28
John Klintworth MSC.Software Ltd. Evolving Composites Simulation Requirements and Solutions

John Klintworth MSC.Software Ltd. Evolving Composites Simulation Requirements and Solutions

Embed Size (px)

Citation preview

John Klintworth

MSC.Software Ltd.

Evolving Composites Simulation Requirements and Solutions

2

Industry Trends

• Lower Carbon Fibre Costs• Sheet Material Replacing Random Fibres• Heavier Sheet Reinforcement Weights

– Fewer Plies for Required Performance

• New Markets, e.g. Automotive, EnergyBUT:

• Manufacturing Difficulties– Need more manufacturing simulation

• Less Redundant Material– Need more structural simulation

3

Development Process

Aero. Shape Zone Layup Ply Layup Ply Details Certification

Simulate Simulate Simulate Simulate

Manufacture

OK!

feedback loop ...

4

Aerospace

• Wheel cover• >100 Plies modelled in

CAD• Transferred to CAE

automatically• Benefits:

– Correlation between CAD and CAE

– Verification and failure tools in CAE

5

Motorsport

• Monocoque• > 1000 Plies, > 100K

elements• Quick turnaround• Benefits:

– Rapid modification– Manufacturing link– Failure analysis– Crash model

6

Automotive

• Floorpan• Cheap, heavy fabrics• Manufacturing critical• Benefits:

– Predict producibility rapidly

– Account for stiffness and strength of sheared material

7

Marine

• America’s Cup Yacht• High performance• Variable loading• Benefits:

– Ply based model– Automated generation– Failure analysis– Manufacturing link

Stress Contours under Upwind Loads

By courtesy of

Team NZ & Matrix Applied Computing Ltd.

8

Energy

• Wind Turbine Blade• Up to 40 m long• Lowest cost• Local buckling, flutter• Benefits:

– Modify materials easily– Multiple analysis codes– Manufacturing data

9

Leisure

• Helmet• Fabric reinforcement• Sandwich construction• Must reduce cost• Benefits:

– Simulate manufacture– Account for shear-induced

thickening

10

Simulation Drivers

• Each industry has different structural requirements

• These affect the degree of modelling and simulation used

Aerospace Motorsport Automotive Energy Marine Leisure

Cost 1 1 1 1 2

Performance 2

Reliability 2

Speed (of dev.) 1 2 2 2 1

Key Structural Requirements in Different Industries

11

Modelling

Aerospace Motorsport Automotive Energy Marine Leisure

Zone y y

Ply y y y y y y

Use of Modelling Techniques in Different Industries

• Ply modelling used throughout industries– Rapid modification– Link to manufacture

• Zone modelling used for preliminary sizing

12

Manufacturing Simulation

• Draping is now used universally• Forming only useful for extreme cases• Resin flow simulation in marine market• Curing limited to aerospace

Aerospace Motorsport Automotive Energy Marine Leisure

Draping y y y y y y

Forming y y

Resin Flow y y

Curing y

Use of Manufacturing Simulation in Different Industries

13

Structural Simulation

• Linear and failure analyses routine• Crash analyses emerging for motorsport,

automotive• Durability needed but unresolved

Aerospace Motorsport Automotive Energy Marine Leisure

Statics/Dynamics y y y y y y

Failure Analysis y y y y y y

Crash y y

Durability y

Use of Structural Simulation in Different Industries

x

ab

Failure Surface in Stress Space

M.o.S = (a-b)/b

y

14

Optimization

• Topology optimisation under research• Parametric techniques established for

multidisciplinary optimisation• System optimisation growing

Aerospace Motorsport Automotive Energy Marine Leisure

Topology

Parametric y y

System y

Use of Optimization Techniques in Different Industries

15

Evolving Requirements

• Larger Models• Better Verification• Automated Data Transfer• Mirroring/Rotation• Solid Analysis• Nonlinear Analysis• Crash & Crush Analysis• Quicker Sizing• Account for Material Shear

16

Larger Models

• Requirements– 200000 elements– 2000 plies– 20000 PCOMPS– 200 loadcases

• Solutions– Remove bottlenecks– 2-1000 x faster

17

Better Verification

• Requirements– Audit model

• Solutions– Show Layup

• Element• Cross Section

– Show Laminate

18

Automated Data Transfer

• Requirements– Speed up ply import– Import and export

laminates– Export flow model

• Solution– CAD Ply import 1000x

faster– LAP interface– RTM-Worx interface

19

LAP interface

• Import materials and laminates during zone definition

• Export materials, laminates and loads during certification

Aero. Shape Zone Layup Ply Layup Ply Details Certification Manufacture

20

RTM-Worx interface

• Export materials, plies and layup

• Both warp and weft directions considered

• Simulate resin flow for RTM

• Curing analysis

21

ESAComp interface

• Import materials and laminates during zone definition

• Export materials, laminates and loads during certification

22

Mirroring/Rotation

• Requirement– Reduce

modelling time for symmetrical structures

• Solution:– Transform Layup

Mirror

23

Account for Material Shear

• Requirements– Account for shear

• Solution– Reference sheared

material properties

24

• Requirements– Solid model for

thermal analysis

• Solution– Extrude solids– Calculate equivalent

material– Create coordinate

frames

Solid Analysis

25

Nonlinear Analysis

• Requirements– Support MSC.Marc

• Solution– Update preference

26

Crash & Crush Analysis

• Requirements– Support MSC.Dytran, LS-DYNA, Pamcrash

• Solution– Update preferences

Element Failure Time

27

Quicker Sizing

• Requirements– Smeared Laminate– Discrete variables

• Solution– In MSC.Nastran 2001

LAM option New 2001 Membrane Bending Coupling Ply results Comments[A] [B] [D]

BLANK Y Y Y Y Default.SYM Y Y YMEM Y Y Y Wing skins.BEND Y Y YSMEAR Y Y Y Smeared.SMCORE Y Y (core N) Y Smeared with core.

Design Variables

0.00E+00

2.00E-01

4.00E-01

6.00E-01

8.00E-01

1.00E+00

1.20E+00

0 5 10 15 20 25 30 35 40 45 50

Design Cycle

Th

ick

ne

ss

28

Conclusions

• Simulation drivers vary widely across industries

• Ply modeling and kinematic draping are now universally accepted

• Resin flow and curing simulation show potential

• Crash and durability analysis developing rapidly

• Formal optimisation methods promise improved sizing