29
K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering Laboratory Dept. of Mechanical Engineering University of California at Berkeley

K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

  • View
    222

  • Download
    2

Embed Size (px)

Citation preview

Page 1: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Protein Dynamics and Structure using Broadband Dielectric Spectroscopy

Kenneth Castelino, Veljko Milanović, Dan McCormick

Nanoengineering Laboratory

Dept. of Mechanical Engineering

University of California at Berkeley

Page 2: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

• Motivation and Introduction to Proteins

• Dipole Relaxation Phenomena (kHz - GHz)

• Terahertz Spectroscopy

• Conclusions

Outline

Page 3: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Motivation

Borrowed from:Department of BiostatisticsHarvard School of Public HealthJanuary 23-25, 2002Sandrine Dudoit and Robert Gentleman

Page 4: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Protein Structure

Lehniger Principles of Biochemistry, Worth Publishers, NY, 2000

1.

• Peptide Bonds• 20 Amino Acids

2. Secondary Structure

-helix -sheet

• Hydrogen Bonds

3.

• Noncovalent Interactions

Page 5: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Protein Structure

Lysozyme (43% , 5% , 52% r.c.)

-lactoglobulin (6% , 45% , 49% r.c.)

-lactalbumin (33% , 17% , 50% r.c.)

Pepsin (13% , 59% , 28% r.c.)

Page 6: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

• Broadband spectral “signature” of a protein• Specific complex permittivity of the solution

• Protein structure• Identify spectral features that provide info about structure.• “Invert” the spectral signature to learn more about the

biomolecule

• Protein Function• Changes in relaxation or resonances due to binding. • Changes in long range vibrational modes.

What are we looking for?

Page 7: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Frequency Range

Relaxation Phenomena – Debye Dipoles

Resonant Phenomena – Lorentz Oscillators

Page 8: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Interaction of Matter and Radiation

)(2

2

teEkxdt

dxf

dt

xdm =++

m

k

f

Eejwt

Lorentz Model

Page 9: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Dispersion of dielectric constant

Dielectric constant of an aqueous hemoglobin solution

Dielectric constant

Radio wave Microwave IR Visible UVn

Refractive index

n

n

Absorption

Dipole Relaxation

Resonance

Page 10: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Low Frequency - Relaxations

• LF => 1 kHz to 100 MHz• Surface binding detection – change in

capacitance due to charges or displacement of charges or dielectrics

• In solution (essentially ‘re-arranged water’)

+ -

++ + + +

• HF => 100 MHz to 110 GHz• Same as above possible• Also see dielectric relaxations of solvent ions• Possible resonances due to bio-molecular structure

(secondary, tertiary).• Proteins as ‘box of springs’ (or re-arranged water)

Page 11: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Measurement Setup

• Agilent / Anritsu PNA

• Frequency:• 45 MHz - 50GHz 601 points • Power Level: 5 dBm

• TRL / SOLT calibration. • To probe tips

Anritsu Corp.

Page 12: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Protein fingerprinting in RF field

Microstrip

h

w

Coplanar

w1

w2

ε r

Waveguide

Twisted-pair

Coaxial

b

a

h

Some standard transmission line types

Fluid sample

Microchannel/fluid cavity

CPW on nitride membrane

ME

_C

PW

3 c

hip

• Options of transmission line types – coax, waveguide, on-substrate

• Main challenge is broad frequency range and fluidic capability

Page 13: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

CPWs for bio-testing – the main test device

• Al CPWs

• Nitride/oxide membrane

• For on-wafer probing network analyzer characterization

• Liquid held by surface forces

• Two holes for bubble release and easier fabrication

200 µm

back front

TESTdevice

Page 14: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

LF measurements example: Lysozyme in 1mM acetate buffer solution

Sensitivity inversely proportional to ion conc. Due to double layer effects

Page 15: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

LF measurements example: DNA immobilization and hybridization

Frequency [Hz]

1e+3 1e+4 1e+5 1e+6 1e+7

Capacitance [F]

5.0e-9

1.0e-8

1.5e-8

2.0e-8

2.5e-8

Immob. SS DNA Immob. SS DNA + mismatch DNA Immob. SS DNA + compl. DNA 15 min

Page 16: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

CEAABSAPSABuffer

S2

1 [d

B]

10 Freq [GHz] 110

High Frequency Measurements

Page 17: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Liquid Nitrogen Experiments

S21

(d

B)

253 K

200 K

77 K

• Improve Q.

• Minimize thermal contributions.

Page 18: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

LN2 Measurement Difficulties

Page 19: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Nanogap Transmission Lines

Page 20: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Transmission: Acetate Buffer vs. Lysozyme

Page 21: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Terahertz Experiments

• Frequency Range: 500 GHz – 2 THz.

• Amplitude + phase of E-field measured Get (ε’, ε’’) simultaneously

• Sensitive to sample preparation, thickness.

Page 22: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Terahertz Generation & Detection

Pulse Detection

Pulse Generation

Page 23: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Conclusions

• Only relaxations observed upto 100 GHz.

• Very sensistive binding changes observed in the double layer capacitance.

• Possible to see vibrational modes in the range of 0.5-3THz.

• Low temperature required in order to decipher modes with reasonable Q.

Page 24: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Acknowledgements

• Anritsu Corporation – Arno Pettai et al• Measurement facilities

• UC Davis – Prof. Norman Tien• Measurement facilities

• NIST Boulder – Dr. Dylan Williams• Assistance with calibration

• Lawrence Berkeley Lab – Prof. Dan Chemla• Terahertz Time-Domain Measurement.

Page 25: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

TransmittedIncident

TRANSMISSION

Gain / Loss

S-ParametersS21, S12

GroupDelay

TransmissionCoefficient

Insertion

Phase

ReflectedIncident

REFLECTION

SWR

S-ParametersS11, S22

ReflectionCoefficient

Impedance, Admittance R+jX

, G+jB

Return

Loss

Incident

Reflected

TransmittedRB

A

A

R=

B

R=

High-frequency device characterization

Network Analyzer Basics

Page 26: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Measuring S-Parameters

S 11 = Reflected

Incident=

b1

a 1 a2 =0

S 21 =Transmitted

Incident=

b2

a 1 a2 =0

S 22 = Reflected

Incident=

b2

a 2 a1 =0

S 12 =Transmitted

Incident=

b1

a 2 a1 =0

Incident

TransmittedS

21

S11

Reflectedb1

a1

b2

Z0

Loada2 =0

DUTForward

Incident

Transmitted S

12

S22

Reflected

b2

a2b

a1=0

DUTZ0

Load Reverse

1

Page 27: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Systematic Measurement Errors

A B

SourceMismatch

LoadMismatch

Crosstalk

Directivity

DUT

Frequency response reflection tracking (A/R) transmission tracking

(B/R)

R

Six forward and six reverse error terms yields 12 error terms for two-port devices

Page 28: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Types of Error Correctionresponse (normalization)

simple to perform only corrects for tracking errors stores reference trace in memory,

then does data divided by memoryvector

requires more standards requires an analyzer that can measure

phase accounts for all major sources of systematic

error

S11 m

S11 a

SHORT

OPEN

LOAD

thru

thru

Page 29: K. Castelino 2/19/2004 Protein Dynamics and Structure using Broadband Dielectric Spectroscopy Kenneth Castelino, Veljko Milanović, Dan McCormick Nanoengineering

K. Castelino 2/19/2004

Microwave Properties of Ice

Fujita et al

Zhang et al, APL, 7/01

Matsuoka et al