42
Ultrafast analysis of catalyst surface K Asakura Catalysis Research Center, Hokkaido University, Kita-ku N21W10, Sapporo, Hokkaido 001-0021, Japan 2011/04/27 1 PF-ERL 1

K Asakura - KEKpf · 2011. 5. 27. · They accelerate chemical reaction without changing themselves ... J.C.Vis, D.C.Koningsberger, and R.Prins, J.Am.Chem.Soc., 107 (1985) 3139. C

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

  • Ultrafast analysis of catalyst surface

    K Asakura

    Catalysis Research Center, Hokkaido University, Kita-ku N21W10, Sapporo, Hokkaido 001-0021, Japan

    2011/04/27 1PF-ERL

    1

  • 2011/04/27 2

    Polymers and plastics are generate using Catalysts (Ziegler Natter or Kaminsky catalysts)

    Automobile catalysts (Pt-Pd-Rh/Al2O3, Pt/CeO2) Photocatalysts(TiO2) Enzyme Fuel cell electrode

    What are catalysts?

    Automobile catalyst To remove NOx From exhausted gas

    They accelerate chemical reaction without changing themselves and important in many fields.

    PF-ERL

    2

  • 2011/04/27 PF-ERL 3

    Three important factors in catalysis

    Activity rate determining step Slowest process.

    Selectivity ex. Propane oxidation

    • No selectivity CO2• High selectivity CH2CHCHO

    Life time

    3

  • 2011/04/27 4

    Classification of Catalysts

    Solid State Catalysts-Heterogeneous catalysts Pt-Rh-Pd/Al2O3 Solid surface plays an important role

    Catalyst in Solution Homogeneous catalysts Cross coupling catalysts, Enzyme Chiral synthesis, Metatheses Metal active site is important

    Special Active Site Plays an important role.

    PF-ERL

    4

  • 2011/04/27 5

    Miyaura-Suzuki Reaction

    Oxidative addiition

    transmetalation

    Reductive elimination

    PF-ERL

    5

  • 2011/04/27 6

    Classification of Catalysts

    Solid State Catalysts-Heterogeneous catalysts Pt-Rh-Pd/Al2O3 Solid surface plays an important role

    Catalyst in Solution Homogeneous catalysts Cross coupling catalysts, Enzyme Chiral synthesis, Metatheses Metal active site is important

    Special Active Site Plays an important role.

    PF-ERL

    6

  • 2011/04/27 7

    Heterogenous Catalysts

    Langmuir Hinshellwood mechanism Horiuchi-Polanyi Mechamism

    H2

    CH2=CH2 H H CH2-CH3 H

    CH3-CH3CH2=CH2

    Catalysts

    Adsorption Diffusion Reaction

    Desorption

    PF-ERL

    7

  • 2011/04/27 8

    From Unused Biomass to Fuel(A.Fukuoka Angewandte Chem. 2007)

    Wood Celulose Solvitol

    Alcohols

    Gasoline

    Plastics

    CO2PlantsPhotosynthesis

    Pt Catalyst

    Fine Chemicals

    glucose

    Hemicelulose

    5C sugarEnzyme

    New Chemical industry based on biomassPF-ERL

    8

  • 2011/04/27 9

    Environment Improvement Catalysts

    mol )

    50

    40

    30

    20

    10

    0100806040200

    3DOM-WO3

    WO3

    二 m

    ol )

    50

    40

    30

    20

    10

    0100806040200

    3DOM-WO3

    WO3NP-

    Time / min

    CO2

    mol )

    50

    40

    30

    20

    10

    0100806040200

    3DOM-WO3

    WO3

    50

    40

    30

    20

    10

    0100806040200

    3DOM-WO3

    WO3NP-

    Light

    Photodegradation of VOC Ueda Ohtani et al. J.Material Chem. (2010)

    PF-ERL

    Soot combution on nanofibered LaMnO3Nanofibered

    conventional

    Li, S.; Kato, R.; Wang, Q.; Yamanaka, T.; Takeguchi, T.; W., U. Applied Catalysis B: Environmental 2010, 93, 383.

    9

  • Rh dimer catalysts (Active for ethylene hydroformylationreaction)K. Asakura, K.K. Bando, Y. Iwasawa, H. Arakawa, K. Isobe, J.Am.Chem.Soc 112 (1990) 9096.

    C2H4+CO+H2 C2H5CHO

    4 6 8 10 12 14 16-0.20-0.15-0.10-0.050.000.050.100.15

    k (

    k)

    K / 10nm-1

    Rh Rh

    CC

    OO

    RCp*

    OO

    SiO2

    Rh Rh

    C OR

    Cp*

    OO

    SiO2

    4 6 8 10 12 14 16

    -0.15

    -0.10

    -0.05

    0.00

    0.05

    0.10

    0.15

    k (

    k)

    k /10 nm-1

    H2RC2H5CHO

    +CO,+R

    0.270 nmm

    IR吸収バンド1710 cm-1

    IRabsorption band 2032,1969 cm-1

    EXAFS before the reaction EXAFS after the adsorption

    CO2

    2011/04/27 PF-ERL 10

    10

  • 2011/04/27 11

    .In-situ studies

    Active site is dynamically changed during the reaction

    In-situ studies are necessary to determine the reaction mechanisms.

    High temperature and high pressure.

    PF-ERL

    11

  • Introduction

    Sulfur compounds in fossil fuel. 1.Sulfur is oxidized to sulfurous or sulfuric

    acids and is an origin for acid rain.2.It poisons the deNOX catalysts equipped in

    cars. 3. Demand for use of low quality oil with high

    sulfur contents.

    2011/04/27 12

    1990-1994 1995-2000 Post 2000

    USA 500 ppm 500 ppm 15 ppm by 2006

    Europe 500 ppm 500 ppm 50ppm by 200510 ppm by 2008

    Japan 0.2 wt% 500 ppm 50 ppm by 200510 ppm by 2007

    Sulfur in fuel is legally restricted more and more strictly.

    http://www.epa.gov/apti/course422/ap7b1.html

    PF-ERL

    s

    s

    H2+ H2S

    12

  • Metal phosphides

    2011/04/27 13

    0

    20

    40

    60

    80

    100

    Con

    vers

    ion

    / %

    S

    N

    HDSHDN

    Fe2P/SiO2 MoP Ni2P/SiO2CoP/SiO2 WP Ni-Mo-S/Al2O3

    More active than commercially avaialbe NiMoS

    PF-ERL

    13

  • 2011/04/27 14

    In situ EXAFS .

    High pressure cellJ.Phys. Chem.93,4213(1989)

    Z.Phys.Chem.,144,105(1985).

    Thermocouple

    HeaterWater

    GasGas

    Gas

    Window(Acrylic resin)

    O-ringQuartz Tube

    SampleWater

    Water

    Water

    X-ray

    Io I

    J.Synchro.Rad.8, 581(2001).J.Chem.Phys. 70 (1979) 4849.

    X-ray absorption, Principles, applications, techniques of EXAFS, SEXAFS, and XANES, New York, John Wiley & Sons, 1988.

    X-ray windows are set far away from sample.

    PF-ERL

    14

  • Experimental SetupPF-ERL 2011/04/27

    15

    X-rayInfraredThermocouple

    Gas injection bulb

    Heater

    IR and X-ray hit the sampleSample : Ni2P/MCM-4135 mg,15 mm in diameter

    Heating803 K by heaterGas introduction

    Sample

    反応 : C4H4S + 2H2 → C4H8SC4H8S + H2 → H2S + C4H8

    15

  • Experimental SetupMCT

    InterferometerOptical faiber

    IR

    X-ray

    QMS

    Gas controller

    ActivitiyQMS

    Gas flow

    StructureQXAFS

    AdsorptionFT-IR

    Reaction Cell

    KEK, PF BL-9C

    16

    PF-ERL 2011/04/27

    16

  • 2011/04/2717

    EXAFS of Ni2P under reaction conditions.

    2 4 6 8 10 12-0.1

    0.0

    0.1

    0.2

    b)

    a)

    (k)

    k / A-1

    Before reaction

    10 h 4 6 8 10-0.004

    -0.002

    0.000

    0.002

    0.004

    (k)

    k / 10 nm-1

    • Ni2P Ni K-edge XAFSDifference Spectrum

    •Ni-S at 0.227 nm• with N=0.1.

    17

  • 2011/04/27 18

    Difference spectra in HDS – before reaction

    NiP

    NiP

    P

    PNi

    S PNi

    P

    NiP

    P

    PNi

    P

    • CF results of Ni-SR=0.227 nm; CN=0.1.

    • Judging from the ratio of surface Ni to the bulk ~0.5 S/Ni=0.2±0.2

    • Little reaction temperature dependence

    k(k

    ) / 1

    0nm

    -1

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    k / 10 nm-13 104 5 6 7 8 9

    Ni – S (FEFF)CN = 0.1, R = 0.227 nm, 2 = 0.0064 Å2

    HDS at 513 K

    HDS at 553 K

    HDS at 593 K

    Simulated XAFS based on Ni-S bond

    PF-ERL

    18

  • 2011/04/2719

    How does Ni-S bond change?

    250 300 350 400 450 500 550 600

    0.0

    0.1

    NN

    i-S

    T / K0 10 20 30 40 50 600.0

    0.1

    0.2

    t / min

    0.0

    0.1

    0.2

    N

    i-S

    0.0

    0.1

    0.2

    513 K

    553 K

    593 K

    T / K 513 553 593

    v/min-1 0.47(3) 0.8(3) 2.5(3)

    •Ni-S is rapidly formed and saturated. •Saturation number is 0.1 •Ea=53 kJ/mol for formation reaction of Ni-S

    0.1

    Time and temperature dependence of Ni-S formation

    Formation rate

    Saturation number of Ni-S bond

    19

  • He HDS反応H2還元

    He H2還元240 ℃

    530 ℃H2S処理

    H2還元

    530 ℃

    XANES, IR and MS changes during 513 K2B06

    2010年9月16日20HDS反応開始

    IR

    Ni=SXAFS

    20

  • Reaction mechanisms

    NiPS Formation processes

    Ⅰ : Ni-Sformation

    2011/04/2721

    PF-ERL

    21

  • Reaction mechanisms

    Hydorgenation processes C-S bond cleavage

    C-S bond cleavage

    H2S

    2H2

    NiPS Formation processes

    Ⅱ : Ni-SReaction

    THT

    H2S

    2011/04/2722

    PF-ERL

    22

  • Reaction mechanisms

    Hydorgenation processes C-S bond cleavage

    C-S bond cleavage

    H2S

    2H2

    Ⅲ : Steadystate

    2011/04/2723

    PF-ERL

    23

  • Time resolved studies=>DXAFSPF-ERL

    24

    • Stedy state- Mixture

    • Reaction starts at once- Pump-probe- T-jump, P-Jump- Isotope change

    24

  • H.F.J.van’t Bilk, J.B.A.D.van Zon, T.Huizinga, J.C.Vis, D.C.Koningsberger, and R.Prins,J.Am.Chem.Soc., 107 (1985) 3139.

    C

    ORh

    Rhx cluster

    CO

    2011/04/27 PF-ERL 25

    Disruption of Rh clusters on Al2O3 surface by CO at RT

    25

  • -4

    -2

    0

    2

    4

    6420

    The k3-weighted EXAFS Fourier transformed functions for Rh/Al2O3 under CO (26.7 kPa) at 298 K measured by DXAFS

    together with the curve fittings of the observed FT data and their imaginary parts

    -4

    -2

    0

    2

    4

    6420

    -4

    -2

    0

    2

    4

    6420

    0 s 0.6 s 3 s

    -4

    -2

    0

    2

    4

    6420R / 0.1 nm R / 0.1 nm R / 0.1 nm R / 0.1 nm

    |FT|[

    k3(

    k)]

    |FT|[

    k3(

    k)]

    |FT|[

    k3(

    k)]

    |FT|[

    k3(

    k)]

    7 s

    2011/04/27 PF-ERL 26

    (1) Suzuki, A.; Inada, Y.; M.; Nomura, M.; Iwasawa, Y.et al., Angewandte Chemie Inter.Ed. 2003, 42, 4795.

    26

  • The values of coordination number

    (CN) and bond distance (R)

    determined by the curve fitting as a function of CO exposure time

    3.0

    2.8

    2.6

    2.4

    2.2

    2.0

    1.886420

    Time / s

    8

    6

    4

    2

    0

    CN

    R /

    0.1

    nmRh-Rh

    Rh-Rh

    Rh-O

    Rh-O

    Rh-C-(O)

    Rh-(C)-O

    Rh-CO

    298 K

    333 K

    353 K

    2011/04/27 PF-ERL 27

    (1) Suzuki, A.; Inada, Y.; M.; Nomura, M.; Iwasawa, Y.et al., Angewandte Chemie Inter.Ed. 2003, 42, 4795.

    27

  • Illustrative mechanism and time scale at 298 K for the disintegration oRh clusters on Al2O3 during CO adsorption by time-resolved DXAFS

    Species A Intermediate B Intermediate C Species D

    CO CO CO

    600 ms 2000 ms 4000 ms

    17 kJ/mol

    2011/04/27 PF-ERL 28

    (1) Suzuki, A.; Inada, Y.; M.; Nomura, M.; Iwasawa, Y.et al. Angewandte Chemie Inter.Ed. 2003, 42, 4795.

    28

  • 2011/04/27 29

    Tada, M., S. Murata, et al. (2007). Angewandte Chemie-International Edition 46(23): 4310-4315.

    PF-ERL

    Electrochemical trigger

    29

  • 302011/04/27

    IF we have faster XAFS, what will do we obtain?

    s-s Reaction intermediate

    at-fs

    ps-ns Atomic Dynamics

    Electron DynamicsPF-ERL

    30

  • July 6 2009 6WCOC31

    Spectroscopy and desorption analysisT. Matsushima, Surf. Sci.Reports 52 (2003) ; Surf. Sci. 603 (2009) 1415.

    diffusion

    OCO

    Surface

    CO2

    ① ② ③

    STMEn

    ergy

    Distance from the surfacevibration

    Rotation

    Angle, translation

    Transition stateO,CO

    Spectrscopy

    Transition state

    Repulsive desorption → No equillibrium and information after reaction is maintained.

    O

    Analysis of desorbed species transition state information

    STM Spectrscopy

    31

  • July 6 2009 6WCOC32

    CO2 Desorption profile during CO +O reactionT. Matsushima, Surf. Sci.Reports 52 (2003) ; Surf. Sci. 603 (2009) 1415.

    0 30 60 900

    500

    1000

    1500

    T Tr

    ansl

    atio

    nal /

    K

    / deg

    [11b0]

    [001] Interaction is large.

    Pd(110) surface

    [001]

    0]1[1

    0]1[1

    [001]

    Angle dependence of Translation energy

    θcos30]1[1

    [001]θcos10

    Fastest

    Slowest

    Pd(110)

    32

  • July 6 2009 6WCOC33

    IR EmissionK. Nakao, K. Kunimori, et al. Catalysis Letters 85 (2003) 213; K. Nakao, K. Kunimori et.al., Catalysis Today 111 (2006) 316.

    Position average of s and b

    Symmetric stretch

    Bending

    s mode

    b mode

    a mode Antisymmetric stretch

    vibrational

    rotation

    RotationArea

    Tva=2090 KTvsb=2200 KTr=1000 K

    Anti-mode

    IR emission from desorbed CO2 from Pd(111) with dirrerent surface temperatures

    Surface temp=850 K

    33

  • July 6 2009 6WCOC34

    Desorption from Pd(110)

    Repulsive force

    0 20 40 60400

    600

    800

    1000

    1200

    1400

    1600

    1800

    T vibration

    [11b0]

    T / K

    Angle / Deg

    [001]

    T vibration

    Large interaction

    Coming along trough

    Coming from the ridge

    T. Yamanaka et al. Phys.Rev.Lett. 100(2008) 026104.

    T surfacerotation

    34

  • 352011/04/27

    Mmechanical catalystGerhard Swiegers

    Energy –control to timing- control

    Perfect Catalyst100 % acitivity, 100 % selectivity, Self-

    recovery(long life time)Like Enzyme

    Selective excitation

    PF-ERL

    35

  • 36

    Reaction induced by STM on Pd(110)

    CH2CH2

    CH3CH3

    H2

    Dosing tunneling current on7 nA, 450 mV, 1sec—C-H excitation.

    Y. Sainoo, Y. Kim, M. Kawai, J. Chem. Phys.120 (2004) 7249.

    Y. Kim, M. Kawai,et.al. PhysRev.Lett. 89 (2002) 126104.

    -360 mV dI2/dV2 image

    C-HC-D

    T B

    T

    B

    STS

    36

  • July 6 2009 6WCOC 37

    FEL-IR-selective excitation of chemical bond

    H. Kuroda,et.al. Free Electron Lasers 2002, 2003, pp. II.

    1. If one can use a strong pulse source with long interval, one irradiates the sample without heating the sample.

    2μs

    2sMacropulse

    37

  • July 6 2009 6WCOC 38

    0.167 nm(967 cm-1)

    0.173 nm (814 cm-1)

    Ethanol decomposition reaction on MoO3 induced by Pulse IR

    1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

    1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

    Ethylene

    Ethylene

    Aldehyde

    1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50 5.00

    Waterethanol

    0.173 nm(814 cm-1)

    1.9 mJ

    3.2 mJ

    3.5 mJ1230 cm-1

    814 cm-1

    967 cm-1

    S.Sato, M.G.Moula Jpn.J.Appl.Phys. 41-1 (2002) 118; Chem.Lett 33 (2004) 558; Bull.Chem.Soc.Jpn., 81 (2008) 836.

    No resonance

    C2H5OH CH3CHO, CO2, C2H4

    38

  • 392011/04/27

    Problems are

    How to control inhomogeneity of CatalysisTime scale and Spatial scale. Chaotic reaction processSingle shot

    CO oxidation reactions on Pt(100)

    Surface is well-defined single crystal

    PF-ERL

    39

  • 402011/04/27

    Real catalysts are complicated

    Multifunctional Porus

    Kapoor, M. P.; Inagaki, S. Bull. Chem. Soc. Jpn. 2006, 79, 1463.FSM-16

    Moro-oka, Y. and W. Ueda (1994) Advances in Catalysis 40: 233.

    PF-ERL

    40

  • PF-ERL 412011/04/27

    4D (Time + spatial resolution) +spectroscopyÅーmm の広いダイナミックレンジ ps- ms sub eV

    41

  • 422011/04/27 PF-ERL

    Conclusions

    Ultra fast will help us understand the atom dynamics of surfaces

    Ultrafast monitoring may be helpful to control the surface reaction

    4D is necessary to apply the ultarafasttechnique to catalysts.

    42