36
Jasmin Steinwender ([email protected] ) Sebastian Bitzer ([email protected] ) Seminar Cognitive Architecture University of Osnabrueck April 16 th 2003 Multilayer Perceptrons A discussion of The Algebraic Mind Chapters 1+2

Jasmin Steinwender ([email protected])[email protected] Sebastian Bitzer ([email protected])[email protected] Seminar Cognitive Architecture University of Osnabrueck

  • View
    220

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

Jasmin Steinwender ([email protected])Sebastian Bitzer ([email protected])Seminar Cognitive ArchitectureUniversity of OsnabrueckApril 16th 2003

Multilayer Perceptrons

A discussion of The Algebraic Mind

Chapters 1+2

Page 2: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 2

The General Question

What are the processes and representations underlying mental

activity?

Page 3: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 3

Connectionism vs. Symbol manipulation

• Also referred to as parallel-distributed processing (PDP) or neural network models

• Hypothesis that cognition is a dynamic pattern of connections and activations in a 'neural net.'

• Model of the parallel processor and the relevance to the anatomy and function of neurons.

• Consists of simple neuron- like processing elements: units

• Biological plausible?brain consisting of neurons, evidence for hebbian learning in the brain

• „classical view“

• Production rules

• Hierarchical binary trees

• computer-like application of rules and manipulation of symbols

• Mind as symbol manipulator (Marcus)

• Biological plausible?

Brain circuits as representation of generalization and rules

Page 4: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 4

BUT…

Ambiguity of the term connectionism:

in the huge variety of connectionist models

some will also include symbol-manipulation

Page 5: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 5

Two types of Connectionism

1. implementational connectionism:- a form of connectionism that would seek to understand how systems of neuron-like entities could implement symbols

2. eliminative connectionism: - which denies that the mind can be usefully understood in terms of symbol-manipulation

→ „ …eliminative connectionism cannot work(…): eliminativist models (unlike humans) provably cannot generalize abstractions to novel items that contain features that did not appear in the training set.”

Gary Marcus: http://listserv.linguistlist.org/archives/info-childes/infochi/Connectionism/connectionist5.html and

http://listserv.linguistlist.org/archives/info-childes/infochi/Connectionism/connectionism11.html

Page 6: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 6

Symbol manipulation-3 separable Hypothesis-

• Will be explicitly explained in the whole book, now just mentioned

1. „The mind represents abstract relationships between variables“

2. „The mind has a system of recursively structured representations“

3. „ The mind distinguishes between mental representations of individuals and mental representation of kinds“

If the brain is a symbol-manipulator, then one of this hypotheses must hold.

Page 7: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 7

Introduction to Multilayer Perceptrons

• simple perceptron– local vs. distributed– linearly separable

• hidden layers

• learning

Page 8: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 8

The Simple Perceptron I

w1

w2

w3

w4

w5

o

i1

i2

i3

i4 i5

)(5

1

n

nnact wifo

Page 9: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 9

Activation functions

Page 10: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 10

The Simple Perceptron II

a single-layer feed-forward mapping network

i1 i2 i3 i4

o1 o2 o3

Page 11: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 11

Local vs. distributed representations

i1 i2 i3

o1 o2

i1 i2 i3

o1 o2

local distributed

cat

representation of CAT

furry four-legged

whiskered

Page 12: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 12

Linear (non-)separable functions I

[Trappenberg]

Page 13: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 13

Linear (non-)separable functions II

n Number of linear separable functions

Number of linear non-separable functions

2 14 2

3 104 151

4 1,882 63654

5 94,572 ~4.3109

6 15,028,134 ~1.81019

boolean functions

Page 14: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 14

Hidden Layers

i1 i2 i3 i4

o1 o2 o3

h1 h2

Page 15: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 15

Learning

Page 16: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 16

Backpropagation

• compare actual output - right o., change weights

• based on comparison from above change weights in deeper layers, too

h1 h2

i1 i2 i3 i4

o1 o2 o3

Page 17: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 17

Multilayer Perceptron (MLP)

A type of feedforward neural network that is an extension of the perceptron in that it has at least one hidden layer of neurons. Layers are updated by starting at the inputs and ending with the outputs. Each neuron computes a weighted sum of the incoming signals, to yield a net input, and passes this value through its sigmoidal activation function to yield the neuron's activation value. Unlike the perceptron, an MLP can solve linearly inseparable problems.

Gary William Flake, The Computational Beauty of Nature,

MIT Press, 2000

Page 18: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 18

Other network structures

MLPs

Page 19: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 19

distributed encoding of patient (6 nodes)

Vicky Andy Penny

hidden layer (12 nodes)

distributed encoding of agent (6 nodes)

distributed encoding of relationship (6 nodes)

Arthur

VickyAndy Penny

others

othersothersis

mom dad

TheFamily-Tree

Model

Page 20: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 20

The sentence prediction model

Page 21: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 21

The appeal of MLPs (preliminary considerations)

1. Biological plausibility– independent nodes– change of connection weights resembles

synaptic plasticity– parallel processing

brain is a network and MLPs are too

Page 22: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 22

Evaluation Of The Preliminaries

1. Biological plausibility

• Biological plausibility considerations make no distinction between eliminative and implementing connectionist models

• Multilayered perceptron as „more compatible than symbolic models“, BUT nodes and their connections only loosely model neurons and synapses

• Back-propagation MLP lacks brain-like structure and requires varying synapses (inhibitory and excitatory)

• Also symbol-manipulation models consist of multiple units and operate in parallel → brain-like structure

• Not yet clear what is biological plausible – biological knowledge changes over time

Page 23: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 23

Remarks on Marcus

difficult to argue against his arguments:– sometimes addresses comparison between

eliminative and implementational connectionist models

– sometimes he compares connectionism and classical symbol-manipulation

Page 24: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 24

Remarks on Marcus

1. Biological plausibility(comparison MLPs – classical symbol-manipulation)

– MLPs are just an abstraction– no need to model newest detailed biological

knowledge– even if not everything is biological plausible,

still MLPs are more likely

Page 25: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 25

Preliminary considerations II

2. Universal function approximators– “multilayer networks can approximate any

function arbitrarily well” [Trappenberg]– “information is frequently mapped between

different representations” [Trappenberg]– mapping of one representation to another can

be seen as a function

Page 26: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 26

Evaluation Of The Preliminaries II

2. Universal function approximators

• MLP cannot capture all functions (f. e. partial recursive func. – models computational properties of human language)

• No guarantee of generalization ability from limited data like humans

• Unrealistic need of infinite resources for universal function approximation

• Symbol-manipulators could also approximate any function

Page 27: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 27

Preliminary considerations III

3. Little innate structure– children have relatively little innate structure

“simulate developmental phenomena in new and … exciting ways” [Elman et al., 1996]

e.g. model of balance beam problem [McClelland, 1989] fits data from children

– domain-specific representations from domain-general architectures

Page 28: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 28

Evaluation Of The Preliminaries III

3. Little innate structure

• There also exist symbol-manipulating models with little innate structure

• Possibility to prespecify the connection weights of MLP

Page 29: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 29

Preliminary considerations IV

4. Graceful degradation– tolerate noise during processing and in input– tolerate damage (loss of nodes)

Page 30: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 30

Evaluation Of The Preliminaries IV

4. Learning and graceful degradation

• No unique ability of all MLP

• Symbol-manipulation models which can also handle degradation

• No yet empirical data that humans recover from degraded input

Page 31: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 31

Preliminary considerations V

5. Parsimony– one just has to give the architecture and

examples– more generally applicable mechanisms

(e.g. inflecting verbs)

Page 32: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 32

Evaluation Of The Preliminaries V

5. Parsimony

• MLP connections interpreted as free parameters → less parsimonious

• Complexity may be more biological plausible than parsimony

• Parsimony as criterion only if both models cover the data adequately

Page 33: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 33

What truly distinguishes MLP from Symbol -manipulation

• Is not clear, because…

…both can be context independent

…both can be counted as having symbols

…both can be localist or distributed

Page 34: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 34

We are left with the question:

Is the mind a system that represents• abstract relationships between variables OR• operations over variables OR• structured representations • and distinguishes between mental

representations of individuals and of kinds

We will find out later in the book…

Page 35: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 35

Discussion

“… I agree with Stemberger that connectionism can make a valuable contribution to cognitive science. The only place that we differ is that, first, he thinks that the contribution will be made by providing a way of *eliminating* symbols, whereas I think that connectionism will make its greatest contribution by accepting the importance of symbols, seeking ways of supplementing symbolic theories and seeking ways of explaining how symbols could be implemented in the brain. Second, Stemberger feels that symbols may play no role in cognition; I think that they do.”

Gary Marcus: http://listserv.linguistlist.org/archives/info-childes/infochi/Connectionism/connectionist8.html

Page 36: Jasmin Steinwender (jsteinwe@uos.de)jsteinwe@uos.de Sebastian Bitzer (sbitzer@uos.de)sbitzer@uos.de Seminar Cognitive Architecture University of Osnabrueck

16.04.2003 Multilayer Perceptrons 36

References

• Marcus, Gary F.: The Algebraic Mind, MIT Press, 2001

• Trappenberg, Thomas P.: Fundamentals of Computational Neuroscience, OUP, 2002

• Dennis, Simon & McAuley, Devin: Introduction to Neural Networks, http://www2.psy.uq.edu.au/~brainwav/Manual/WhatIs.html