

=100

2 .π .3,5 ( ln4350 ,00618

−1) = 50,78 Ω

Sehingga diparalel menjadi 12 elektroda dan tahanan tanah menjadi 50,78 : 12 =

4,23 Jadi, tahanan pentanahan yang diperoleh dengan sistem pentanahan elektroda

batang tunggal adalah sebesar 4,23 Ω. Sehingga memenuhi syarat PUIL.

pL

2a

Permukaan tanah

Page 18: jaringan tegangan menengah.docx

B. Pentanahan Arester Dan Kabel Na2XSGBY (Kawat Braid/Gb Pentanahan)

Agar bahaya sambaran petir tidak masuk ke dalam siatem maka arrester harus di tanahkan. Dalam pentanahan ini menggunakan sistem pentanahan elektroda batang tunggal dengan catatan:

Elektroda ditanam pada tanah ladang dengan tahanan jenis ( ρ ): 100 ohm/m

Luas penampang elektroda adalah 120 mm2

L=π . r2

120=3 ,14 . r2

r=√1203 ,14

r=6 ,18mm Menggunakan sistem pentanahan elektroda batang tunggal Panjang elektroda ( l ) = 3,5 meter Elektroda ditanam sedalam panjang elektroda

R pentanahan =

ρ2. π . ℓ ( ln

4 La

−1)

=100

2 .π .3,5 ( ln4350 ,00618

−1) = 50,78 Ω

Sehingga diparalel menjadi 12 elektroda dan tahanan tanah menjadi 50,78 : 12 =

4,23 Jadi, tahanan pentanahan yang diperoleh dengan sistem pentanahan elektroda

batang tunggal adalah sebesar 4,23 Ω. Sehingga memenuhi syarat PUIL.

C. Pentanahan Titik Netral Trafo, Panel MDP Body Genset Panel Genset

pL

2a

Permukaan tanah

Page 19: jaringan tegangan menengah.docx

Pada pentanahan titik netral trafo, panel MDP, body Genset, dan panel genset harus mempunyai tahanan maksimum 5 ohm. Dalam pentanahan ini menggunakan pentanahan system cross dengan catatan:

Elektroda ditanam pada tanah ladang dengan tahanan jenis ( ρ ): 100 ohm/m

Luas penampang elektroda adalah 120 mm2

L=π . r2

120=3 ,14 . r2

r=√1203 ,14

r=6 ,18mm Menggunakan sistem pentanahan elektroda batang tunggal Panjang elektroda ( l ) = 3,5 meter Elektroda ditanam sedalam panjang elektroda

R pentanahan =

ρ2. π . ℓ ( ln

4 La

−1)

=100

2 .π .3,5 ( ln4350 ,00618

−1) = 50,78 Ω

Sehingga diparalel menjadi 12 elektroda dan tahanan tanah menjadi 50,78 : 12 =

4,23 Jadi, tahanan pentanahan yang diperoleh dengan sistem pentanahan elektroda

batang tunggal adalah sebesar 4,23 Ω. Sehingga memenuhi syarat PUIL.

Detail Pemasangan Elektroda Pentanahan pada Pipa Bantu

pL

2a

Permukaan tanah

Page 20: jaringan tegangan menengah.docx

ARESTER

CARA MEMILIH ARESTER UNTUK TRANSFORMATOR 20 KV

Arrester dipakai sebagai alat proteksi utama dari tegangan lebih. Oleh karena

pemilihan arrester harus sesuai dengan peralatan yang dilindunginya. Karena

kepekaan arrester terhadap tegangan, maka pemakainya harus disesuikan dengan

tegangan sistem.

Pemilihan lightning arrester dimaksudkan untuk mendapatkan tingkat isolasi dasar

yang sesuai dengan Basic Insulation Level (BIL) peralatan yang dilindungi, sehingga

didapatkan perlindungan yang baik.

Pada pemilihan arrester ini dimisalkan tegangan impuls petir yang datang

berkekuatan 400 KV dalam waktu 0,1μs, jarak titik penyambaran dengan

transformator 5 Km.

Tegangan dasar arrester

Pada jaringan tegangan menengah arrester ditempatkan pada sisi tegangan tinggi

(primer) yaitu 20 KV. Tegangan dasar yang dipakai adalah 20 KV sama seperti

tegangan pada sistem. Hal ini dimaksudkan agar pada tegangan 20 KV arrester

tersebut masih bisa bekerja sesuai dengan karakteristinya yaitu tidak bekerja pada

tegangan maksimum sistem yang direncanakan, tetapi masih tetap mampu

memutuskan arus ikutan dari sistem yang effektif.

Page 21: jaringan tegangan menengah.docx

Tegangan sistem tertinggi umumnya diambil harga 110% dari harga tegangan

nominal sistem. Pada arrester yang dipakai PLN adalah :

Vmaks = 110% x 20 KV

= 22 KV, dipilih arrester dengan tegangan teraan 28 KV.

Koefisien Pentanahan

Didefinisikan sebagai perbandingan antara tegangan rms fasa sehat ke tanah

dalam keadaan gangguan pada tempat dimana penagkal petir, dengan tegangan

rms fasa ke fasa tertinggi dari sistem dalam keadaan tidak ada gangguan Untuk

menetukan tegangan puncak (Vrms) antar fasa dengan ground digunakan

persamaan :

Vrms =

Vm

√2

=

22

√2

= 15,5 KV

Dari persamaan di atas maka diperoleh persamaan untuk tegangan phasa dengan

ground pada sistem 3 phasa didapatkan persamaan :

Vm(L - G) =

Vrms×√2√3

=

15 ,5×√2√3

= 12,6 KV

Koefisien pentanahan =

12 ,6KV15 ,5KV

= 0,82

Keterangan :

Page 22: jaringan tegangan menengah.docx

Vm = Tegangan puncak antara phasa dengan ground (KV)

Vrms = Tegangan nominal sistem (KV)

Tegangan pelepasan arrester

Tegangan kerja penangkap petir akan naik dengan naiknya arus pelepasan, tetapi

kenaikan ini sangat dibatasi oleh tahanan linier dari penangkap petir.

Tegangan yang sampai pada arrester :

E =

eK .e . x

E =

400 KV0 ,0006×5Km

= 133,3 KV

Keterangan :

I = arus pelepasan arrester (A)

e = tegangan surja yang datang (KV)

Eo = tegangan pelepasan arrester (KV)

Z = impedansi surja saluran (Ω)

R = tahanan arrester (Ω)

Harga puncak surja petir yang masuk ke pembangkit datang dari saluran yang

dibatasi oleh BIL saluran. Dengan mengingat variasi teganagn flasover dan

probabilitas tembus isolator, maka 20% untuk faktor keamanannya, sehingga

harga e adalah :

e =1,2 BIL saluran (23)

Keterangan :

e = tegangan surja yang datang (KV)

Page 23: jaringan tegangan menengah.docx

BIL = tingkat isolasi dasar transformator (KV)

Arus pelepasan nominal (Nominal Discharge Current)

I =

2e−EoZ+R

Z adalah impedansi saluran yang dianggap diabaikan karena jarak perambatan

sambaran tidak melebihi 10 Km dalam arti jarak antara GTT yang satu dengan

yang GTT yang lain berjarak antara 8 KM sampai 10 KM. ( SPLN 52-3,1983 : 11 )

R =

tegangankejutimpuls100%aruspemuat

=

105KV2,5 KA

= 42Ω

I =

2×400KV−133 ,3 KV0+42Ω

= 15,8 KA

Keterangan :

E = tegangan yang sampai pada arrester (KV)

e = puncak tegangan surja yang datang

K = konsatanta redaman (0,0006)

x = jarak perambatan

Jatuh tegangan pada arrester dapat dihitung dengan menggunakan persamaan :

V = I x R

Sehingga tegangan pelepasan arrester didapatkan sesuai persamaan :

ea = Eo + (I x R) (25)

Page 24: jaringan tegangan menengah.docx

Keterangan :

I = arus pelepasan arrester (KA)

Eo = tegangan arrester pada saat arus nol (KV)

ea = tegangan pelepasan arrester (KV)

Z = impedansi surja (Ω)

R = tahanan arrester (Ω)

Pemilihan tingkat isolasi dasar (BIL)

“Basic Impuls Insulation Level (BIL) level yang dinyatakan dalam impulse crest

voltage (tegangan puncak impuls) dengan standart suatu gelombang 1,5 x 40 μs.

Sehingga isolasi dari peralatan-peralatan listrik harus mempunyai karakteristik

ketahanan impuls sama atau lebih tinggi dari BIL tersebut.

Pemilihan tingkat isolasi dasar (BIL)

Harga puncak surja petir yang masuk ke pembangkit datang dari saluran yang

dibatasi oleh BIL saluran. Dengan mengingat variasi tegangan flasover dan

probabilitas tembus isolator, maka 20% untuk faktor keamanannya, sehingga

harga E adalah :

e =1,2 BIL saluran

e = 1,2 x 150 KV

e = 180 KV

Basic Impuls Insulation Level (BIL) level yang dinyatakan dalam impulse crest

voltage (tegangan puncak impuls) dengan standart suatu gelombang 1,2/50 μs.

Sehingga isolasi dari peralatan-peralatan listrik harus mempunyai karakteristik

ketahanan impuls sama atau lebih tinggi dari BIL tersebut. Sehingga dipilih BIL

arrester yang sama dengan BIL transformator yaitu 150 KV

Margin Perlindungan Arrester

Page 25: jaringan tegangan menengah.docx

Untuk mengitung dari margin perlindungan dapat dihitung dengan rumus sebagai

berikut :

MP = (BIL / KIA-1) x 100%

MP = (150 KV/ 133,3 – 1) x 100%

= 125.28 %

Keterangan :

MP = margin perlindungan (%)

KIA = tegangan pelepasan arrester (KV)

BIL = tingkat isolasi dasar (KV)

Berdasarkan rumus di atas ditentukan tingkat perlindungan untuk tafo daya.

Kriteria yang berlaku untuk MP > 20% dianggap cukup untuk melindungi

transformator .

Jarak penempatan Arrester dengan Peralatan

Penempatan arrester yang baik adalah menempatkan arrester sedekat mungkin

dengan peralatan yang dilindungi. Jarak arrester dengan peralatan Yang dilindungi

digunakan persamaan sebagai berikut :

Ep= ea +

2×A×xv

125 = 133,3 KV+

2×4000KV / μs×x300m / μs

8,3 = 26,6x

x = 0,31 m

jadi jarak arrester sejauh 31 cm dari transformator yang dilindungi.

Perhitungan jarak penempatan arrester di atas digunakan untuk transformator

tiang. Namun di wilayah Malang juga terdapat penempatan transformator di

Page 26: jaringan tegangan menengah.docx

permukaan tanah dengan menggunakan kabel tanah. Transformator tersebut

berada dalam tempat terpisah dengan pengaman arresternya. Transformator

diletakkan di atas tanah dan terhubung dengan arrester yang tetap diletakkan di

atas tiang melalui kabel tanah.

Tabel Batas Aman Arrester

IMPULS

PETIR

(KV)

BIL

ARRESTER

(150 KV)

BIL TRAF0

(125 KV)

KONDISI KETERANGAN

120 KV < 150 KV <125 KV Aman

Tegangan masih

di bawah rating

transformator

maupun arrester

125 KV <150 KV =125 KV Aman

Tegangan masih

memenuhi

batasan

keduanya

130 KV <150 KV >125 KV Aman

Tegangan lebih

diterima arrester

dan dialirkan ke

tanah

150 KV =150 KV >125 KV Aman

Masih

memenuhi batas

tegangan

tertinggi yang

bisa diterima

arrester.

Page 27: jaringan tegangan menengah.docx

200 KV >150 KV >125 KV

Tidak

aman

Arrester rusak,

transformator

rusak

Berdasarkan keterangan diatas maka pemilihan BIL arrester harus mempunyai

kemampuan yang sama atau diatas tegangan BIL petir (150 kV), sedangkan untuk BIL trafo

dapat menggunakan BIL yang lebih rendah yaitu 125 kV

KARAKTERISTIK DAN PEMILIHAN FUSE CUT-OUT

Karakteristik utama suatu cut-out adalah sehubungan dengan kebuuhan antara

waktu dan arus. Hubungan antara minimum melting dan maksimim clearing time,

ditentukan dari test data yang menghasilkan karakteristik waktu dan arus. Kurva minimum

melting time dan maksimum clearing time adalah petunjuk yang penting dalam penggunaan

fuse link pada system yang dikoordinasikan.

Melting time adalah interval waktu antara permulaan arus gangguan dan

pembusuran awal. Interval selama dalam masa pembusuran berakhir adalah arching time.

Sedangkan clearing time adalah melting time ditambah dengan arching time.

Factor-faktor dalam pemilihan fuse cut-out

Penggunaan cut-out tergantung pada arus beban, tegangan, type system, dan arus

gangguan yang mungkinterjadi. Keempat factor diatas ditentukan dari tiga buah rating cut-

out, yaitu :

Page 28: jaringan tegangan menengah.docx

1) Pemilihan rating arus kontinyu

Rating arus kontinyu dari fuse besarnya akan sama dengan atau lebih besar

arus arus beban kontinyu maksimum yang diinginkan akan ditanggung. Dalam

menentukan arus beban dari saluran, pertimbangan arus diberikan pada kondisi

normal dan kondisi arus beban lebih ( over load ).

Pada umumnya outgoing feeder 20 kV dari GI dijatim mampu menanggung

arus beban maksimum630 A, maka arus beban sebesar 100 A. pada cabang adalah

cukup. Dijatim rating arus tertinggi cut-out adalah 100 A.

2) Pemilihan Rating tegangan

Rating tegangan ditentukan dari karakteristik sebagai berikut :

Tegangan system fasa atau fasa ke tanah maksimum.

System pentanahan.

Rangkaian satu atau tiga fasa.

Sesuai dengan teganga sisitem dijatim maka rated tegangan cut-out dipilih

sebesar 20 kV dan masuk ke BIL 150.

3) Pemilihan rating Pemutusan.

Setiap transformator berisolasi minyak harus diproteksi dengan gawai proteksi arus lebih

secara tersendiri pada sambungan primer, dengan kemampuan atau setelan tidak lebih dari

250 %dari arus pengenal transformator.

Setelah melihat data- data diatas maka perhitungan pemilihan fuse cut-out adalah

sebagai berikut :

Arus untuk cut-out.

I co=KVA ( trafo )√3×20 kV

×2,5

I co=250.000

√3×20 kV×2,5

= 18,04 A

Page 29: jaringan tegangan menengah.docx

Nilai tersebut adalah nilai maksimum sedangkan dalam perencanaan ini digunakan CO

dengan perhitungan 120 % dikalikan dengan arus pengenal transformator pada sisi primer,

yaitu 8,6 A, 20 % diambil dari pertimbangan factor pengembangan.

Rating arus kontinyu dari fuse besarnya dianggap sama atau lebih besar dari beban

kontinyu maksimal yang diinginkan / ditanggung. Oleh karena itu dipili CO dengan arus

sebesar 100 A.

PERHITUNGAN PENENTUAN PENERANGAN JALAN

Instalasi penerangan jalan.

o Luminasi yang dinajurkan = 11 luxo Lay out = satu sisi jalan.o Lebar jalan = 8 meter.o Tinggi lampu = 6 meter.o Sudut penerangan = ± 5o (derajat).o Over hung (OH) = 0,5 meter.

Koefisien penggunaan : B/H (road side) = (W – OH)/H = (8 – 0,5)/8 = 0,9375 B/H (pavementside) = OH / H = 0,5 / 8 = 0,0625

Dari harga diatas dapat diketahui nilai U dari Kurva penggunaan :U1 = 0,075U2 = 0,24U total = U1 + U2 = 0,075 + 0,24= 0,315

E=F×U×M×KW×S

E = illumination level (lux)

Page 30: jaringan tegangan menengah.docx

F = lamp Flux (lumen)U = koefisien (%) dilihat pada kurva.M = factor utama (%) = 75 %W = lebar jalan (m)S = spacing penerangan jalan K = koefisien flux lampu menyala 75 %

F= ExWxSUxMxK

=11 x 8 x300 . 315 x 0 .75 x 0 .75

=26400 .177

=14915 ,25 lumen

Sehingga daya lampu yang digunakan adalah PHILIPS SON-T PIA external ignitor 150 watt dengan luminous flux sebesar 17500 lm.

PERHITUNGAN & PERENCANAAN TRAFO PADA GTT PERUMAHAN

Untuk menentukan daya trafo pada GTT kita harus menentukan factor ramalan

pertumbuhan kebutuhan beban yaitu:

Ramalan Pertumbuhan Beban

Pertumbuhan beban atau melonjaknya kebutuhan suatu perencanaan

pengembangan system tenaga listrik adalah merupakan masalah penting bagi suatu

perencanaan pengembangan system tenaga listrik. Ada beberapa factor yang

mempengaruhi dan mendorong melonjaknya kebutuhan listrik tersebut, misalnya adanya

perdagangan dan industri yang tumbuh dengan pesat, pertambahan penduduk yang

semakin meningkat dan sebagainya.

Masalah-masalah yang timbul disini adalah untuk untuk perencanaan tahunan untuk

memperbesar kapasitas penjualan tenaga listrik, untuk menanggulangi pertambahan beban

tersebut.

Untuk mengatasi hal tersebut diatas, kita harus mengetahui besar pertambahan

beban puncak untuk tahun-yahun mendatang. Untuk meramalkan kebutuhan tahunan,

kebutuhan beban sebelumnya harus diketahui terlebih dahulu.

Page 31: jaringan tegangan menengah.docx

Ada beberapa macam cara meramalkan pertumbuhan beban, tetapi secara garis

besar dapat dibagi menkadi dua yaitu:

o Secar grafis.

o Secara analitis.

a) Secara Grafis.

Dengan menggunakan data-data grafis dari tahun sebelumnya, yaitu dari kurva

tahunan dan besarnya daya (kW), maka dapat diramalkan pertumbuhan beban untuk

tahun-tahun mendatang dengan metode extrapolar. Metode ini adalah dengan menarik

garis-garis pertumbuhan beban untuk tahun-tahun berikutnya. Dengan sendirinya hasil

yang diperoleh dari penganalisaan secara grafis agak kasar. Oleh karena itu cara ini

digunakan hanya sebagai pembanding.

b) Secara Analitis.

Dalam metode ini peramalan kebutuhan tenaga listrik digolongkan dalam empat group

konsumen, yaitu:

1) Konsumen perumahan(residensial).

o Jumlah anggota perumahan = A orang per rumah (1).

o Jumlah perumahan =

JumlahPendudukA (2).

o Jumlah langganan dari perumahan = (2) X electrification ratio (3).

Dimana electrification ratio = perbandingan antara jumlah konsumen rumah

tangga yang memakai tenaga listrik dengan jumlah seluruh rumah tangga.

o Jadi jumlah kebutuhan tenaga listrik untuk konsumen Residensial adalah

= (3) X pemakaian maksimum rata-rata untuk seluruh rumah. (4).

2) Konsumen komersil.

o Jumlah dari langganan komersil = jumlah langganan perumahan x constituent

ratio (5).

o Dimana constituent ratio = perbandingan antara jumlah jumlah konsumen

komersil dengan jumlah konsumen perumahan.

o Jadi jumlah kebutuhan tenaga listrik untuk konsumen komersil adalah

= (5) X pemakaian maksimum rata-rata dari tiap langganan komersil (6).

3) Konsumen industri.

Page 32: jaringan tegangan menengah.docx

Kebutuhan menurut permintaan dari para konsumen industri (7).

4) Konsumen Fasilitas Umum.

Kebutuhan untuk fasilitas umum =(4)+(6) x 10% (8).

Data-data yang diperlukan:

Perumahan Dinas Perusahaan (Perumdin).

1) Pelanggan 2200 VA sebanyak 25 rumah : 55000 VA

2) Pelanggan 1300 VA sebanyak 25 rumah : 32500 VA

3) Pelanggan 900 VA sebanyak 50 rumah : 45000 VA

4) PJU (150 W/0.8) Sebanyak 34 : 6375 VA

TOTAL : 138875 VA.

o Rata-rata daya maksimum tiap rumah =

138875 100 Rumah = 1388,75 VA.

o Dengan asumsi setiap rumah memiliki anggota keluarga sebanyak 5 jiwa per rumah

maka jumlah total penduduk = 5 x 100 = 500 jiwa.

o Pertumbuhan penduduk tiap tahun(dimisalkan) = 2 % per tahun.

Dari data-data diatas kita dapat meramalkan pertumbuhan beban pada perumdin tersebut

yaitu:

1) Electrification ratio :

JumlahKonsumenPerumahanJumlahRumah

:100/100 = 1.

2) Jumlah penduduk 5 Tahun mendatang.

= (1+0,02)5 x 500 jiwa = 520 jiwa.

3) Jumlah perumahan 5 tahun mendatang.

= jumlah penduduk / 4

= 520 / 4 = 130 rumah.

4) Jumlah konsumen perumahan 5 tahun mendatang.

= jumlah rumah x Electrification ratio

= 130 x 1.

= 130 rumah.

5) Jumlah total beban perumahan = jumlah konsumen x daya rata-rata tiap rumah

Page 33: jaringan tegangan menengah.docx

= 130 x 1388,75 VA

= 180.537,5 VA

6) Beban fasilitas umum = 10 % beban total perumahan

= 10 % x 180.537,5= 18.053,75 VA.

7) Beban total = Beban fasilitas umum + Jumlah total beban perumahan

= 180.537,5 VA + 18.053,75 VA = 198.591,25 VA

Jadi, trafo yang digunakan untuk GTT adalah 1 trafo 3fasa dengan kapasitas daya

250KVA.

Page 34: jaringan tegangan menengah.docx
Page 35: jaringan tegangan menengah.docx
Page 36: jaringan tegangan menengah.docx
Page 37: jaringan tegangan menengah.docx

PENENTUAN JENIS TIANG PADA SUTR

1) Tiang B1, B2, D1, D2, B1-A1-B1, B1-A1-D1, B1-A1-D2 B1-A1-D3 : karena merupakan

tiang penyangga lurus maka digunakan TR 1 dengan konstruksi tiang 9 meter 200 dAN.

2) Tiang B1-A1-D4, B1-A1-B2, B3, D3 : karena merupakan tiang penyangga akhir maka

digunakan TR 3 dengan konstruksi tiang 9 meter 200 dANE

3) Tiang B1A1 : karena merupakan tiang penyangga cabang, maka digunakan TR 6

dengan konstruksi tiang 9 meter 200 dANE.

PENENTUAN JENIS TIANG PADA SUTM

1) Tiang C6-D5 : karena merupakan tiang penegang maka digunakan TM 5 dengan

konstruksi tiang 13 meter 350 dANE (tinggi tiang dipilih 13 meter karena pemasangan

taing tersebut berada dijalan raya.

2) Tiang C6, C6-D4 : karena merupakan tiang tarik pada maka digunakan TM 8 dengan

konstruksi tiang 11 meter 350 dANE, ditambah dengan horizontal guy wire untuk

menahan tarikan kabel dari sisi utara ( menggunakan 1set guy wire).

3) Tiang C3, C4, C5, C7-B1, C6-D2, C6-D3, C6-D4-C1, C6-D4-C2 : karena merupakan tiang

penyangga maka digunakan TM 1 dengan konstruksi tiang 13 meter 350 dANE.

4) Tiang C6-D6, C6-D4-C3, C6-D4-C3-D1 : karena merupakan tiang tarik akhir maka

digunakan TM 4 dengan konstruksi tiang 11 meter 350 dANE, ditambah dengan guy

wire untuk menahan tarikan kabel dari sisi selatan ( menggunakan 1set guy wire).

Tambahan

Antara tiang C6 dengan C6-D1, dan antara tiang C6-D5 dengan C6-D6 diberi

tambahan Guard Net, karena saluran kabel SUTM tersebut melewati jalan raya.