150
Kandidátusi értekezés Homokpusztagyepi növények fotoszintézisének és vízforgalmának vizsgálata, különös tekintettel az időszakos szárazság hatására Kalapos Tibor Eötvös Loránd Tudományegyetem, Növényrendszertani és Ökológiai Tanszék Budapest 1994

Kalapos T. 1994

  • Upload
    lamnhu

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Kalapos T. 1994

K a n d i d á t u s i é r t e k e z é s

Homokpusztagyepi növények fotoszintézisének és vízforgalmának vizsgálata, különös tekintettel az időszakos

szárazság hatására

K a l a p o s T i b o r

Eötvös Loránd Tudományegyetem, Növényrendszertani és Ökológiai Tanszék

Budapest 1994

Page 2: Kalapos T. 1994

1

TARTALOM KÖSZÖNETNYILVÁNÍTÁS ...................................................................................3 A dolgozatban használt jelek és rövidítések ................................................................4 1. BEVEZETÉS. AZ ÖKOFIZIOLÓGIAI KUTATÁSOK JELENTŐSÉGE

.............................................................................................................................5 2. HAZAI ELŐZMÉNYEK. .....................................................................................8 2.1. Ökofiziológiai vizsgálatok homokpusztagyepekben. ...........................................8 2.2. A C4-es fotoszintézisút kutatása ...........................................................................9 2.3. Botanikai vizsgálatok a Duna-Tisza Köze homokvegetációján ...........................9 3. A FOTOSZINTÉZIS ÉS VÍZFORGALOM TERMŐHELYI

VIZSGÁLATA ÉVELŐ HOMOKPUSZTAGYEPBEN ............................11 3.1. A vizsgálati objektum rövid leírása ....................................................................11 3.2. Az alkalmazott ökofiziológiai mérési módszerek ...............................................20 3.2.1. A levél vízállapotának vizsgálata ....................................................................21 3.2.1.a. A levél vízhiányának megállapítása ..............................................................21 3.2.1.b. A levél vízpotenciáljának mérése .................................................................22 3.2.1.c. A levél vízhiánya és vízpotenciálja közötti összefüggés vizsgálata ..............25 3.2.2. A levél pillanatnyi gázcseréjének követése .....................................................26 3.2.2.a. A nettó fotoszintézis mérése .........................................................................27 3.2.2.b. A transzspiráció mérése ................................................................................28 3.2.3. Az ökofiziológiai vizsgálatokhoz kapcsolódó egyéb mérések és számított

mutatók ..............................................................................................................29 3.2.4. Mintavétel ........................................................................................................30 3.2.5. Alkalmazott statisztikai értékelő módszerek ...................................................31

3.3. Eredmények és értékelésük; a levél vízállapotának és gázcseréjének napi és évszakos alakulása, különös tekintettel a fajok eltérő viselkedésére ...............32

3.3.1. A nettó fotoszintézis napi menete ....................................................................32 3.3.2. A transzspiráció napi változása ........................................................................39 3.3.3. A sztómás vízpáravezetés és a mezofillum CO2 koncentráció napi menete ....41 3.3.4. A vízhasznosítási hatékonyság napi menete ....................................................42 3.3.5. A levél vízállapotának napi változása ..............................................................44 3.3.6. Összefüggés a levél vízhiánya és a vízpotenciálja között, és annak

lehetséges szerepe a növényi vízforgalomban ..................................................48 3.3.7. Kapcsolat a levél vízállapota és gázcseréje között. .........................................57 3.3.8. Az asszimilációs tevékenység napi összesített értékei ....................................59 3.3.9. A vizsgált fajok levélszerkezetének összehasonlítása .....................................65

Page 3: Kalapos T. 1994

2

4. TALAJSZÁRAZODÁS HATÁSÁNAK KÍSÉRLETES VIZSGÁLATA HÁROM EGYÉVES PÁZSITFŰNÉL .........................................................69

4.1. A kísérlet célja ....................................................................................................69 4.2. A növényi növekedésanalízis módszere .............................................................70 4.3. A kísérlet részletes leírása. ..................................................................................72 4.4. A kísérlet eredményei .........................................................................................74 4.5. Az eredmények értékelése ..................................................................................82 5. AZ ELTÉRŐ CO2 FIXÁCIÓS UTAK ÖKOLÓGIAI JELENTŐSÉGE .......86 5.1. A fotoszintetikus CO2 fixáció útjai a szárazföldi hajtásos növényekben;

ökológiai és evolúciós vonatkozások. ..............................................................86 5.2. A C3-as és a C4-es fotoszintézisű növények jelenléte a magyar flórában és

vegetációban .....................................................................................................93 5.3. A C3-as és C4-es növények koegzisztenciája homokpusztagyepekben ............102 6. ÖSSZEFOGLALÁS ...........................................................................................103 7. IRODALOMJEGYZÉK ....................................................................................109 8. FÜGGELÉK .......................................................................................................122

Page 4: Kalapos T. 1994

3

KÖSZÖNETNYILVÁNÍTÁS

Köszönöm témavezetőmnek, Kovácsné Dr. Láng Editnek a munkámhoz nyújtott

értékes szakmai irányítást és segítségét a vizsgálatokhoz szükséges korszerű

mérőműszerpark létrehozásában.

Köszönettel tartozom tanszékvezetőmnek, Dr. Simon Tibor professzor Úrnak, hogy

tevékenységemet az ELTE Növényrendszertani és Ökológiai Tanszékének

kutatómunkájához csatlakozva végezhettem, amiben a messzemenőkig támogatott.

Ezúton is köszönetet mondok Prof. Hans Lambersnek, az Utrechti Egyetem

Növényökológiai és Evolúcióbiológiai Tanszékéről, aki számtalan értékes konzultáció

mellett lehetőséget biztosított számomra laboratóriumában kísérleteim elvégzésére is,

ahol Riki van den Boogard aspiráns volt segítségemre. Prof. Huber Ziegler a

Müncheni Műszaki Egyetem Botanikai Tanszékén a C4-es fotoszintézisút

témakörében segítette munkámat rendelkezésemre bocsájtva nem publikált adatait is.

A vizsgálatok az OTKA 2049, 2051 és F6434 tudományos alapkutatási pályázatok

keretében folytak. Számos mérőműszer beszerzését az OKKFT Biológiai

Alapkutatások Programirodája és az Országos Tudományos Kutatási Alap (OTKA)

anyagi támogatása tette lehetővé. A munkámhoz kapcsolódó külföldi tanulmányutakat

a Soros Alapítvány, az Eötvös Loránd Tudományegyetem, az Utrechti Egyetem

(Hollandia), az OTKA és a PHARE támogatta. Dolgozatom elkészítéséhez egyéves

ösztöndíjban részesültem a Magyar Tudományért Alapítványtól (Magyar Hitelbank

Rt.). Támogatásukat ezúton is hálásan köszönöm.

Page 5: Kalapos T. 1994

4

A dolgozatban használt jelek és rövidítések Lehetőség szerint a vizsgált mennyiségi változók magyar nevét használtam, rövidítésüknél viszont a nemzetközi gyakorlatot követtem. Az egységek megválasztásánál az SI rendszerhez és a legújabb ökofiziológiai szakirodalomhoz igazodtam. Helyenként zárójelben ill. az F.1. táblázatban a régebben használt egységekben is megadtam a mennyiségeket, hogy azok közvetlenül összevethetők legyenek a korábbi szakirodalommal. ci Mezofillum CO2 koncentráció (ppm) DM% A víztelített levél százalékos szárazanyagtartalma (%) E Transzspiráció intenzitása (mmol víz m-2 levél s-1) gst Sztómás vízpáravezetés (mmol víz m-2 levél s-1) LA Levél területe (m2) LAR Száraztömegegységre jutó levélfelület (m2 levél kg-1 növény) IWR Reproduktív szervek tömegaránya (g virágzat g-1 növény) LWR Levelek tömegaránya a növényegyeden belül (g levél g-1 növény) m levéltömeg (g, md= száraz-, mf= friss-, ms= víztelített tömeg) NAR Nettó asszimilációs ütem (mg biomassza m-2 levél nap-1) PAR Fotoszintetikusan aktív besugárzás erőssége (µmol foton m-2 s-1) PEPC Foszfo-enol-piruvát karboxiláz enzim pi/pa A CO2 parciális nyomásának aránya a mezofillum légterében (pi) és a

külvilág levegőjében (pa) Pn Nettó fotoszintézis üteme (µmol CO2 m-2 levél s-1) RGR Relatív növekedési ütem (mg szárazanyag g-1 növény nap-1) RH Relatív légnedvesség (%) RUBPC Ribulóz-1-5-biszfoszfát karboxiláz-oxigenáz enzim RWR Gyökérzet tömegaránya a növényegyeden belül (g gyökér g-1 növény) SE A középérték hibaszórása (standard error) SLA Fajlagos levélterület (m2 levél kg-1 levél) SLW Fajlagos levéltömeg ({1/SLA}*103, g levél m-2 levél) SWC Levél fajlagos víztartalma (g víz m-2 levél) SWR A szár részesedése a növényegyed össztömegéből (g szár g-1 növény) Tkamra Mérőkamra léghőmérséklet (ºC) Tkülső Külső léghőmérséklet (ºC) Tl Levélhőmérséklet (ºC) WSD Levél vízhiánya (%) WTR Levél vízkicserélődési üteme (g víz g-1 víztartalom nap-1) WUE Vízhasznosítási hatékonyság (mmol CO2 mol-1 elpárologtatott víz) Ψl Levél vízpotenciálja (MPa) Ψs Talaj vízpotenciálja (MPa)

Page 6: Kalapos T. 1994

5

1. BEVEZETÉS

AZ ÖKOFIZIOLÓGIAI KUTATÁSOK JELENTŐSÉGE

Az ökológiai módszerelmélet egyik legfontosabb alapelve a

komplementációs elv. Ennek értelmében a külvilág ténylegesen ható tényezői, a

környezeti tényezők és az élőlényegyüttesek e hatásokra fogékony belső tulajdonságai,

vagyis a toleranciatényezők csakis együtt, kölcsönösen értelmezhetők [JUHÁSZ-NAGY

1986]. A növénypopulációk számos toleranciasajátsággal rendelkeznek, ezek közül az

egyik legalapvetőbb a szervezetek élettani (fiziológiai) tűrőképessége. Az, hogy egy

populáció tartósan fennmaradhat élőhelyén a populációt alkotó egyedek számos

fiziológiai adaptációs tulajdonságának köszönhető. Különösen a környezeti tényezők

szélsőségeinél válnak fontossá ezek (pl. szikesek növényeinek sótűrési

mechanizmusai, sivatagi növények szárazságtűrési alkalmazkodásai). Jóval

általánosabb viszont, hogy egy környezeti tényező hatása a szervezet megváltozott

élettani működésén keresztül vezet el az egyed, majd a populáció növekedésének

módosulásához, végülis az élőlényegyüttes környezeti reakciójához. Ezek indokolják

a növényélettani folyamatok ökológiai szempontú vizsgálatát, vagyis az

ökofiziológiai (más néven fiziológiai ökológiai) megközelítést. Ennek célja a

szünbiológiai jelenségek és folyamatok hátterében húzódó élettani tényezők

(tolerancia-sajátságok) feltárása. Alapkérdése lényegében ökológiai (pl. milyen

okokra vezethető vissza egy populáció jelenléte ill. viselkedése /elszaporodása,

kihalása, stb./), módszertanát a növényélettan (fiziológia) tudományától kölcsönzi (pl.

növényi gázcsere mérése). Mivel a növényi szervezet jelentős részét szénvegyületek

és víz alkotják, a populáció egyedeinek növekedését meghatározó legfontosabb

élettani folyamatok azok szénanyagcseréje (fotoszintézise és légzése) és

vízforgaloma. Nem véletlen tehát, hogy ezeknek a folyamatoknak a vizsgálata az

ökofiziológiai kutatások központi területét képezi. Sokszor a fiziológiai háttér

magyarázata csak a társtudományok (pl. anatómia, biokémia, biofizika) segítségével

lehetséges.

Page 7: Kalapos T. 1994

6

Szünbiológiai jelenségek ökofiziológiai jellegű megközelítése több mint egy

évszázados múltra tekint vissza. A diszciplína igazi kezdetét SCHIMPER 1898-ban

megjelent műve, a "Pflanzengeographie auf Physiologische Grundlage" jelenti

[Billings 1985]. Ez az első kísérlet a korábbi nagy fitogeográfus utazók (pl.

WILLDENOW, HUMBOLDT, DARWIN, GRISEBACH) rajzolta növényföldrajzi kép élettani

és morfológiai-anatómiai hátterének átfogó magyarázatára. Szintén ehhez a

témakörhöz kapcsolódik WARMING "Plantesamfund" (1895) munkája, illetve a

növényanatómiai vonatkozások terén HABERLANDT [1909] könyve (ami már tárgyalja

pl. a Kranz-tipusú levélanatómiát is /pp.259-260/). Az ökofiziológiai szemlélet

kialakulásához feltétlenül hozzájárultak LIEBIG agrokémiai kísérletei (lásd

minimumtörvény). BLACKMAN [1919] kidolgozta a napjainkban is használatos

növényi növekedésanalízis módszerének alapjait (v.ö. 4.2. fejezet), a növényi

vízháztartás termőhelyi vizsgálatának úttörője volt STOCKER [1929] és MAXIMOV.

Ezekről az alapokról szélesedett napjainkra az ökológia egyik legdinamikusabban

fejlődő ágává a növényi ökofiziológia. Különösen az utóbbi harminc év hozott

rendkívül gyors haladást, amely többek között új egységesítő koncepcióknak (pl. a

növényi anyagáramlás Ohm-törvény analógiája), új felfedezéseknek (pl. C4-es

fotoszintézisút), modern méréstechnikáknak (pl. infravörös gázanalízis) és az

ökofiziológiai jellegű kutatások iránt egyre növekvő igényeknek (pl. klímaváltozás

nyomán) tulajdonítható [Mooney 1991].

A szünbiológiai jelenségek kívánt ökofiziológiai magyarázatához

természetes körülmények között végzett ("terepi") és laboratóriumi vizsgálatok ill.

kísérletek együttesen vezethetnek el. Míg az előbbi révén a növényi szervezet

élőhelyi körülmények melletti élettani viselkedése tárható fel, addig az utóbbi

segítségével az azt meghatározó számos tényező bontható elemeire a

hatásmechanizmusok pontosabb megismeréséhez. Az ökofiziológiai vizsgálatok

leggyakrabban a populáció szintjén (ill. a populációt képviselő "átlagegyedeken")

történnek, így a diszciplínát sokszor a populációbiológia részeként is tárgyalják.

Page 8: Kalapos T. 1994

7

Ezekből nőhetnek ki a társulás szintű megközelítések, mikor a többfajú közösség a

vizsgálat tárgya [Tuba & Fekete 1986].

Munkám célja a hazai természetes növényzet egy különösen érdekes

részének, az alföldi homokpuszta növényeinek az ökofiziológiai vizsgálata volt.

Elsősorban arra kerestem választ, hogy ebben az abiotikus tényezők - főleg a vízhiány

- által szélsőségesen limitált közösségben milyen fiziológiai mechanizmusok ill.

alkalmazkodások teszik lehetővé a populációk fennmaradását és a korlátozott

mennyiségű források közös hasznosítását. A növények fotoszintézisét és vízforgalmát

tanulmányoztam. A rendelkezésre álló lehetőségek szerint főképp terepi vizsgálatokat

végeztem (3. fejezet), amit egy laboratóriumi kísérlettel egészítettem ki (4. fejezet).

Egy ezek során felmerült lényeges, hazánkban még csak részben feltárt témakört - a

C4-es fotoszintézisút ökológiai vonatkozásait - részletesen is tárgyalom (5.fejezet).

Page 9: Kalapos T. 1994

8

2. HAZAI ELŐZMÉNYEK

2.1. Ökofiziológiai vizsgálatok homokpusztagyepekben

A homokpusztagyepek szinte félsivatagi világa hamar felkeltette az

ökofiziológus kutatók figyelmét, s ez az érdeklődés ma is lankadatlan. Ennek

köszönhető, hogy a hazai természetes növényzetben a homoki gyeptársulásokról

rendelkezünk talán a legalaposabb ökofiziológiai ismeretekkel. Az első vizsgálatokat

a kiváló erdész-botanikus, MAGYAR PÁL végezte több mint fél évszázada. A

homokfásítás ökológiai megalapozásaként nemcsak a homoki növénytársulásokat és

szukcessziót tanulmányozta, hanem a homokpusztai növények vízforgalmát és

vízhiányát, gyökérzetének morfológiáját, a levelek szerkezetét, a homoktalaj

vízgazdálkodását és a légköri evaporációs viszonyokat is [Magyar 1933, 1935, 1936].

Munkájával az európai ökofiziológia kortárs úttörőjét, a német OTTO STOCKERt

követte, aki a Soproni Bányamérnöki és Erdőmérmöki Főiskola meghívására maga is

végzett vizsgálatokat Magyarországon [Stocker 1928, 1929]. Az ezt követő két-három

évtized inkább cönológiai természetű kutatásai után a hatvanas évektől terelődött

ismét a figyelem az ökofiziológia felé (először főleg erdei növényközösségekben,

majd homokpusztagyepekben is). Az igény részben a homoki gyepek

produkcióbiológiai vizsgálata nyomán merült fel újra [pl. Kovács-Láng & Szabó

1971, 1973, Simon & Kovács-Láng 1972, Kovács-Láng 1974, 1975], hiszen a

fitomasszaprodukciót meghatározó környezeti tényezők mellett fontossá vált a

növényi toleranciasajátságok ismerete is. Így indultak a ma is folyó fotoszintézis- és

vízforgalmi vizsgálatok az ELTE Növényrendszertani és Ökológiai Tanszékén,

csévharaszti és bugaci homokterületeken [Mázsa 1984, Kovács-Láng & Mészáros-

Draskovits 1985, Almádi et al. 1986, Kovács-Láng et al. 1989, Szőke & Draskovits

1991, Kovács-Láng & Kalapos 1992, Kalapos 1989, 1994]. A homokpusztagyepek

modern ökofiziológiai vizsgálatának másik központja a '70-es évektől az MTA

Vácrátóti Ökológiai és Botanikai Kutatóintezéte, elsősorban niche-centrikus

Page 10: Kalapos T. 1994

9

megközelítéssel ["Tece-project"; pl. Fekete et al. 1979, 1980, Fekete & Tuba 1982,

Horánszky & H-Nagy 1977, H-Nagy & Horánszky 1980, Maróti et al. 1984, Tuba

1984a,b,c]. Ezeknek a vizsgálatoknak köszönhetően elsősorban az évelő

homokpusztagyep (Festucetum vaginatae danubiale) hajtásos és kriptogám növényei

fotoszintézisének napi és évszakos dinamikájáról, CO2-fixációs típusáról,

pigmentkompozíciójáról, kloroplasztisz ultrastruktúrájáról és különösen az időszakos

szárazság mindezekre gyakorolt hatásáról nyertünk tudományos ismereteket.

2.2. A C4-es fotoszintézisút kutatása

Röviddel felfedezése után hazánkban is elkezdődött és jelenleg is folyik a

fotoszintetikus CO2 fixáció C4-es útjának tudományos kutatása. H-Nagy [1975] a C3-

as és a C4-es anyagcsere regulációját, elsősorban a megvilágítás hatását

tanulmányozta kukorica csíranövényeknél. Később az évelő homokpusztagyep több

fajának fotoszintézis-típusát vizsgálta Horánszkyval a primér karboxiláló enzimek

(RUBPC és PEPC) aktivitása alapján [Horánszky & H-Nagy 1977, H-Nagy &

Horánszky 1980]. Tuba homokpusztagyepi fotoszintézisökológiai

vizsgálatsorozatában [Tuba 1984a,b,c, Maróti et. al. 1984] is szerepelt C4-es

(Cynodon dactylon) ill. C3-C4 intermediernek vélt faj (Festuca vaginata, v.ö. 5.1.

fejezet). Később munkacsoportjával a löszpusztagyepi degradáció során elszaporodó

C4-es Botriochloa ischaemum gázcseréjét vizsgálta [Tuba et al. 1991]. Nyakas [1990,

1992] számos hazai pázsitfűféle levélanatómiájának elemzésekor kiemelten kezelte a

C4-es növényeket, sokuk C4-altípusát (NAD-ME ill. NADP-ME) is azonosította.

Kalapos [1991] a hazai pázsitfűflóra C3-as és C4-es tagjainak ökológiai viselkedését

hasonlította össze.

2.3. Botanikai vizsgálatok a Duna-Tisza Köze homokvegetációján

A Duna-Tisza Közi homoki növényzetet számos botanikus vizsgálta, itt csak

a leglényegsebbekre térek ki. KITAIBEL PÁL florisztikai tanulmányai után az első

Page 11: Kalapos T. 1994

10

átfogó képet Kerner [1863] adta. Az Alföld flórájában keleti (pontusi) rokonságot

látott és felvetette a növényzet szukcessziójának a gondolatát is. Borbás [1886] a

temesi homokpuszták növényzetét vizsgálta, a homok növényvilágát inkább a Budai-

hegység dolomitnövényzetével rokonította. Soó [1931] a magyar puszta

fejlődéstörténetét elemezve egyértelműen elvetette a pontusi eredetet, amihez

csatlakozott Boros [1952] is növényföldrajzi dolgozatában. A homoki

növénytársulások leírásával, szukcessziójukkal számos tanulmány foglalkozott (pl.

Magyar [1933], Hargitai [1940], Zsolt [1943], Fekete [1992]). A nyáras borókásokat

részletesen vizsgálta Babos [1955] és Szodfridt [1969], azok több típusát állapították

meg. A Festucetum vaginatae társulás produkcióbiológiai kutatása [pl. Verseghy &

Kovács-Láng 1971, Simon & Kovács-Láng 1972, Kovács-Láng 1974, 1975]

rámutatott - többek között - a földalatti fitomassza túlsúlyára, a szervesanyagtermelés

tavaszi és őszi maximumára valamint a kriptogámok produkciós jelentőségére. Ezt

követték a napjainkban is folyó ökofiziológiai vizsgálatok. Az állomány-szintű

vízforgalmat tanulmányozta a Bugaci Ősborókás területén Szabó & Keszei [1985] és

Kertész [1991], a talajnedvesség és a növényzet mintázatát hasonlította össze a

homokpusztagyepben Kertész [1988]. Simon [1984] természetvédelmi szempontból

értékelte a flórát ugyanitt. Újabban az üregi nyúl (Oryctolagus cuniculus) hatását

vizsgálják a nyáras borókások és a homoki gyepek növényzete mai képének

kialakításában [Altbäcker et al. 1991, Szabó et al. 1991, Kertész et al. 1993].

Page 12: Kalapos T. 1994

11

3. A FOTOSZINTÉZIS ÉS VÍZFORGALOM TERMŐHELYI VIZSGÁLATA

AZ ÉVELŐ HOMOKPUSZTAGYEPBEN

3.1. A vizsgálati objektum rövid leírása

A termőhelyi ökofiziológiai vizsgálatokat a Duna-Tisza Közén, a Kiskunsági

Nemzeti Park Bugaci Bioszféra Rezervátumában, évelő homokpusztagyepben

(Festucetum vaginatae danubiale) végeztem. Választásomat az indokolta, hogy az

Alföld klímájának szemiariditása és edafikus tényezők - elsősorban a meszes

homoktalaj kedvezőtlen vízgazdálkodása - miatt itt az időszakos vízhiány a növényzet

fejlődését meghatározó legfőbb tényező. Munkámmal közvetlenül csatlakozhattam az

ELTE Növényrendszertani és Ökológiai Tanszéke által a területen folytatott

cönológiai és ökológiai kutatásokhoz [Simon 1985].

A Duna-Tisza közi Hátság jelentős részét meszes homoklepel, a Duna

pleisztocén kori folyóüledéke borítja. A szél felszínalakító tevékenysége

másodlagosan átformálta ezt, sok helyütt az uralkodó széliránynak megfelelően ÉNY-

DK-i buckasorokba rendezte [Pécsi 1967]. Az így kialakuló helyi mikrodomborzat -

elsősorban a talajvíz eltérő mélysége miatt - fontos meghatározója a rajta kialakuló

talajnak és növényzetnek [Magyar 1933, Szodfridt & Faragó 1968]. A talajvíztől

távoli, főképp buckaháti felszíneket futóhomok váztalaj vagy a talajképződés kezdeti

stádiumát képviselő gyengén humuszos homoktalaj borítja. A kedvezőbb vízellátású

helyeken gyakori a csernozjom jellegű homok, míg - leginkább a homokhátság

nyugati peremén - jellemző a szikesedés [Szücs 1967, Stefanovits 1981].

A Duna-Tisza Köze éghajlata viszonylag egységes, mérsékelt kontinentális

karakterrel és dél felé fokozódó szubmediterrán hatással [Péczely 1967]. Az évi

középhőmérséklet 10-11 °C, az éves csapadékmennyiség 500-600 mm. A napsütéses

órák száma rendszerint 2000-nél magasabb. Hazai viszonylatban hosszú a nyár (nyári

napok száma 85 fölött) és rövid a tél (25-35 téli nap). A csapadékszegény területeken

magas az évi hőingás; a legmelegebb hónap (július) középhőmérséklete 21-22 °C

Page 13: Kalapos T. 1994

12

(hazánk legforróbb nyarú tája!), a leghidegebb januáré -2 °C, nem ritkák a kemény

fagyok. A csapadék eloszlására egy júniusi (55-70 mm) és egy novemberi maximum

(szubmediterrán jelleg), és egy januári minimum (25-30 mm) jellemző. Rendszeres a

szárazság július-augusztusban, a gyér növényzettel borított homokfelszín csekély

párologtatása nyomán alacsony a levegő páratartalma (a sokéves átlag 74%). Az évi

átlagos vízhiány Kiskunfélegyháza térségében eléri a 175 mm-t [Péczely 1967]. A

vizsgálataim helyétől mintegy 25 km-re fekvő Kecskemét klímadiagramját és a

vizsgálati évek klimatogramjait mutatja be a 3.1. ábra. A klimatogramokon látható,

hogy 1992 és 1993 rendkívül száraz esztendők voltak, amikor az arid periódus a

tavaszra is kiterjedt.

A Duna-Tisza Köze klímazonális természetes vegetációja a szubmediterrán

jellegű erdőssztyepp, ami átmeneti formáció az európai lomboserdők és a dél-orosz

füves puszták (sztyepp) között [Soó 1931, Jakucs 1981, Zólyomi & Fekete 1994]. A

csapadék itt nem elégséges zárt lomboserdő kialakulásához, így pusztagyep- és

erdőfoltok sajátos mozaikja jön létre. Az Alföld erdősültsége a jelenleginél jóval

nagyobb lehetett az emberi civilizáció előtt, a pusztai élőhelyek jelentős része

antropogén hatásra keletkezett ill. terjedt ki (pl. erdők mértéktelen kitermelése,

felégetése termőföldnyerésért, túlzott legeltetés, folyószabályozások nyomán [Soó

1931, Magyar 1960]). Feltehetőleg még a legerdősültebb időszakokban is

fennmaradhattak a boreális sztyeppvegetáció fragmentumai edafikus élőhelyeken (pl.

homok- és szikespusztákon). A magyar középhegység ("Ősmátra") dolomitlejtőiről

("hegyről füvesedés", BORBÁS) és ezekről a sztyeppfragmentumokról népesedhetett

be újra az alföldi puszta a jégkorszakok után [Soó 1931, Boros 1952].

A Duna-Tisza közi Hátság meszes homokján a klíma és az edafikus tényezők

együttes hatásaként sajátos növényzet alakult ki, ami sokban eltér az Alföld más

homokvidékei (Nyírség, Belső Somogy) savanyú homokjának vegetációjától is [Boros

1952]. A homoki szukcesszióval számos tanulmány foglalkozik [Soó 1931, Magyar

1933, Hargitai 1940, Fekete 1992], ám egyes pontjai (pl. a nyáras borókások eredete)

még ma is vitatottak [Zólyomi 1958, Soó 1960, Szodfridt 1969, Fekete 1992].

Page 14: Kalapos T. 1994

13

3.1. ábra. A vizsgálatok helyétől mintegy 25 km-re, ÉNY-ra fekvő Kecskemét állomás GAUSSEN-WALTER féle klímadiagramja és a vizsgálati évek adataiból szerkesztett klimatogramok. Péczely [1967] és az 1991-93 évi Időjárási havijelentések (Országos Meteorológiai Szolgálat) adatai alapján. A hagyományos jelölésmódnak megfelelően a függőlegesen vonalazott terület a humid, a szaggatott vízszintes vonalakázású a szemiarid, a pontozott terület pedig az arid időszakot mutatja. A klimatogramok bal felső sarkában feltüntetett számadat az évi középhőmérsékletet (ºC), a jobb felsőben az évi csapadékösszeget (mm) jelzi.

Page 15: Kalapos T. 1994

14

A mikrodomborzat és a talajtulajdonságok nagyfokú heterogenitása miatt a

szukcesszió különböző állomásait képviselő társulások egyidejűleg jelennek meg,

egymás szoros közelségében. A homoki szukcessziót részletesen ismerteti Magyar

[1933], Hargitai [1940] és Zsolt [1943], legújabban Fekete [1992] közöl ezektől több

ponton is eltérő szukcessziós sémát.

A homok pionír növényzete az egyéves rozsnok gyep (Brometum tectorum

/Kerner 1863/ Bojkó 1934), ami az élettelen futóhomokon vagy a bolygatás hatására

másodlagosan lecsupaszodott felszineken jelenik meg. Ezt követi a sokszor hosszú

ideig fennmaradó évelő nyílt homokpusztagyep (Festucetum vaginatae danubiale Soó

1929). Szárazságtűrő xerofitonok tökéletlen záródású gyepje ez kriptogámokkal és

egyévesekkel, leggyakrabban buckahátakon vagy déli buckaoldalakon található

"edafikus félsivatag". A homokpusztarét (Astragalo-Festucetum sulcatae /Magyar

1933/ Soó 1956) a legkedvezőbb nedvességellátottságú helyeken jellemző. A homok

két természetes erdőtársulása a nyílt, szárazabb talajú, melegebb és szárazabb

mikroklímájú, sztyeppelemekben gazdag pusztai tölgyes (Festuco-Quercetum roboris

/Harg 1940/ Soó 1956), és a zárt, üdébb talajú, hűvösebb és nedvesebb mikroklímájú,

mezofilabb aljnövényzetű gyöngyvirágos tölgyes (Convallario-Quercetum roboris

/Soó 1934/ 1956). Gyakoriak még a nyáras borókások (Junipero-populetum albae

Zólyomi 1950), a társulás eredete ma is vitatott. Egyesek a homoki tölgyesek

degradációja eredményének tekintik [Boros 1952, Zólyomi 1958, Soó 1960], mások

szerint a homoki gyepekből alakulhattak ki az erdőtenyészet számára legsivárabb

termőhelyeken [Szodfridt 1969, Fekete 1992].

A Bugaci "Ősborókás" a Duna-Tisza Közi buckavidék tájképileg egyik

legmegkapóbb része, nyáras borókások és pusztagyepfoltok jellegzetes mozaikja. Itt

jelöltem ki vizsgálataim mintaterületeként egy kb. 100m * 30m kiterjedésű, enyhén

degradált évelő homokpusztagyep (Festucetum vaginatae danubiale) állományt az

ELTE Növényrendszertani és Ökológiai Tanszékének "Juniperus" kutatóállomása

közelében (1. fotó). Összehasonlítva a társulás másutt (pl. Csévharaszton) előforduló

állományaival feltűnő a bugaci gyepben a növényzet alacsony borítása, ami

Page 16: Kalapos T. 1994

15

feltehetően az utóbbi évtizedben erősen elszaporodott üregi nyúl (Oryctolagus

cuniculus) intenzív legelésével magyarázható [Altbäcker et al. 1991, Szabó et al.

1991]. Szintén jelenleg folyó szukcessziós változás itt a fehér- és szürke nyárak

(Populus alba et canescens) erőteljes inváziója a buckaközi völgyekből a

pusztagyepfoltokba. Ennek magyarázata valószínűleg a talajvízszint 1-3 m-nyire

tehető süllyedése a környékbeli vízrendezések és az utóbbi évtized

csapadékszegénysége következtében [Kertész et al. 1993]. Az itt vizsgált

gyepállományban Koeleria glauca és Carex liparicarpos a domináns fajok, gyakori

még Potentilla arenaria, Alkanna tinctoria és nyáron Tragus racemosus is. Jóval

ritkább viszont a társulás névadója, Festuca vaginata. Jelentős a kiszáradás-tűrő

kriptogámok (mohák és zúzmók) előfordulása. 1. fotó. A termőhelyi ökofiziológiai vizsgálatok helyszine (részlet). Nyáras borókás övezte, enyhén degradált évelő homokpusztagyep (Festucetum vaginatae danubiale) állomány a Bugaci Ősborókás területén.

Az ökofiziológiai vizsgálatok természetüknél fogva csak néhány populáción

végezhetők egyidejűleg, így ezekhez a gyep domináns és néhány jellemző növényét

választottam ki. Részletesen a következőket tanulmányoztam:

Page 17: Kalapos T. 1994

16

Festuca vaginata W. et K. (Poaceae). Tömött fűcsomókat képező, számos xeromorf

bélyeggel (pl. hengeres levél, viaszbevonat) rendelkező évelő növény (2. fotó).

Dús gyökérzetével sűrűn behálózza a laza talajt, homokpusztákon tömeges

lehet. Mészkedvelő pannóniai endemizmus.

Koeleria glauca (Schkuhr) DC. (Poaceae). Dúsan bokrosodó évelő fű, tövén

hagymaszerűen duzzadt. Viszonylag mélyre hatoló, sűrű gyökérzetű, inkább

mészkedvelő euroszibériai faj (3. fotó).

Tragus racemosus (L.) All. (Poaceae). Elfekvő szárú, a nódusokon ismét legyökerező

és elágazó, gyors fejlődésű nyári egyéves növény (4. fotó). Trópusi-szubtrópusi

eredetű kozmopolita, C4-es fotoszintézisű faj.

Carex liparicarpos Gaud. (Cyperaceae). Tarackos geofiton, laza és meleg talajokon

(pl. homok, lösz) az Alföldön és a Középhegységben egyaránt megtalálható.

Pontusi-mediterrán évelő faj (5. fotó).

Alkanna tinctoria (L.) Tausch. (Boraginaceae). Mélyrehatoló gyökerű, elfekvő szárú,

sűrűn serteszőrös évelő növény (6. fotó). A meszes homokpuszták jellemzője,

szubmediterrán faj, hazánkban éri el elterjedése északi határát.

Potentilla arenaria Borkh. (Rosaceaee). Heverő hajtásai kúszó, elágazó gyöktörzsből

erednek, az egész növény sűrűn csillagszőrökkel borított (7. fotó). Száraz

gyepek társulásközömbös, igénytelen évelő növénye, közép-európai (-szarmata)

faj.

Egyes vizsgálatokba további homokpusztagyepi növényeket is bevontam, így

Bromus tectorum L., Colchicum arenarium W. et K., Cynodon dactylon (L.) Pers.,

Lithospermum arvense L., Stipa borysthenica Klokov és Viola kitaibeliana R. et Sch.

fajokat, ill. összehasonlítás céljával egy szárazságtűrő búzafajtát is (Triticum aestivum

L. cv. Katya-A-1).

Page 18: Kalapos T. 1994

17

2. fotó. Festuca vaginata (Poaceae), az évelő nyílt homokpusztagyep (Festucetum vaginatae danubiale) névadó bennszülött növényfaja.

Page 19: Kalapos T. 1994

18

3. fotó. Koeleria glauca (Poaceae) termésérlelés állapotában a homokpusztagyepben.

4. fotó. Tragus racemosus (Poaceae) talajfelszinhez simuló, jellegzetesen klonális növésű hajtásai közvetlenül virágzás előtt.

Page 20: Kalapos T. 1994

19

5. fotó. Carex liparicarpos (Cyperaceae) tavaszi virágzó hajtása idei zöld és előző évi elszáradt levelekkel.

6. fotó. Alkanna tinctoria (Boraginacae) virágzó hajtása a homokpusztagyepben. A növény körül a szürke nyár szélhordta szőrös magvai fehér pamatot alkotnak.

Page 21: Kalapos T. 1994

20

7. fotó. Potentilla arenaria (Rosaceae) az évelő nyílt homokpusztagyepben. 3.2. Az alkalmazott ökofiziológiai vizsgáló módszerek

Az ökofiziológia fejlődését sokáig a megfelelő mérési módszerek ill.

műszerek hiánya hátráltatta (pl. az 1960-as évekig nem állt rendelkezésre a

vízpotenciál gyors, rutinszerű mérésére szolgáló eljárás). A növényélettani változókat

mérő terjedelmes műszerek jobbára laboratóriumi használatra készültek, pontos

működésükhöz állandó környezetet igényeltek. Így a terepi ökofiziológiai méréseket

rendszerint több éves műszaki fejlesztőmunka előzte meg, míg egy-egy munkacsoport

elkészítette saját hordozható mérőállomását [Field et al. 1989]. A nyolcvanas évek

elejétől már kereskedelmi forgalomban is elérhetővé vált néhány, terepen is

használható mérőműszer (pl. LI-COR /USA/, ADC /Anglia/ gyártmányú készülékek).

Ezek általában kis méretűek, masszívak és terepi körülmények mellett is pontosak.

Napjainkban óriási tempójú a fejlődés ezen a téren; a műszerek két-három évente

piacra kerülő újabb változatai egyre tökéletesebbek (pl. a növénykörnyezet egyre

kisebb befolyásolása, automatikus adatgyüjtés, nagy adattömegek tárolása, közvetlen

számítógépes kapcsolat terén).

Page 22: Kalapos T. 1994

21

Abban a szerencsés helyzetben voltam, hogy munkámhoz több ilyen, a

nemzetközi ökofizológiai gyakorlatban széleskörűen alkalmazott korszerű

mérőműszert használhattam. Ezek jórészt olyan új mérési technikák, melyek a hazai

gyakorlatban eddig még nem vagy csak kevéssé voltak ismertek. Igy feladatom

kisebb részben metodikai jellegű is volt az eljárások alkalmazásaval a vizsgált

objektumra. Az ökofiziológiai mérőmódszerekről számos alapos áttekintés jelent meg

[Eckardt 1965, Sesták et al. 1971, Slavík 1974, Coombs et al. 1985, Marshall &

Woodward 1985, Pearcy et al. 1989].

3.2.1. A levél vízállapotának vizsgálata

A levél vízállapotának jellemzésére használt két leggyakoribb mennyiség a

levél relatív víztartalma (RWC) és a levél vízpotenciálja (Ψl) [Slavík 1974].

Vizsgálataim során a levél teljes víztelítettségéhez szükséges vízhiányát (WSD=100-

RWC, %) és/vagy vízpotenciálját követtem. Ψ származtatott termodinamikai

mennyiség, ami azt mutatja, hogy mekkora energiával kötődik a víz a növényi

szövetben [Slatyer 1967, Nobel 1983]. Előjele negatív, minél alacsonyabb

(negatívabb) érték annál nagyobb munkavégzés szükséges a víz eltávolításához. Bár a

termodinamikai alpozású Ψ lehetővé teszi a talaj-növény-levegő rendszer

nedvességállapotának egységes kezelését, mégsem alkalmas egymagában a növény

vízállapotának teljes körű jellemzésére, mivel az egyes élettani folyamatok a

vízállapot más-más aspektusára érzékenyek [Kramer 1983, Passioura 1982, 1988].

Ezért szükséges lehetőség szerint a növényi víztartalom és vízpotenciál együttes

nyomonkövetése.

3.2.1.a. A levél vízhiányának megállapítása

A levél pillanatnyi vízállapotának legrégebben használt jellemzője a

víztartalom. Főleg összehasonlító vizsgálatoknál, nem a levélben tárolt víz abszolút

mennyisége a fontos, hanem a levél teljes víztelítettségének arányában kifejezett ún.

relatív nedvességtartalom (RWC) vagy az ahhoz éppen hiányzó vízmennyiséget

Page 23: Kalapos T. 1994

22

mutató víztelítettségi hiány (WSD). Ennek meghatározása egyszerű tömegmérések

útján lehetséges a következő eljárás szerint [Stocker 1929, Slavík 1974]. A levél

(vagy levélszegment) friss tömegét (mf) rögtön a növényről levágás után mérjük,

majd a leveleket nedveskamrába helyezzük hogy víztelített állapotukat elérjék.

(Nedveskamraként itt dugóval lezárt kémcsővek szolgáltak aljukon 0.5-1 cm-ig csap-

vagy kútvízzel feltöltve, amibe a levél vágott felülete merült. A kamra oldalfalán

húzódó nedves szűrőpapírcsík páratelt légteret biztosított. Minden minta külön

nedveskamrába került.) Elővizsgálataim szerint a víztelített állapot eléréséhez

elégséges volt hat óra is a kis méretű mintáknál, szemben mások 12-24 órás értékeivel

[Catsky 1965, Almádi 1982]. Mértem a víztelítődött levelek tömegét (ms), majd

azokat 105 °C-on szárítószekrényben szárítottam 3-4 óráig. Végül megmértem a

minták száraztömegét (md). A levelek vízhiányát (WSD) a következő képlet szerint

számítottam [Slavík 1974]:

WSD = {(ms-mf) / (ms-md)} * 100 (%)

A tömegmérésekhez egy MT4 típusú (AVK, Budapest) torziós mérleget

használtam (0.1 mg leolvasási pontossággal és 0-200 mg mérési tartománnyal).

3.2.1.b. A levél vízpotenciáljának (Ψl) mérése

A vizpotenciál mérésének manapság két legelterjedtebb módszere a

nyomáskamra [Scholander et al. 1965, Slavík 1974] és a termoelemes pszichrometria

/ higrometria [Slavík 1974, Koide et al. 1989]. Munkám során mindkét metodikát

használtam; a homokpusztagyepi vizsgálatoknál a termoelemes, a klímakamrás

kísérletnél (4. fejezet) a nyomáskamra eljárást. A növényi vízpotenciál mérésének

további módszereiről Slavík [1974] ad alapos áttekintést.

A.) Nyomáskamra (pressure chamber) módszer

Ennél az eljárásnál a frissen levágott növényi részt (levelet, ágat vagy

gyökeret) egy légmentesen záródó, erős falú nedveskamrába helyezzük úgy, hogy

abból csak a vágott felület nyúlik ki. A kamrán belül lassan emeljük a nyomást

Page 24: Kalapos T. 1994

23

(sűritett levegő vagy nitrogén felhasználásával) mindaddig, míg a kinyúló vágott

felületen a növény szállítóelemeiből kipréselődő nedv csepp formájában meg nem

jelenik. Az ennek eléréséhez szükséges nyomás (leolvasható a kamrához kapcsolt

nyomásmérőről) ellentétes előjellel megegyezik a xylémben uralkodó

nyomáspotenciállal (Ψp). Ez viszont egyensúly esetén (nem párologtató növényi

szövetnél a kamranyomás lassú emelése mellett) egyenlő a sejtek citoplazmájának

vízpotenciáljával (Ψ) (Passioura 1982). Egyszerűsége, gyorsasága és olcsósága miatt

ezt a módszert használják leggyakrabban a növényi vízpotenciál mérésére. Terepen

különösen jól alkalmazható, mert a mérés nem igényli állandó hőmérséklet

fenntartását. A módszer felhasználásával a szöveti nedvességviszonyok további

komponensei (turgornyomás, ozmótikus potenciál, a sejtfal elasztikus modulusa) is

megállapíthatók az ún. nyomás-térfogat (P-V) analízis segítségével [Tyree & Hammel

1972, Koide et al 1989]. A talajszárazodás kísérletben (4.fejezet) mértem Ψl-t

nyomáskamrával (TFDL gyártmány, Wageningen, Hollandia), nyomásfokozó gázként

sűrített levegőt használtam.

B.) A termoelemes pszichrometria / higrometria eljárás

A vízpotenciál nyomáskamránál pontosabb mérését teszi lehetővé a

termoelemes pszichrometria / higrometria, de az eljárás hőmérsékleti érzékenysége

miatt inkább csak laboratóriumi körülmények között használható. A módszer lényege

az, hogy egy légmentesen záródó, kis térfogatú és állandó hőmérsékletű kamrába zárt

növényi minta vízpotenciálja (Ψ) elégségesen hosszú idő után páraegyensúlyba kerül

a felette levő légtér parciális vízgőznyomásával (e). Ekkor a kamralevegő egyensúlyi

légnedvességét (RH=e/es, ahol es a telítési vízgőznyomás az adott hőmérsékleten)

mérve számítható a növényminta szöveti vízpotenciálja (Ψ) [Koide et al. 1989]. A

páratartalmat a mintakamra légterébe nyúló parányi termoelem méri a felületéről

elpárolgó víz okozta hőmérsékletcsökkenésen keresztül. A mérés alapvetően

kétféleképpen történhet:

Page 25: Kalapos T. 1994

24

1.) "Nedves hőmérő (Wet Bulb)" technika (pszichrometria). Ennek elve megegyezik a

meteorológiai gyakorlatban a légnedvesség mérésére használt száraz-nedves

hőmérőpáréval, ahol a nedves higanyzsákot hűti az arról elpárolgó víz, mégpedig a

levegő páratartalmával arányos mértékben. A használt mérőműszerben egyetlen

termoelem tölti be mindkét hőmérő szerepét: az elemi mérési ciklusban először

"száraz" hőmérőként funkcionál. Ezután a termoelemet lehűtve víz csapódik ki annak

felszínén a kamralégtérből, mellyel mint "nedves" hőmérő működik a következő

lépésben, mindaddig míg a víz teljesen elpárolog róla. A két hőmérsékleti adat

különbségéből számítható a légtér páratartalma és így a minta vízpotenciálja is. A

legtöbb termoelemes készülék így működik.

2.) "Harmatpont (Dew Point)" technika (higrometria). Ez az eljárás csak annyiban

különbözik az előzőtől, hogy a nedves termoelemet a mérés ideje alatt egy periodikus

ellenárammal hűtjük (a Peltier-effektus alapján) épp annyira, hogy ellensúlyozzuk a

melegebb kamrakörnyezet fűtő hatását. Ekkor az érzékelő hőmérséklete beáll a

harmatpont értékére, mikoris az azon kicsapódó és az arról elpárolgó víz épp

egyensúlyban van [Anonymous 1986, Koide et al. 1989]. A harmatpont az egyik

legalkalmasabb mennyiség a páratartalom leírására [Jones 1992]. A higrometriás

technika Ψ pontosabb mérését teszi lehetővé mint a pszichrometriás eljárás [Koide et

al. 1989], de nem minden készülék képes erre.

A termoelemes pszichrometria / higrometria széles körű terepi használatát

részben a hőmérsékleti stabilitás igénye, részben pedig a páraegyensúly növényi

mintáknál tapasztalható lassú (több óráig tartó!) beállása hátráltatja. Ez utóbbi a

kutikula dörzsöléses felsértésével gyorsítható [Savage et al. 1984], de a durva

beavatkozás befolyásolhatja a mérési eredményt. A pszichrometria elméletének és

gyakorlatának alapos áttekintését adja Brown és Van Haveren [1972].

A vízpotenciál mérésére egy WESCOR HR-33T típusú készüléket (Wescor

Inc., Logan, Utah, USA) használtam 10 db WESCOR C52-SF mérőkamrával. Így

egyszerre tíz levélmintát mérhettem. Elővizsgálataim azt mutatták, hogy a

homokpusztagyepi xerofitonok levelénél 4-5 óra szükséges a páraegyensúly

Page 26: Kalapos T. 1994

25

kialakulásához a mérőkamrában. Ezt gyorsító beavatkozást nem alkalmaztam. A

készülékkel a pszichrometriás és a higrometriás mérést is elvégeztem minden mintán

(ún. kombinált üzemmódban, Anonymous [1986]), de a vízpotenciál számításakor

csak a pontosabb higrometriás eljárás adatait használtam. A műszer kalibrálását 0.1,

0.3, 0.5 és 1.0 mólos NaCl oldatokkal végeztem. A mérőkamra méretei csak rendkívül

apró (<0.3 cm2) minta behelyezését tették lehetővé. A mintavételnél ügyeltem arra,

hogy az a lehető legjobban tükrözze az egész levelet. A termőhelyen gyüjtött

leveleket azonnal a közeli (<100m) kutatóház laboratóriumába vittem, ahol a

vízpotenciál pszichrometriás / higrometriás mérése viszonylag stabil

szobahőmérsékleten történt.

A termoelemes pszichrometria segítségével a talaj vízpotenciálja is mérhető

[Brown & Van Haveren 1972], de számos tapasztalat mutatja, hogy a mérőfejek (PCT

és PST, Wescor Inc., USA) nagyon érzékenyek a talajban fenálló hőmérsékleti

gradiensre [Fernengel 1989], így legfeljebb csak a hajnali órákban adhatnak

elfogadható eredményt, amikor minimális a vertikális hőáram [Rundel & Jarrell

1989]. Ugyanakkor túlságosan kicsiny talajtérfogat vízpotenciálját mérik, és nem

használhatók sós vagy közel víztelített talajokban. A termoelemes vízpotenciálmérés

alkalmazhatóságát vizsgálta a nyílt homokpusztagyep talajában Fernengel [1989].

3.2.1.c. A levél vízhánya és vízpotenciálja közötti összefüggés vizsgálata

A lomblevél vízhiánya (WSD) és vízpotenciálja (Ψl) közötti kapcsolatot az

1989-91 években, a vegetációs periódus sporán több alkalommal, azonos a

gyepállományból gyüjtött növényanyagon vizsgáltam. A mérések azonnal a levelek

begyüjtése után történtek a közeli laboratóriumban. (Kivétel volt néhány esős nap,

mikor a leveleket 15-60 percig előzetesen hervasztottam a laboratóriumi asztalon, 15-

18 °C-on azért, hogy elkerüljem túl sok adat gyüjtését a levél közel víztelített

állapotáról). Bár a levelek korát nem tudtam pontosan megállapítani, külön ügyeltem

arra, hogy csak teljesen fejlett, ép leveleket gyüjtsek. Ugyanabból vagy - az apró

efemereknél - szomszédos levelekből vettem mintát Ψl és WSD méréséhez. A levél

Page 27: Kalapos T. 1994

26

víztelítettségi hiányát tömegméréses módszerrel (3.2.1.a. fejezet), vízpotenciálját

termoelemes higrometriával (3.2.1.b. fejezet) határoztam meg. A műszerek 10 minta

szimultán kezelését, így napi 30-40 mérést tettek lehetővé.

Az adatok értékelése során nem alkalmazhattam az ún. vízpotenciál-izoterma

vagy P-V analízist [Tyree & Richter 1982], mivel minden adatpár más-más levélről

származott és a levél vízállapotának csak egy korlátozott tartományát tapasztaltam.

Ezért egy egyszerűbb eljárást követtem: az egyidejűleg mért víztelítettségi hiány és

vízpotenciál adatpárokra egyenest illesztettem. Bár a két változó kapcsolata

elméletileg nem teljesen lineáris, mégis kielégíthetően közelíthető egy egyenessel

[Jones 1992]. Mivel az összefüggés a telítettséghez közeli szöveti vízállapotnál tér el

a linearitástól [pl. Jarvis & Jarvis 1963, Knipling 1967], csak azokat az adatpárokat

használtam az értékelés során, ahol a Ψl értéke -0.5 MPa-nál alacsonyabb

(negatívabb) volt (önkényesen választott küszöbérték). Ugyanezért nem vettem

figyelembe a regresszióból kapott tengelymetszetet sem, csak az egyenes

meredekségét értelmeztem. Az adatok ilyen kezelése nem sérti az eredmények

ökológiai értelmezhetőségét, hiszen termőhelyi körülmények között a levelek

víztelített állapota ritka és legfeljebb rövid ideig tartó, valamekkora vízhiány szinte

mindig fennáll bennük. Kéttényezős varianciaanalízist [Sváb 1981] alkalmaztam az

interspecifikus és szezonális különbségek vizsgálatára. A levelek százalékos

szárazanyagtartalmát az ebben a vizsgálatsorozatban ill. korábban végzett WSD

mérések adatainak felhasználásával számítottam. A tavaszi és nyári értékek fajonkénti

összevetésére t-tesztet [Sváb 1981] alkalmaztam.

3.2.2. A levél pillanatnyi gázcseréjének mérése

A levél asszimilációs aktivitását tükröző (CO2 és H2O) gázcsere ma már

terepen is mérhető úgy, hogy a levelet (vagy annak részét) mérőkamrába zárjuk és

mérjük a kamra gázösszetételében vagy magában a levélben időegység alatt

bekövetkezett változást. A pontosság egyik feltétele, hogy a beavatkozás a lehető

legkevésbé módosítsa a levél állapotát (anyagcseréjét, környezetét). A technika ma

Page 28: Kalapos T. 1994

27

már nemcsak egyetlen levél, hanem akár egész növény vagy kisebb állomány

gázcseréjének mérésére is alkalmazható.

3.2.2.a. A nettó fotoszintézis (Pn) mérése

Az ún. izotópos eljárás [Sesták et al. 1971, Field et al. 1989] napjainkig

használatos a hazai gyakorlatban terepi méréseknél is (pl. Fekete & Tuba 1982,

Kovács-Láng & Mészáros-Draskovits 1985). Itt a mérőkamra 14C-el jelölt CO2-t

tartalmazó légköréből az izotópnak a levél szövetébe épülését mérik a növényminta

így szerzett radioaktivitása útján. Rövid expozíciós idő (0.5 - 2 perc) mellett az eljárás

a bruttó CO2 fixáció (Pn + respiráció) mértékét adja. Vizsgálataim során ezt a

módszert nem használtam.

A fotoszintézis intenzitásának vizsgálatára ma leggyakrabban használt

rendszerekben infravörös gázanalizátor (IRGA) követi a levélkamra légterének CO2

koncentráció változását. A módszer a nettó fotoszintézist méri (Pn, bruttó CO2 fixáció

- légzési CO2 veszteség). A rendszer felépítése alapvetően háromféle lehet [Sesták et

al. 1971, Field et al. 1989]:

a.) Zárt rendszer: a mérőkamrába zárt levél folyamatosan csökkenti a kamra

légterének CO2 tartalmát. Az időegység alatt bekövetkező CO2 koncentráció-

változásból számítható a fotoszintézis intenzitása.

b.) Differenciális nyílt rendszer. A növénykamrán folyamatosan áthaladó ("analízis")

és az azt elkerülő ("referencia") levegőáram CO2 koncentrációjának különbségéből

számítható a kamrába zárt levél CO2 fogyasztása, azaz nettó fotoszintézise (Pn). A

zárt rendszerrel szemben itt a mérés alatt állandó a kamrán belüli CO2 koncentráció.

c.) Kompenzációs nyílt rendszer. Felépítése hasonló az előzőéhez, de itt a

növénykamrán átáramló levegőbe éppen annyi többlet-CO2-t juttatnak, mint amennyit

a levél fotoszintézisével elhasznál. Igy a kamra és a referencia levegőáramok CO2

koncentrációja megegyezik, Pn-t a koncentrációk kiegyenlítéséhez szükséges

gázmennyiségből számítják. (A rendszerek részletes ismertetését adják Sesták et al.

[1971] és Field et al. [1989]).

Page 29: Kalapos T. 1994

28

Méréseim során egy terepi használatra kifejlesztett differenciális nyílt

rendszert alkalmaztam a következő kiépítésben: ADC LCA2 típusú infravörös

gázanalizátor, PLC2(B) vagy PLC2(N) Parkinson levélkamra, ADC ASU(MF)

levegőellátó-egység és ADC DL2 adatgyüjtő (valamennyi készülék az Analitical

Development Co., Hoddesdon, UK terméke). Levágás után a levele(ke)t azonnal a

mérőkamrába helyeztem, ahol a mérés 1-1.5 percen belül befejeződött. (A viszonylag

apró homokpusztagyepi növényeknél nem végezhettem a méréseket intakt leveleken.

Számos megfigyelés mutatja, hogy ilyen rövid idő elteltével még nem jelentkezik a

levágásnak mérhető hatása a levél gázcseréjén.) A levél kicsiny mérete miatt a

legtöbb vizsgált fajnál egyszerre több (általában három) levél került egyszerre a

mérőkamrába (kivétel Alkanna tinctoria, Colchicum arenarium és Potentilla

arenaria, ahol egyetlen levél is mérhető CO2-tartalom változást okozott). A mérés

ideje alatt a mérőkamrát a levél természetes pozíciójához hasonlóan helyeztem el a

gyepben. (A mérőkamra légterének hőmérséklete rendszerint néhány (1-5) °C-al az 1

m magasságban mért külső léghőmérséklet fölé emelkedett). A levélkamrában a

levegő 200 ml/perc sebességgel áramlott. Pn mellett a mezofillum CO2 koncentrációja

(ci) és a levélhőmérséklet (Tl) is számítható volt a mért adatokból [Anonymous 1985-

89, von Caemmerer & Farquhar 1981]. A fotoszintézist egységnyi levélterületre

vonatkoztattam. Számos alkalommal mértem a vizsgált levelek száraztömegét is, így

száraztömegegységre is számítható volt Pn (F.1. táblázat).

3.2.2.b. A transzspiráció (E) mérése

A levéllemez pillanatnyi transzspirációját (E) a fotoszintézissel egyidejűleg,

ugyanazzal a készülékkel mértem. A kamrába zárt levél nemcsak a kamralégtér CO2

tartalmát csökkenti, hanem annak páratartalmát növeli transzspirációja folytán. A

kamrába épített érzékelő (termoelem) segítségével mérhető a be- és kilépő levegő

nedvességtartalma (RH), melyek különbségéből számítható a transzspiráció

intenzitása. A mérőműszer száraz (RH<20%) beáramló levegővel működik, így a

mérőkamrában a levél párologtatása határozza meg a légnedvességet (<50-60%). Ez

Page 30: Kalapos T. 1994

29

sokszor valamivel alacsonyabb volt a külső légtér RH-jától. A transzspiráció (E)

mellett a sztómás vízpáravezetés (gst) is számítható volt a mért adatokból

[Anonymous 1985-89, von Caemmerer & Farquhar 1981]. A transzspirációt a levél

egységnyi területére adtam meg, az egységnyi száraztömegre számított értékek a

függelékbe kerültek (F.1. táblázat).

A pillanatnyi fotoszintetikus vízhasznosítási hatékonyságot (WUE) az

egyidejűleg mért Pn és E aktivitások (egységnyi levélterületre vonatkoztatott, mólban

kifejezett értékek) hányadosaként számítottam . A levél gázcseréjével kapcsolatos

számításokat von Caemmerer és Farquhar [1981] szerint végeztem.

3.2.3. Az ökofiziológiai vizsgálatokhoz kapcsolódó egyéb mérések és számított

mutatók

A levélterület mérése

A levélterület mérése egy LI-3000A (a klímakamrás kísérletnél egy LI-3100)

típusú levélterületmérővel (LI-COR Corp., Lincoln, Nebraska, USA) történt. Az

általános gyakorlatnak megfelelően levélterületen mindig a lemez egyik oldalának a

területét (kivetített levélterület, projected leaf area) értettem. (A levéllemez mindkét

oldalának együttes területe adja a levélfelületet). A legapróbb leveleket átlátszó

fóliába zártam a méréshez, vagy a műszert az automata minta-továbbító egységgel

(LI-3050A) használtam [Anonymous 1988]. Festuca vaginata hengeres levelét a

többi fajéhoz hasonlóan mértem, de a méréssel kapott kivetített területértékeket π/2-

vel szoroztam. Az így kapott fél-hengerpalást felszíneket használtam a továbbiakban

mint Festuca levélterületét.

A durva levélszerkezet jellemzése

A vizsgált fajok levélszerkezetének összehasonlítására a levélterület- és

tömegmérések adataiból számítható egyszerű mutatókat használtam. Ezek a

következők voltak: a víztelített levél százalékos szárazanyagtartalma (DM%), a

fajlagos levéltömeg (SLW= {1/SLA}*103) és a levél fajlagos víztartalma (SWC).

Számításuk a következőképp történt:

Page 31: Kalapos T. 1994

30

DM% = (md/ms)*100 (%),

SLW = md/LA (g szárazanyag m-2 levél) és

SWC = (ms-md)/LA (g víz m-2 levél),

ahol md a levél száraztömege, ms a víztelített tömege, LA pedig a levél területe.

DM% és SLW a levél esetleges szklerofill jellegét, SWC a levélszukkulencia

mértékét mutatja. Az irodalomban SLW-t nevezik még szklerofillia indexnek

[Larcher 1975] vagy keménylevelűségi hányadosnak is [Almádi 1985]. Az itt használt

fajlagos víztartalom (SWC) annyiban tér el Almádi [1985] szukkulencia indexétől,

hogy számításánál nem a levél friss tömegét (mf), hanem víztelített tömegét (ms)

vettem alapul (ez utóbbi ugyanis független a levél vízállapotának napi változásától).

Különbség az is, hogy a számításoknál itt a levélterüleletet használtam levélfelület

helyett.

Mikroklímamérések

A külső légtér hőmérsékletét és páratartalmát egy Assmann szellőztetett

száraz-nedves hőmérőpárral mértem árnyékban, 1m-rel a gyep szintje felett. A

fényintenzitást a Parkinson levélkamrába (PLC/B/ vagy PLC/N/) épített quantum-

szenzor érzékelte. A felhőborítottságot és a légmozgást csak kvalitatív kategóriákban

rögzítettem a jegyzőkönyvben. A talajnedvességet a gyep növénytelen, "üres" foltjai

alól, rendszerint 10 cm-es mélységből vett általában 10 mintából határoztam meg

gravimetriás úton (ún. szárítószekrényes eljárás [Stefanovits 1981]).

3.2.4. Mintavétel

Néhány általános mintavételi szabályt követtem. Munkám során a

növényanyagot végig ugyanabból a kb. 100m*30m kiterjedésű homokpusztagyep-

állományból gyüjtöttem. Bár a levelek korát nem tudtam megállapítani, külön

ügyeltem arra, hogy csak teljesen kifejlett, ép leveleket gyüjtsek. Amennyiben egy

mintában több levél (vagy levéldarab) szerepelt, akkor azokat mindig külön

egyedekről vettem. Az egyedek kiválasztásánál kerültem az állomány feltűnően

nagyméretű (pl. üregi nyúl ürülékkupacai körüli) vagy apró növényeit. Egy elemi

Page 32: Kalapos T. 1994

31

mérés legtöbbször három ismételt mintavételből állt ("napi menet" méréseknél). Egy

minta akkor tartalmazott több (3-5) levelet (vagy levéldarabot), ha a mérési módszer

érzékenysége elégtelen lett volna egyetlen levél(darab) működésének megbízható

érzékeléséhez. A hosszú levéllemezű pázsitfüveknél a mintát mindig annak kb. a

közepéből vettem. Az egyes vizsgálatokhoz kapcsolódó, a mérés természetétől függő

specifikus mintavételi eljárást mindig az adott vizsgálat leírásánál adom meg.

3.2.5. Alkalmazott statisztikai értékelő módszerek

Az eredmények értékelésénél egyváltozós statisztikai módszereket használtam

[Sokal & Rohlf 1981, Sváb 1981]. A leíró statisztikai értékeléshez a minta

átlagértékét és az átlag hibaszórását (standard error) közlöm. Két változó

összefüggését lineáris regresszióval vagy másodfokú polinomiális függvény

illesztésével vizsgáltam. Egyes minták közötti különbségeket páronkéntti t-teszttel

vagy varianciaanalízissel, gyakorisági eloszlások hasonlóságát Chi2 próbával

ellenőriztem. A különbségeket p<0.05 valószínűségi szinten tekintettem

szignifikánsnak.

Page 33: Kalapos T. 1994

32

3.3. Eredmények és értékelésük; a levél vízállapotának és gázcseréjének napi és évszakos alakulása, különös tekintettel a fajok eltérő viselkedésére

Természetes körülmények között a növények fiziológiai aktivitása szinte

folyton módosul a környezeti tényezők változásával. Ennek nyomonkövetése csakis a

pillanatnyi növényi működés és az azt befolyásoló legfontosabb környezeti tényezők

egyidejű figyelésével lehetséges. Ehhez rendszeres mérések végzendők a nap

folyamán (ún. napi menetek felvétele), ami a vegetációs időszakban többször

megismétlendő, hogy a lehetséges évszakos eltéréseket is észlelhessük. Munkám

során a levéllemez gázcseréjének (fotoszintézis és transzspiráció), vízállapotának

(vízhiány és vízpotenciál) és néhány kapcsolódó növényi ill. környezeti változónak

napi változását követtem, amit ábrasorozatok formájában mutatok be (jelentős

terjedelmük miatt a függelékben, F.1.-F.12. ábrák).

3.3.1. A nettó fotoszintézis (Pn) napi menete

A vizsgált hét növényfaj pillanatnyi nettó fotoszintetikus teljesítménye 0 és

40 µmol (0-1.76 mg) CO2 m-2 s-1 között alakult. A fajok fotoszintetikus

kapacitásának összehasonlítására a vizsgálataim során észlelt legmagasabb Pn

értékeket (MAXPn) használtam (3.1. táblázat). Ehhez valamennyi faj esetében számos,

magas besugárzási-, nedvesség- és hőmérsékleti viszonyok mellett mért adat állt

rendelkezésemre. Bár az így kapott csúcsértékek minden bizonnyal alacsonyabbak a

fajok fiziológiailag lehetséges teljesítményénél, ökológiai szempontból mégis

értelmezhetők, hiszen a természetes élőhelyen mutatott potenciális működést

tükrözik. A C3-as fajok MAXPn-je (9-24.4 µmol CO2 m-2 s-1) jóval alacsonyabb volt a

C4-esekénél (34-40 µmol CO2 m-2 s-1). Ez a C4-es út magasabb fénytelítettségi

fotoszintetikus aktivitását tükrözi [Osmond et al. 1982, Edwards & Walker 1983,

Pearcy & Ehleringer 1984]. A C3-as fajok közül a szklerofill Festuca és Carex

rendkívül alacsony (<12 µmol CO2 m-2 s-1) MAXPn értékeket mutatott, míg Alkannaé,

Koeleriaé és Potentillaé a C3-as mezofitonokra jellemzőhöz áll közel [Mooney &

Page 34: Kalapos T. 1994

33

Gulmon 1979, Osmond et al. 1982]. Ezek az értékek jól egyeznek a mérsékeltövi

gyepek növényeinél megfigyelt fotoszintetikus kapacitásokkal [Woledge & Parsons

1986].

3.1. táblázat. A nettó fotoszintézis legmagasabb észlelt értékei (MAXPn, µmol CO2 m-2 s-1) a vizsgált homokpusztai növényeknél, mint a fajok fotoszintetikus kapacitásának mutatója. A mérés időpontja és az aktuális fényintenzitás (PAR, µmol foton m-2 s-1) külön oszlopokban.

Faj MAXPn PAR Időpont

C3-as Alkanna tinctoria 24.4 1913 '93 VI. 18. Carex liparicarpos 11.8 1358 '91 VIII. 17. Festuca vaginata 9.03 1917 '93 VI. 18. Koeleria glauca 24.4 1630 '92 VI. 19. Potentilla arenaria 21.5 1282 '92 VI. 19. C4-es Cynodon dactylon 40.5 1614 '92 VI. 19. Tragus racemosus 33.9 2011 '91 VII. 13.

A levél fotoszintetikus kapacitásában akár két nagyságrendnyi eltérés is

mutatkozhat a magasabbrendű növények között [Mooney & Gulmon 1979]. A

C4-esek általában magas (50 µmol CO2 m-2 s-1-t is meghaladó) fotoszintetikus

teljesítmémyre képesek, míg a C3-asok ennek csupán közel a felére [Schulze 1982].

(Ugyanakkor kivételesen magas, 60 µmol CO2 m-2 s-1 feletti MAXPn-t mértek a C3-as

sivatagi téli egyéves Camissonia claviformisnál [Ehleringer et al. 1979].) A levél

fotoszintetikus kapacitása két ellentétes folyamat eredőjeként alakul ("trade-off"). A

pillanatnyi fotoszintetikus teljesítmény maximalizálása és a fotoszintézis

aktivitásának limitáló környezeti feltételek (pl. vízhiány) melletti tartós fenntartása

két olyan követelmény a levél számára, ahol az egyik csak a másik rovására

fokozható. Így a mezofitonok levele optimális körülmények mellett magas

fotoszintetikus aktivitást mutat, ugyanakkor szárazság esetén az gyorsan csökken,

könnyen károsodik. Számos xerofitonnál (főleg szklerofill fűneműnél) viszont a

levélszövet jelentős része nem közvetlenül a szénasszimilációt szolgálja, hanem a

Page 35: Kalapos T. 1994

34

kedvezőtlen viszonyok alatti ellenállást segíti. Így ezek a növények rendszerint még

nem-limitáló körülmények esetén sem érik el a mezofitonok fotoszintetikus

teljesítményét, de asszimilációjukat hosszan folytatni tudják a kedvezőtlen

periódusban [Mooney & Gulmon 1979, Orians & Solbrig 1977]. Ennek tükrében

érthető Festuca és Carex alacsony MAXPn értéke. Ugyanakkor a szintén xerofiton

Alkanna és Koeleria viszonylag magas MAXPn-je valószínűleg azzal magyarázható,

hogy ezeknél a szöveti vízhiány elkerülésében relatíve nagy jelentőségűek a levél

mellett más adaptáltsági mechanizmusok is (pl. gyökérzet morfológiája). A

homokpusztagyepi tavaszi egyéveseknek az évelő fajokhoz viszonyítot magas

fotoszintetikus kapacitását Tuba [1984a] ugyancsak az asszimiláló szövetek magas

részesedésének tulajdonította.

Természetes élőhelyen a növények fotoszintézisének napi alakulása a

fényviszonyokat változó szorossággal követi. Derült napokon Pn gyorsan emelkedik

napfelkelte után, maximumát a déli órákban éri el mikor a fényintenzitás és a

léghőmérséklet is a legmagasabb, majd késő délután meredeken csökken (ún.

"egycsúcsú" napi menet, pl. '93.VI.18. és '92.VI.19., F.7.C & F.8.C ábrák). Számos

méréssorozat [pl. Kovács-Láng & Mészáros-Draskovits 1985, Schulze & Hall 1982,

Tenhunen et al. 1987, Tuba 1984a] mutatja, hogy ez a napi lefutás jellemző amíg a

talaj nedveségállapota kedvező a növény számára. Amikor a növényi vízfelvétel már

nem tudja fedezni a transzspirációs vízleadást (az alacsony talajnedvességtartalom

és/vagy a magas légköri evaporációs igény miatt) a déli részleges sztómazárás ún.

"kétcsúcsú" napi menetet eredményez délelőtti és délutáni asszimilációs

maximummal [Schulze & Hall 1982, Tenhunen et al. 1987]. Így viselkedik pl. Carex

és Koeleria '93.V.13-án és '92.VI.19-én (F.5.C & F.8.C ábrák). A nevességlimitáció

további fokozódásával a délutáni csúcs elmarad, a fotoszitézis egy mérsékelt délelőtti

maximum után monoton csökken a nap folyamán (pl. '91.VII.13. és 91.VIII.17.,

F.10.C & F.12.C ábrák). Az évelő homokpusztagyepben végzett korábbi vizsgálatok

[Kovács-Láng & Mészáros-Draskovits 1985, Tuba 1984a] kimutatták, hogy a

fotoszintézis napi lefutása évszakosan változik. Tavasszal egycsúcsú menet jellemző

Page 36: Kalapos T. 1994

35

déli maximummal, nyáron lehet egy- vagy kétcsúcsú, ám a napi maximum a kora

délelőtti órákban jelentkezik (derült napokon). Az átlagostól jelentősen eltérő

hőmérséklet- és csapadékjárású években (v.ö. klimatogramok, 3.1. ábra) végzett

méréseim alapján ez a megállapítás annyival egészíthető ki, hogy rövidebb

időszakokra a fentiek ellenkezője is jelentkezhet. Így Pn tipikus "kétcsúcsú" lefutást

mutatott a fűneműeknél tavasszal, a szokatlanul meleg '93.V.13-án (F.5.C ábra),

viszont több fajnál déli maximum jelentkezett nyáron zivatarok után ('92.VII.16.,

F.11.C ábra). A napi menet évszakos változása nem egyöntetű a vizsgált fajoknál. A

mélyen gyökerező Alkanna még a forró nyári napokon is (pl. '92 VII.16., F.11.C ábra)

délben mutat asszimilációs csúcstevékenységet, szemben Carex és Koeleria

koradélelőtti mérsékelt maximumával.

Jelentős eltérés mutatkozott a fajok között Pn napi menetében. A szklerofill

fűneműek közül Festuca és Carex aktivitása tartósan alacsony (<10 µmol CO2 m-2

s-1), míg Koeleria napi amplitúdója nagy. Ez utóbbi egy kora délelőtti viszonylag

magas (12-22 µmol CO2 m-2 s-1) maximum után rendszerint monoton csökken,

esetleg mérsékelt fokozódást mutat délután. A készikű évelők (Alkanna és Potentilla)

fotoszintetikus teljesítménye a besugárzást rendszerint nagy amplitúdóval, szorosan

követi ("egycsúcsú menet"), ami a nap nagy részében jóval magasabb Festuca és

Carex aktivitásánál, ám Koeleria és Potentilla e tekintetben sokszor alig különbözik.

A fenti C3-as fajok között mindig Alkanna mutatta a legmagasabb Pn értékeket. Az

eltérő fenológiák (lásd 5.2. fejezet) miatt a C3-as és C4-es fajok szimultán

összehasonlítása csak nyáron lehetséges. Ilyenkor a C4-es füvek (Cynodon dactylon

és Tragus racemosus) Pn-e a nap nagy részében jóval meghaladja a C3-as fajokét,

ugyanakkor alatta marad azokénak reggel és késő délután (mikor a besugárzás és a

léghőmérséklet viszonylag alacsony). A napi menet alakja is eltér sokszor: a C3-as

fűneműeknél délelőtt, a C4-eseknél délben jelentkezik a fotoszintézis maximuma (pl.

'91.VII.13 és '91.VIII.17, F.10.C & F.12.C ábrák). Hasonló különbségről számolt be

C3-as és C4-es fajok között Pn napi menetében Schulze és Hall [1982]. Az itt vázolt

Page 37: Kalapos T. 1994

36

interspecifikus különbségek végig követhetők a vizsgált időszak (május-augusztus)

során, a fajok viselkedésében lényeges minőségi különbség nem jelentkezik ezalatt.

Az itt közölt értékek közvetlenül összevethetők a korábbi szakirodalommal a

függelék F.1. táblázata segítségével, ahol méréseim eredményeit a régebben

használtos, száraztömegre vonatkoztatott mértékegységekben adom meg. Festuca

vaginata értékei jól illeszkednek Tuba [1984a] azonos hónapokra közölt adataival. A

hasonló morfológiájú Koeleria glauca bruttó CO2-fixációja is jóval (akár 2-4-szer)

magasabbnak mutatkozott Festuca vaginataénál [Kovács-Láng & Mészáros-

Draskovits 1985]. Hasonlóan alacsony fotoszintetikus teljesítményt mutatott az

ugyancsak hengeres levelű, erősen szklerofill löszpusztagyepi Festuca rupicola is

[Kovács-Láng et al. 1989, Németh 1994].

A fotoszintézis (Pn) és a fényviszonyok (PAR) napi változása közötti

összefüggés szorosságát a két változó másodfokú polinomiális függvény szerinti

regressziójának determinációs koefficiensével (r2) jellemeztem. (r2 azt mutatja, hogy

a függő változó (itt Pn) összes varianciájából mennyi tulajdonítható a független

változó (itt PAR) miatti regressziónak, Sváb [1981]. A másodfokú polinom illesztését

az indokolta, hogy az összefüggés magas fényintenzitásnál eltér a linearitástól

/fénytelítés/). A vizsgált fajok jelentősen különböznek ebben (3.2. táblázat). A mélyen

gyökerező Alkanna és Potentilla, valamint a két C4-es fű (Cynodon és Tragus)

fotoszintézisének napi varianciáját átlagosan legalább 78%-ban magyarázza a

besugárzás napi változása. Ugyanakkor a két szklerofill fűnél (Festuca és Koeleria)

ez alig több mint 50%, Carexnél pedig csupán 31%. Tehát míg az előbbi négy fajnál

fénylimitáció jellemző, addig az utóbbi három szénasszimilációját más tényező

korlátozza elsősorban.

Megvizsgálandó, hogy ez a korlátozó tényező lehet-e a vízellátás, fajonként

ábrázoltam r2-t a talaj nedvességtartalmának függvényében (csak a C3-as fajoknál

volt ehhez elégséges adat, 3.2. ábra) A talaj csökkenő nedvességtartalmával r2 értéke

is csökken, az összefüggés szignifikáns Koelerianál (r=0.795, p<0.05), nem az, de a

tendencia jól látható Carexnél és Festucanál is, míg Alkannanál és Potentillanál nem

Page 38: Kalapos T. 1994

37

jelentős a változás. Hasonló kapcsolatot figyeltek meg a talajnedvesség és a

fotoszintézis fényreakciója között más mérsékeltövi sztyeppnövényeknél is

[Kovács-Láng et al. 1989]. Látható tehát, hogy a talaj gyorsan kimerülő felszinközeli

vízkészlete leginkább a sekély vagy közepesen mély gyökérzetű fajoknál

korlátozhatja a napi fotoszintetikus aktivitást.

3.2. táblázat. A fényintenzitás (PAR, µmol foton m-2 s-1) és a pillanatnyi nettó fotoszintézis (Pn, µmol CO2 m-2 s-1) egyidejű értékei közötti, másodfokú polinomiális függvény szerinti regresszió determinációs koefficiensei (r2). Napi r2 értékekből számított átlagok fajonként ± SE, n= mérési napok száma. Magas r2 átlagértékeknél Pn legtöbbször szorosan követi PAR napi változását (fénylimitáció).

Faj r2 átlag SE n C3-as Alkanna tinctoria 0.86 0.04 6 Carex liparicarpos 0.31 0.10 8 Festuca vaginata 0.53 0.06 5 Koeleria glauca 0.51 0.06 9 Potentilla arenaria 0.85 0.04 8 C4-es Cynodon dactylon 0.83 - 1 Tragus racemosus 0.78 0.04 3

Magas fényintenzitásnál a fotoszintézis pillanatnyi csökkenése alapvetően

két élettani tényezőre vezethető vissza: a gázcserenyílások részleges záródására (ún.

sztómás limitáció) ill. a mezofillum (kloroplasztiszok) fotoszintetikus kapacitásának

(átmeneti vagy tartós) csökkenésére (ún. nem-sztómás korlátozás, [Bradford & Hsiao

1982, Chaves 1991]). Az előbbi nyomon követhető a gázcseremérések adataiból

számított sztómás vízpáravezetés (gst) segítségével, az utóbbira a szintén számított

mezofillum CO2 koncentráció (ci) és gst egyidejű értékei alapján lehet következtetni.

Az 1000 µmol foton m-2 s-1-nál magasabb sugárzáserősségnél mért Pn és gst

értékpárokra illesztett lineáris regresszió determinációs koefficiensei (r2, 3.3. táblázat)

legtöbbször magasak (>0.7), ami a fotoszintézis sztómás limitációjára utal. (A

C4-esek viszonylag alacsony r2-jei azt tükrözhetik, hogy 1000 µmol foton m-2 s-1

Page 39: Kalapos T. 1994

38

felett is jelentős még a besugárzáserősség (tehát nem gst) változásából adódó Pn

variancia. Ezeknél a növényeknél ugyanis Pn még a természetes körülmények között

Page 40: Kalapos T. 1994

39

3.2. ábra. A fényintenzitás (PAR, µmol foton m-2 s-1) és a nettó fotoszintézis (Pn, µmol CO2 m-2 s-1) egyidejű értékei közötti, másodfokú polinomiális függvény szerinti regresszió determinációs koefficiensének (r2) változása a talaj nedvességtartalmával. Minden pont egy mérési napot mutat. Az illesztett egyenest csak ott tüntettem fel, ahol a regresszió szignifikáns (p<0.05).

Page 41: Kalapos T. 1994

40

mérhető legmagasabb fényintenzitásnál (ca. 2000 µmol foton m-2 s-1) sem mutat

fénytelítést [Osmond et al. 1982, Pearcy & Ehleringer 1984]). A mezofillum

(kloroplasztiszok) fotoszintetikus kapacitásának csökkenésére utaló jelet csak

Potentillanál találtam '92.V.1.-én (F.3. ábra), mikor a mérést szokatlanul

csapadékszegény, meleg időszak előzte meg (v.ö. 1992 évi klimatogram, 3.1.ábra).

Az ekkor tapasztalt Pn - gst regresszió r2-e rendkívül kicsi (0.13), ugyanakkor az

alacsony gst ellenére is viszonylag magas ci (F.3.E-F. ábrák). Amennyiben csupán

sztómás limitáció volna, akkor ci is alacsony lenne. A levél ekkor mért magas (>30%)

vízhiánya, valamint a magas fényintenzitás és léghőmérséklet mellett elképzelhető a

kloroplasztiszok vízvesztésből adódó aktivitáscsökkenése [Chaves 1991], de ennek

igazolásához további mérések szükségesek. 3.3. táblázat. A nettó fotoszintézis (Pn, µmol CO2 m-2 s-1) és a sztómás vízpáravezetés (gst, mmol víz m-2 s-1) egyidejű értékei közötti lineáris regresszió determinációs koefficiense (r2). Napi értkek átlaga fajonként ± SE, n=napok száma. Magas r2 a fotoszintézis sztómás limitációjára utal.

Faj r2 átlag SE n C3-as Alkanna tinctoria 0.72 0.08 5 Carex liparicarpos 0.89 0.03 7 Festuca vaginata 0.51 0.15 4 Koeleria glauca 0.83 0.04 8 Potentilla arenaria 0.43 0.12 7 C4-es Cynodon dactylon 0.15 0.15 2 Tragus racemosus 0.29 0.02 2

3.3.2. A transzspiráció (E) napi változása

A transzspiráció általában a fotoszintézishez hasonló napi lefutást mutat, ami

várható is, hiszen a két folyamatot meghatározó környezeti tényezők (fény,

hőmérséklet ill. páratartalom) és növényi sajátságok (pl. sztómaműködés) közösek

vagy szorosan kapcsoltak. A fotoszintézisnél bemutatott napi menet típusok (3.3.1.

Page 42: Kalapos T. 1994

41

fejezet) érvényesek a transzspirációra is. (Valójában ezeket a típusokat először a

transzspirációnál ismerték fel főleg STOCKER úttörő munkássága nyomán [Tenhunen

et al. 1987]). Az itt vizsgált fajok pillanatnyi transzspirációja 0.2 és 12 mmol (3.6-216

mg) víz m-2 s-1 között változik. A transzspiráció reggeli emelkedése és késő délutáni

csökkenése sokszor kevésbé meredek mint az egyidejű fotoszintézisé.

A fajok közötti különbségek is hasonlóak a fotoszintézisnél tapasztaltakhoz.

A szklerofill Festuca vaginata és Carex liparicarpos igen alacsony (<5 mmol víz m-2

s-1) transzspirációjú, mérsekelt napi amplitúdóval. A hasonlóan "kemény levelű" (v.ö.

3.3.9. fejezet) Koeleria glauca párologtatása viszont gyakran ennek kétszeresét is

meghaladja (pl. '93.VI.18. és '93.VI.29., F.7.D & F.9.D ábrák), de csak ritkán éri el a

legintenzívebben párologtató kétszikűeket (Alkanna tinctoria és Potentilla arenaria).

A C4-es füvek (Cynodon dactylon és Tragus racemosus) transzspirációja nyáron

legfeljebb csak kevéssel emelkedik az élénk vízforgalmú C3-asok (Alkanna és

Potentilla) egyidejű értékei fölé, azaz a vízforgalom intenzitásában lényegesen kisebb

a különbség az eltérő fotoszintézisutak között mint a fotoszintézisében. A talaj

nedvességtartalmának csökkenésével mérséklődik a párologtatás napi maximuma, a

változás relatív mértéke Alkanna < Potentilla < Festuca < Koeleria < Carex irányban

nő.

Magyar [1936] homoki sztyeppnövények közül csak kétszikűeket vizsgált,

főleg Alkanna tinctoria és Potentilla arenaria fajoknál tapasztalt magas

transzspirációs teljesítményt (bár az ott közölt csúcsértékek kb. feleakkorák az F.1.

táblázat vonatkozó E max. adadtainál). Saját korábbi vizsgálataim ugyancsak ezt

mutatták [Kalapos 1989]. Almádi et al. [1986] Koeleria glauca vízforgalmát szintén

jóval élénkebbnek találta Festuca vaginataénál. Tuba [1984a] Festuca vaginatara

vonatkozó adatai valamivel alacsonyabbak az F.1. táblázatban közölteknél. A dolomit

sziklagyepekban élő, ugyancsak szklerofill hengeres levelű Festuca pallens

transzspirációja tavasszal hasonló intenzitású Festuca vaginataéhoz, nyáron viszont

jóval alacsonyabb annál [Almádi 1984].

Page 43: Kalapos T. 1994

42

3.3.3. A sztómás vízpáravezetés (gst) és a mezofillum CO2 koncentráció (ci) napi

menete

A levél transzspirációját a levél vízpáravezetése (g) valmint a levél és külső

légtér között fenálló vízgőzgradiens (δw) határozza meg [pl. Jones 1992, Taiz &

Zeiger 1991]. Ez utóbbi pillanatnyi értékének ismeretében számítható a sztómás

vízpáravezetés (gst) a gázcseremérések adataiból, így közvetlenül a sztómák

működéséről nyerhető információ. A homokpusztagyepben leggyakrabban megfigyelt

napi mintázat a reggeli vagy kora délelőtti maximumot követő monoton gst csökkenés

(pl.'92.V.1. és 93.V.6., F.3.F & F.4.F ábrák). Ettől eltérően gst napközben is

viszonylag magas marad ha alacsony a légköri evaporációs igény (pl. borult időben,

'93.VI.3., F.6.F ábra) és/vagy ha magas a talaj nedvességtartalma ('93.VI.18, F.7.F

ábra). Rendkívül érdekes, hogy a C4-es Cynodon és Tragus a forró nyári napokon is a

déli órákban mutatja a legmagasabb sztómanyitottságot, holott a C3-as fajoknál ez

reggel jelentkezik ugyanaznap ('91.VII.13. és '91.VIII.17., F.10.F & F.12.F ábrák). A

fajok közötti különbségek a sztómás vízpáravezetésben lényegében azonosak a

transzspirációnál tárgyaltakkal. Az itt tapasztalt gst értékek egybeesnek a más

lágyszárúakban tapasztalt tartománnyal (80-800 mmol víz m-2 s-1, Nobel [1983]).

A (szintén számított) CO2 koncentráció a mezofillum intercelluláris

légterében (ci) valójában a fotoszintézis CO2 fogyasztása és a gáz sztómákon át

levélbe áramlása mérlegét mutatja. Ez hasonló pályát írt le szinte valamennyi mérési

napon: értéke reggel és este magas, minimumát napközben éri el a déli magas

fényintenzitás idején. Ebben együttesen tükröződik a légköri CO2 koncentráció napi

módosulása a gyep felett és a mezofillum CO2-fogyasztó fotoszintézisének napi

aktivitásváltozása a fényintezitással. Jelentős különbség csak az eltérő CO2 fixációs

úttal rendelkező fajok között van: a C4-esek ci értéke (90-200 ppm napközben)

rendszerint jóval alatta halad a C3-asokénak (150-300 ppm ugyanakkor, pl.'91.VII.13.

és '92.VII.16., F.10.E & F.11.E ábrák). Ez annak a következménye, hogy C4-es út

elsődleges CO2-kötő enzime (PEPC) jóval nagyobb affinitást mutat szubsztrátja

(HCO3-) iránt mint a C3-asoknál a primér karboxilációt végző RUBPC a CO2-ért

[Edwards & Walker 1983].

Page 44: Kalapos T. 1994

43

A mérések közötti árnyékolás ellenére is a mérőkamra hőmérséklete néhány

(1-7) °C fokkal az (1m magasságban mért) külső léghőmérséklet fölé emelkedett. Ez

részben annak tulajdonítható, hogy - főleg derült, szélcsendes időben - a levegő

erősebben felmelegszik a talaj közelében. A (számított) levélhőmérséklet értékek a

léghőmérsékletet szorosan követték. Amennyiben jelentkezett különbség a fajok

között, az általában az eltérő transzspirációs aktivitást tükrözte. Így az intenzíven

párologtató Alkanna és Potentilla levele akár 4-5 °C fokkal is alacsonyabb

hőmérsékletű lehet a víztakarékos fűneműekénél (pl. '93.VI.18. és '92.VI.19., F.7.H &

F.8.H ábrák).

3.3.4. A vízhasznosítási hatékonyság (WUE) napi menete

A levél pillanatnyi nettó fotoszintézisének (Pn) és transzspirációjának (E)

hányadosa használatos a pillanatnyi fotoszintetikus vízhasznosítási hatékonyság

(WUE) mérésére. (Ez némileg magasabb a tényleges WUE-nál, mivel nem veszi

figyelembe a gyökérlégzésből és a hajtás éjszakai sötétlégzéséből származó

CO2-veszteséget.) Pozitív szénmérleg mellett a vizsgált fajok pillanatnyi WUE-ja 0.2

és 6 mmol CO2 mol-1 víz (0.5-14.7 mg CO2 g-1 víz) között alakul. Legtöbbször

délelőtt mutat maximumot, majd csökenn a nap folyamán (pl. '93.V.13. és '92.VI.19.,

F.5.G & F.8.G ábrák). Ez azzal magyarázható, hogy (derült időben) kb. 9 és 11 óra

között a légköri evaporációs igény (telítettségi vízgőzhiány, VPD) még viszonylag

alcsony, így a transzspirációs vízvesztés is relatíve mérsékelt, ugyanakkor a

fényintenzitás már elég magas az intenzív fotoszintetikus aktivitás biztosításához. A

hőmérséklet és a vízgőzhiány további emelkedésével a nap során romlik a két

folyamat mérlege. Borult napokon ettől eltérő napi menet is jelentkezhet ('93.VI.3.,

F.6.G ábra)

A vízhasznosítási hatékonyságban kisebb és kevésbé konzisztens a

különbség a vizsgált fajok között, mint ahogy az Pn és E paramétereknél volt. A C3-as

csoporton belül a szklerofill fűneműek (Carex, Festuca és Koeleria) WUE-ja

Page 45: Kalapos T. 1994

44

legtöbbször magasabb mint a kétszikű Potentillaé, de lényegesen nem különbözik

Alkannaétól. Megfigyelhető WUE csökkenése tavaszról nyárra. Nyári napokon a

C4-es Cynodon és Tragus a nap nagy részén magasabb WUE-t (1-3.8 mmol CO2

mol-1 víz) mutat mint a C3-as fajok ugyanakkor (0.2-3 mmol CO2 mol-1 víz,

'92.VI.19. és '91 VII.13., F.8.G & F.10.G ábrák). Ez elsősorban a C4-esek magasabb

fotoszintetikus teljesítményére vezethető vissza, mivel a két csoport alig különbözött

a transzspiráció tekintetében (v.ö. 3.3.2. fejezet). Ugyanakkor a C3-asok tavasszal

mutatott WUE-ja akár meg is haladhatja a C4-esek nyári értékeit (pl. '93.V.6. és

'93.V.13, F.4.G & F.5.G ábrák), ami azzal magyarázható, hogy a levegő

vízgőztelítetségi hiánya (VPD) rendszerint alacsonyabb tavasszal mint nyáron. Ilyen

különbség jelentkezett a homokpusztagyep tavaszi és nyári egyéves füveinek (bruttó

CO2 fixációja alapján számított) vízhasznosítási hatékonyságában is [Kovács-Láng &

Kalapos 1992]. WUE napi menete a fotoszintéziséhez hasonlóan különbözik az

egyidejűleg vizsgált C3-as és C4-es növények között (pl. '91.VII.13. és '91.VIII.17.,

F.10.G & F.12.G ábrák). Az F1. táblázatban feltüntetettekhez hasonló nagyságú

WUE-t tapasztalt Festuca vaginatanál Tuba [1984a].

Szintén a fajok vízhasznosítási hatékonyságát tükrözi ha Pn napi maximumát

az ugyanakkor mutatott gst-vel {gst(maxPn)} szemben ábrázoljuk [Schulze & Hall

1982, Nobel 1983]. Az ezt bemutató 3.3. ábrán jól látható, hogy azonos sztómás

vízpáravezetés mellett a C4-es növények kb. kétszer akkora nettó fotoszintetikus

aktivitásra (maxPn) képesek mint a C3-asok, vagyis vízhasznosításuk jóval

hatékonyabb. Sőt, a C4-eseknél maxPn meredekebben emelkedik gst(maxPn)

növekedésével mint a C3-asoknál. Ez egyben arra is utal, hogy nem fénylimitált

szituációban (amikoris maxPn jelentkezik) a C4-es növényeknél a CO2 sztómás

diffúziója jelentősebben korlátozza a szénasszimilációt, mint a C3-asoknál. (Más

vizsgálatokból tudjuk, hogy ekkor a C3-asoknál a fotoszintézis sötétreakciójának

kezdeti lépései limitálnak döntően [von Caemmerer & Farquhar 1981]). Az ábráról

ugyanakkor az egyes vizsgált C3-as fajok jellemző gázcsere-működése is jól

leolvasható, ha megfigyeljük elhelyezkedésüket az illesztett egyenes mentén. Festuca

Page 46: Kalapos T. 1994

45

és Carex pozíciója a kontinuum alsó részén jellegzetes "víztakarékos" viselkedést és

az ezzel párosuló alacsony fotoszintetikus kapacitást, Alkannaé az ellenkező végen

magas fotoszintetikus aktivitást és "vízpazarló" jelleget tükröz. Koeleria és Potentilla

köztes helyzetű (és viselkedésű) e két véglet között.

3.3. ábra. A nettó fotoszintézis napi legmagasabb értéke (maxPn) és az ugyanakkor mutatott sztómás vízpáravezetés {gst(maxPn)} értékpárok a vizsgált homokpusztagyepi növényeknél. Minden jel egy mérési napot képvisel. A C4-esek azonos sztómás vízpáravezetésnél jelentkező magasabb maxPn-je hatékonyabb vízhasznosításukat (WUE) mutatja, míg az illesztett egyenes nagyobb meredeksége a fotoszintézis jelentősebb sztómás limitációjára utal.

3.3.5. A levél vízállapotának napi változása

A levél vízállapotának napi alakulását a gázcseremérésekkel párhuzamosan

észlelt víztelítettségi hiánnyal (WSD), és a vízpotenciál (Ψl) kora reggeli és kora

délutáni értékeivel követtem. A vizsgált fajoknál a levél pillanatnyi vízhiánya 1 és

43% között alakul, napi lefutása a növény vízfelvételének és transzspirációs

vízvesztésének mérlegét tükrözi. A kora reggeli minimumot követően WSD is

emelkedik a transzspiráció fokozódásával, maximumát a déli órákban éri el, majd

Page 47: Kalapos T. 1994

46

délután ismét csökken (pl. '93.V.6. és '93.V.13., F.4.I & F.5.I ábrák). Az esti WSD

érték rendszerint magasabb a reggelinél, azaz a napi vízhiány csak az éjszaka alatt

pótlódik teljesen. A talaj csökkenő nedvességtartalmával ez az újratelítődés egyre

kevésbé tökéletes, a levél reggeli vízhiánya is emelkedik (3.4. ábra).

Jelentős a fajok közötti különbség. Alkanna levelének víztartalma állandóan

magas (WSD<21%), holott a vizsgált fajkészletből ennél a legintenzívebb a

transzspiráció. Ez csakis a növény rendkívül hatékony vízfelvételével magyarázható,

amit megerősíteni látszik igen mély (akár 1m-re hatoló) gyökérzete (3.6. táblázat).

Ugyanakkor a másik kétszikű, Potentilla mutatja a leglabilisabb vízmérleget; magas

párologtatása nyomán levelének vízhiánya általában 10-30% között mozog, ritkán

akár a 40%-ot is meghaladhatja ('93.V.1., ugyanekkor Alkanna vízhiánya nem érte el

a 17%-ot sem, F.3.I ábra). A szklerofill fűneműek rendszerint alacsony WSD-t

mutatnak, feltűnően stabil Festuca (WSD<19%) és Koeleria (WSD<22%)

vízállapota. Ugyanakkor Carexnél a mérsékelt transzspiráció ellenére is esetenként

(főleg alacsony talajnedvesség-tartalomnál) viszonylag magas (akár 28%) WSD is

kifejlődhet. Ennek hátterében az elégtelen vízfelvételi mechanizmus áll, amit jól

magyaráz a növény sekély gyökérzete (3.6. táblázat). Hasonló nagyságú vízhiányt

figyelt meg Potentillanál Magyar [1936], Festucanál és Koelerianál Almádi et al

[1986], ugyanakkor Tuba [1984a] meglehetősen magas, az itt kapott értékeknél

mintegy másfélszer nagyobb WSD-ről tudósít Alkannanál, Festucanál és

Potentillanál. A dolomit sziklagyepi Festuca pallens vízhiánya szintén alacsony, csak

júliusi aszálykor haladta meg a 25%-ot [Almádi 1984].

A levél vízpotenciáljánál (Ψl) a mérési módszer csak a napi amplitúdó

követését tette lehetővé. A vizsgált növényeknél Ψl -2.47 és -0.23 MPa között alakult,

a reggeli értékek mindig magasabbak voltak a kora délutániaknál, mutatva a levél

napközi vízhiányát. A talaj nedvességtartalmának csökkenésével Ψl kora reggeli

értéke is csökken (negatívabb), legmarkánsabb a változás Carexnél és Potentillanál

(3.5. ábra). A fajok közötti különbségek azok éltérő vízhiányára és szöveti

tulajdonságaira (elaszticitás, ozmótikus potenciál) vezethetők vissza. A xeromorf

Page 48: Kalapos T. 1994

47

3.4. ábra. Összefüggés a talaj nedvességtartalma és a levél reggeli víztelítettségi hiánya (WSD) között. Átlagértékek ± SE, (n=3). Minden jel egy mérési napot mutat. Az illesztett egyenest csak ott tüntettem fel, ahol a regresszió szignifikáns (P<0.05).

Page 49: Kalapos T. 1994

48

3.5. ábra. Összefüggés a talaj nedvességtartalma és a levél reggeli vízpotenciálja (Ψl) között. Átlagértékek ± SE, (n=2). Minden jel egy mérési napot mutat.

Page 50: Kalapos T. 1994

49

fűneműek és Potentilla általában alacsony (nemegyszer -2.0 MPa alatti) Ψl értéket

mutatnak napközben, ám míg az előbbiek ezt alacsony WSD árán érik el, addig

Potentillánál ez jelentős szöveti vízhiánnyal párosul. A szklerofill füvek merev falú

sejtjeinél ugyanis Ψl meredekebben esik a víztartalom csökkenésével mint a

malakofill kétszikűeknél (lásd 3.3.6. fejezet). Részben ezért is, de főleg állandóan

magas víztartalmuk miatt Alkanna levelei mutatják a legmagasabb (>-1.13 MPa) Ψl

értékeket (azaz a minimális szöveti vízstresszt). Carex kora reggeli Ψl-je sokszor

jelentősen alacsonyabb a többi fűnemű értékénél, ami a napi vízhiány csupán

részleges éjszakai pótlódását tükrözi (pl. '93.V.13. és '93.VI.3., F.5.J & F.6.J. ábrák).

Ez ugyancsak Carex sekély gyökérzetének tulajdonítható.

3.3.6. Összefüggés a levél vízhiánya és a vízpotenciálja között, és annak

lehetséges szerepe a növényi vízforgalomban 1

A növények szárazságtűrését meghatározó számos tényező (pl. a gyökérzet

vízfelvevő képessége, a vízszállítás hatékonysága, vízraktározás, párologtató felület

nagysága, WUE) között nagyon fontos szerepe van a lomblevél vízháztartásának,

hiszen vízhiánykor ez az asszimmiláló képlet van kitéve a legnagyobb környezeti

terhelésnek. Láttuk, hogy a levélszövet vízállapota jellemezhető a víztartalmával

(RWC, vagy vízhiányával, WSD) és a tárolt víz energiaállapotával (vagyis a levél

vízpotenciáljával, Ψl). A szövet teljes víztelítettségénél Ψl értéke látszólag nulla,

hiszen annak két komponense - az ellentétes előjelű turgor (Ψp) és ozmótikus

potenciál (Ψπ) - épp kiegyenlíti egymást. A levél fokozatos vízvesztésével a

vízpotenciál csökken (negatívabb), így a visszamaradó víz egyre nagyobb energiával

kötődik. A változás sebessége, vagyis az egységnyi víztartalom-csökkenést kísérő

vízpotenciálesés a szövetek jellemző tulajdonsága [Jarvis & Jarvis 1963]. Minél

gyorsabb ez a változás annál meredekebb a levél fokozódó vízhiányával a növényen

1 megjelent közlemény formájában: Kalapos 1994, Plant and Soil 160: 105-112.

Page 51: Kalapos T. 1994

50

belül kialakuló vízpotenciál-gradiens is. (A kifejezés reciprokát, vagyis az egységnyi

vízpotenciálváltozással járó víztartalom módosulást újabban a szövet vízraktározó és -

felszabadító kapacitásának számszerűsítésére használják nem-egyensúlyi növényi

vízszállítás esetén, Nobel [1983].)

A Ψl-WSD összefüggés meredekségét alapvetően két tényező határozza

meg: a sejtfalak merevségétől függő szöveti rugalmasság (elaszticitás, ε) és a sejtek

ozmótikus potenciálja (Ψπ). Rugalmas szövetekben (ahol a sejtfal követi a

vízvesztéssel zsugorodó citoplazma alakját) és/vagy a kevés ozmótikumot tartalmazó

sejteknél Ψ csak lassan csökken a szöveti vízhiány fokozódásával. Merev (pl.

szklerenchimatikus) szövetekben viszont a turgor (Ψp) - és vele együtt Ψ - gyorsan

csökken vízvesztéskor. Ezt a jelenséget számos szklerofill növényfajnál megfigyelték

[Bowman & Roberts 1985, Lo Gullo & Salleo 1988, Muller 1991, Noitsakis &

Tsiouvaras 1990]. Más növényeknél viszont épp a turgor fenntartására irányuló

változásokat (Ψπ csökkenését és/vagy a szöveti elaszticitás fokozódását) észleltek

mérsékelt vízhiánykor [Hsiao et al. 1976, Jensen & Henson 1990, Turner & Jones

1980]. Ennek jelentősége a növényi növekedés minél tartósabb fenntartásában van.

A Ψl-WSD öszefüggés jelentősen különbözhet növényfajonként [Jarvis &

Jarvis 1963, Maxwell & Redmann 1978], sőt ugyanannál a fajnál is változhat az

élőhellyel, évszakosan és a levél korával [Kassam & Elston 1976, Knipling 1967,

Kubiske & Abrams 1991, Millar et al. 1968]. Az évelő nyílt homokpusztagyep tíz

zárvatermő növényfajánál vizsgáltam Ψl és WSD kapcsolatát. Gyepalkotói

jelentőségüknél fogva az évelő xerofitonok (Alkanna tinctoria, Carex liparicarpos,

Festuca vaginata, Koeleria glauca, Potentilla arenaria és Stipa borysthenica) kiemelt

szerepet kaptak. A tavaszi efemerek apró mérete sok esetben jelentett metodikai

korlátot, így csak két fajt (Lithospermum arvense és Viola kitaibeliana) vizsgáltam.

Ide kapcsolódik az ugyan évelő, de asszimilatórikus aktivitását a tavaszi hónapokra

időzítő Colchicum arenarium is. Egyetlen egyéves xerofitont, a C4-es Tragus

racemosust figyeltem még. A vizsgálatokat 1989-91-ben áprilistól-szeptemberig

végeztem számos mérési napon a bugaci mintaterületen ugyanabban a

gyepállományban, a módszertani fejezetben (3.2.1.c.) leírtak szerint.

Page 52: Kalapos T. 1994

51

Fajok öszehasonlítása.

Valamennyi vizsgált fajnál szignifikáns lineáris összefüggést tapasztaltam a

levelek egyidejűleg mért víztelítettségi hiánya (WSD) és vízpotenciálja (Ψl) között. A

levél víztartalmának csökkenésével Ψl is alacsonyabb lesz (3.6. ábra), ám a változás

mértéke fajonként eltérő (3.4. táblázat). A legmarkánsabb különbségek az eltérő

fenológiájú fajok között jelentkeztek. Míg a tavasszal fejlődő Colchicum,

Lithospermum és Viola esetében a regressziós egyenes nem meredekebb mint -0.043

MPa %-1, addig a nyári szárazság alatt is aktív xerofitonoknál a Ψl - WSD változás

átlagos sebessége -0.078 MPa %-1. Az évelő fűneműek egységesen magas értékükkel

tűnnek ki, közülük is leginkább Stipa, ahol 1% víztartalomcsökkenés 0.125 MPa

vízpotenciálesést von maga után. Ezzel megegyező értéket talált Maxwell és

Redmann [1978] az észak-amerikai xeromorf Agropyron dasystachiumnál. Feltűnő

ugyanakkor, hogy a szintén évelő xerofiton Alkanna tinctorianál a regressziós

egyenes meredeksége még a tavaszi fajokénál is kisebb (-0.025 MPa %-1).

3.4. táblázat. A levélvízpotenciál (Ψl) és a levél vízhiánya (WSD) közötti összefüggés az évelő nyílt homokpusztagyep tíz növényfajánál. A két változó szimultán mért értékein végzett lineáris regresszió eredményei (p<0.001 kivéve Lithospermum arvenset, ahol p<0.002). Csak a regressziós egyenes meredekségét (vagyis az 1%-os WSD növekedéssel járó Ψl változást /MPa/) tüntettem fel és ér-telmeztem (magyarázat a szövegben). n=adatpárok száma (évelőknél a teljes mintáé). í Csoport / Faj Ψl - WSD regresszió meredeksége teljes tavasz nyár n TAVASZI NÖVÉNYEK Colchicum arenarium -0.0358 38 Lithospermum arvense -0.0376 15 Viola kitaibeliana -0.0432 40 XEROFITONOK Évelő kétszikűek Alkanna tinctoria -0.0250 -0.0226 -0.0276 41 Potentilla arenaria -0.0657 -0.0612 -0.0646 74 Évelő fűneműek Carex liparicarpos -0.0868 -0.0827 -0.0976 110 Festuca vaginata -0.0854 -0.0751 -0.0944 72 Koeleria glauca -0.0807 -0.0674 -0.0871 82 Stipa borysthenica -0.1251 -0.1142 -0.1522 74 Nyári egyéves fű Tragus racemosus -0.0656 62

Page 53: Kalapos T. 1994

52

3.6. ábra. Egyidejűleg mért Ψl és WSD értékpárok az évelő homokpusztagyep két (jellemző példaként választott) évelő növényfajánál.

Page 54: Kalapos T. 1994

53

A Ψl - WSD összefüggésben tapasztalt interspecifikus különbségek

értelmezéséhez segítséget nyújt a durva levélszerkezet összehasonlítása. Erre a célra a

víztelített lomblevél %-ban kifejezett szárazanyag-tartalmát (DM%), mint a

szklerofillia egy mutatóját használtam. Ebben is jelentős a fajok közötti különbség

(3.5. táblázat). A tavaszi növények levéllemezének kevesebb mint 17%-a

szárazanyag, míg a xerofitonoknál ez 25 és 48% között változik. A legmagasabb

értékek az évelő fűneműeknél jelentkeztek, bár itt is jelentős (15%) az interspecifikus

variáció. A nyári egyéves fű, Tragus valamivel "keményebb" levelű mint a tavaszi

egyéves kétszikűek (Lithospermum és Viola), ám jelentősen elmarad az évelő

xerofiton pázsitfüvek értékétől. Pozitív korrelációt találtam a levél

szárazanyagtartalma és a Ψl - WSD összefüggés meredeksége között (r=0.897,

p<0.001). Bár a levél ozmótikus potenciálját (Ψπ) nem mértem, mégis becsülhető

annak a levél víztelített állapotára jellemző értéke (satΨπ) az egyidejű Ψl és WSD

adatpárokból. (satΨπ reciproka leolvasható az 1/Ψl vs. WSD grafikon lineáris

szakaszára illesztett egyenes tengelymetszeteként [Richter 1978]). Mivel minden

egyes adatpár más-más levélből származott, a minták heterogenitása nagy volt. Ezért

satΨπ becslése csak azoknál a fajoknál megbízható, ahol a minta elemszáma is magas

volt. A következő satΨπ értékeket kaptam (MPa egységekben): -0.40 Alkannanál, -

0.66 Tragusnál, -1.05 Carexnél, -1.10 Koelerianál és -1.24 Potentillanál. Látható,

hogy satΨπ értéke jóval magasabb (kevésbé negatív) a levelükben kevés

szárazanyagot tartalmazó fajoknál (Alkanna és Tragus) mint az inkább szklerofill

évelőknél (Carex és Koeleria).

Ugyancsak a fajok közötti különbségek helyes értelmezéséhez érdemes

összehasonlítani a fajok gyökérzetének mélységét, ami (a homoktalaj jellemző

vízgazdálkodásának ismeretében) egyféle mutatója lehet az esetleges vízfelvételbeli

eltéréseknek (3.6. táblázat). A tavaszi fajok, valamint a xerofiton C. liparicarpos és T.

racemosus gyökérzete sekély (<40 cm). A legtöbb nyáron is aktív évelő ennél

mélyebb gyökérzetű, különösen figyelemre méltó A. tinctoria akár 1m-re hatoló

gyökérzete.

Page 55: Kalapos T. 1994

54

3.5. táblázat. Levél szárazanyagtartalma a víztelített tömeg százalékában kifejezve (DM%, mint a szklerofillia mértékének egy mutatója). Átlagértékek ± SE. Az évszakos különbség valamennyi évelőnél szignifikáns (t-próba, p<0.001 kivéve Alkanna tinctoriát, ahol p<0.01). n= mintanagyság (évelőknél a teljes mintaé). Csoport / Faj Levél szárazanyagtartalma (%) teljes tavasz nyár n TAVASZI NÖVÉNYEK Colchicum arenarium 16.7 ± 0.17 73 Lithospermum arvense 13.0 ± 0.74 21 Viola kitaibeliana 16.6 ± 0.45 43 XEROFITONOK Évelő kétszikűek Alkanna tinctoria 25.5 ± 0.37 23.9 ± 0.69 26.1 ± 0.26 95 Potentilla arenaria 34.6 ± 0.73 32.6 ± 0.82 40.0 ± 0.42 65 Évelő fűneműek Carex liparicarpos 40.4 ± 0.34 37.0 ± 0.53 43.1 ± 0.18 189 Festuca vaginata 37.9 ± 0.72 33.6 ± 0.72 43.5 ± 0.65 87 Koeleria glauca 32.3 ± 0.49 29.8 ± 0.81 34.4 ± 0.43 105 Stipa borysthenica 47.7 ± 0.58 40.5 ± 0.83 51.4 ± 0.35 126 Nyári egyéves fű Tragus racemosus 24.1 ± 0.44 70

3.6. táblázat. A gyökérzet mélysége az évelő homokpusztagyep tíz vizsgált növényfajánál. Magyar [1933], Simon & Batanouny [1971] és Hahn István [személyes közlés] alapján. Csoport / Faj Gyökérzet mélysége (cm) a gyökérzet fő tömege max. mélység TAVASZI NÖVÉNYEK Colchicum arenarium 10-30 40 Lithospermum arvense 5-15 25 Viola kitaibeliana 3-10 15 XEROFITONOK Évelő kétszikűek Alkanna tinctoria 5-50 100 Potentilla arenaria 5-20 40 Évelő fűneműek Carex liparicarpos 5-10 40 Festuca vaginata 5-30 60 Koeleria glauca 0-20 60 Stipa borysthenica 10-40 80 Nyári egyéves fű Tragus racemosus 0-15 30

Page 56: Kalapos T. 1994

55

Page 57: Kalapos T. 1994

56

Évszakos különbségek

A levél vízpotenciálja és vízhiánya közötti kapcsolat évszakos változása

figyelhető meg a hat évelő xerofitonnál. Mindegyik fajnál nő az összefüggés

meredeksége tavaszról nyárra (3.4. táblázat), ám az évszakos variancia jóval alatta

marad a fajok közöttinek (3.7. táblázat). Ez jelzi az összefüggés fajra jellemző

karakterét. A levelek szárazanyagtartalma is emelkedik tavaszról nyárra,

legjelentősebben az évelő füveknél (3.5. táblázat). Míg a kétszikű Alkanna nyári

levelei csupán 2.2%-al több szárazanyagot tartalmaznak mint a tavasziak, Stipanál a

különbség több mint 10%.

3.7. táblázat. A levél vízpotenciálja és vízhiánya közötti összefüggés meredeksége interspecifikus és évszakos különbségének tesztelésére végzett kéttényezős variancianalízis eredménye a hat évelő xerofitonnál (3.4. táblázat adatai alapján). Variancia forrása SS df MS F p-érték Faj 1.25241 5 0.25048 31.91306 0.00085 Évszak 0.08384 1 0.08384 10.68147 0.02224 Hiba 0.03924 5 0.00785 Teljes 1.37549 11

A különbségek értékelése

Az időszakosan száraz homokpusztagyepben együtt élő növények jelentősen

különböznek a Ψl - WSD összfüggésben (3.7. ábra). Az itt vizsgált fajok három

csoportra oszthatók ebből a szempontból. A fejlődésüket a humid tavaszi periódusra

időzítő növényeknél (1. csoport, főleg efemerek) a levél víztartalmának csökkenése

csupán csekély Ψl változással jár együtt; 15%-os WSD legfeljebb -1.2 MPa Ψl-t

eredményez. Bár kicsi a növényben így kialakuló vízpotenciálgradiens, ám a tavasszal

rendszerint tartósan nedves talaj és az alacsony légköri evaporációs igény mégis

lehetővé teszi vízegyensúlyuk fenntartását. Meglepő módon a xerofiton Alkanna

tinctoria a Ψl - WSD kapcsolat tekintetében inkább ezekhez a növényekhez hasonlít

mint a többi xerofionhoz (15%-os WSD-nél Ψl mindössze -0.87 MPa). Intenzív

transzspirációja mellett is megőrzi levelének magas víztartalmát (3.3.5. fejezet).

Page 58: Kalapos T. 1994

57

Alkanna gyökérzete mélyebbre hatol bármely másik vizsgált fajénál (3.6. táblázat),

így feltehetőleg eléri a gyenge kapilláris vízemelőképességű homoktalaj folyamatosan

nedves mélyebb rétegeit is. A mély gyökérzet és valószínűleg a növényen belüli

hatékony vízszállítás (xylem magas hidraulikus vezetőképessége) fedezi az intenzív

vízforgalom szükségletét. Ezzel magyarázta Kvet és Rychnovská [1965] Alkanna

levágott levelének viszonylag gyors hervadását számos sztyeppnövény

összehasonlításakor. A mélyen gyökerező xerofitonok (itt egyedül Alkanna) alkotják

a 2. csoportot, ahol valószínűleg a talaj könnyen felvehető vízkészleteihez való

folyamatos hozzáférés "kompenzálja" a csekély növényi vízpotenciálgradienst. Az

időszakos szárazság alatt is aktív, közepesen mély gyökérzetű évelők (3. csoport)

nagy részénél Ψl gyorsan esik a levél víztartalmának csökkenésével (ezeknél -

1.8>Ψl>-2.6 MPa 15% WSD-nél). A már mérsékelt szöveti vízhiánynál kialakuló

alacsony Ψl meredek vízpotenciálgrádienst kelt a növényen belül, ami nagyban

elősegíti a talajnedvesség hatékonyabb kisajátítását és a vízhiány gyorsabb

regenerálódását [Osmond et al. 1980]. Ezt a viselkedést figyelték meg a

mediterráneumban számos szklerofill fánál és cserjénél [Bowman & Roberts 1985, Lo

Gullo & Salleo 1988, Muller 1991, Noitsakis & Tsiouvaras 1990] és Kanadában egy

xeromorf préri-fűnél [Maxwell & Redmann 1978]. Az itt tapasztaltakhoz hasonló

kapcsolatra bukkantak a fajok fenológiája, gyökérzési mélysége és a levél Ψl -

víztartalom összefüggése között sivatagi növényeknél [Monson & Smith 1982]

valamint chaparral és tengerparti ürömcserjés (coastal sage scrub) társulásokban

[Poole & Miller 1975].

A Ψl - WSD összefüggés azoknál a fajoknál volt meredek, ahol a levél

szárazanyagtartalma is magas. Ezek viszonylag merev levélszövetében Ψp és azzal Ψl

gyorsabban esik a növekvő vízhiánnyal mint rugalmas falú sejteknél [Jones 1992].

Pozitív turgor fenntartása itt valószínűleg mérsékelt párologtatás és/vagy intenzív

vízfelvétel útján lehetséges. A meredek Ψl - WSD változáshoz szintén hozzájárulhat,

hogy a vastag falú sejtek magasabb turgornyomásnak (Ψp) tudnak ellenállni, így több

ozmótikusan aktív anyagot halmozhatnak fel vakuólumukban mint a vékony,

Page 59: Kalapos T. 1994

58

elasztikus falú sejtek. Így a turgor gyorsabban esik ugyan, de mivel jóval magasabb

kezdeti (víztelítettségi) értékről indul, mégsem éri el olyan hamar a nulla éréket

[Jones 1992]. Adataim támogatják ezt az elképzelést, hiszen a szklerofill évelők

(Carex és Koeleria) satΨπ értéke jóval alacsonyabb (negatívabb) mint a levelükben

kevés szárazanyagot tartalmazó Alkannaé és Tragusé. Ugyanakkor az is figyelembe

veendő, hogy a sejtfal növekvő részesedésével emelkedik az abban kötött (ún.

apoplasztikus) víz mennyisége is [Wan et al. 1993]. Munkám során nem

tanulmányoztam részletesen a levél vízháztartásának ezeket a komponenseit.

3.7. ábra. Interspecifikus különbségek a Ψl - WSD összefüggésben az évelő homokpusztagyep tíz növényfajánál (------- tavaszi fajok, ⎯⎯⎯⎯ évelő kétszikűek, ⎯ ⎯ ⎯ ⎯ évelő fűneműek, ⎯ - ⎯ - ⎯ nyári egyéves fű). Szimultán mért Ψl és WSD adatokra illesztett egyenesek, a vonalhosszúságok az észlelt WSD tartományokat tükrözik. Mivel az egyenesek tengelymetszetét nem értelmeztem, az 5% WSD-nél alacsonyabb értékekeket nem ábrázoltam (önkényes küszöb, magyarázat a szövegben).

Az évelő xerofitonoknál meredekebbé válik a Ψl - WSD összefüggés a

humid tavaszról az arid nyárra, a legnagyobb változás a fűneműeknél jelentkezik. A

levelek szárazanyagtartalma is emelkedik tavaszról nyárra, ismét a füveknél a

legjobban. Ennek legvalószínűbb mechanizmusa az "elasztikusabb" tavaszi levelek

Page 60: Kalapos T. 1994

59

kicserélődése "keményebbekre" a nyárra, hiszen az egyedi levelek élettartama

mindössze 6-8 hét Festuca vaginata és Koeleria glauca fajoknál ugyanebben a

gyepállományban [Kovács-Láng 1991]. Diemer et al. [1992] szintén több

levélnemzedéket figyelt meg egy vegetációs perióduson belül közép-európai síkvidéki

gyepek lágyszárú évelőinél. A vízvesztéskor mutatott Ψl változás és a levélszövet

elasztikus modulusának (ε) hasonló együttes változását találták másutt is [Bowman &

Roberts 1985, Maxwell & Redmann 1978, Muller 1991].

3.3.7. Kapcsolat a levél vízállapota és gázcseréje között.

Az időszakos vízhiánnyal szembeni növényi viselkedés alapvetően három

típusba sorolható [Levitt 1980]. 1) A kritikus periódus időbeni elkerülése (drought

escape), így viselkednek pl. a homokpusztagyep kora tavaszi efemerjei (Erophila

verna, Arenaria serpyllifolia, Carex praecox, stb.). 2) A száraz periódus átvészelése

magas szöveti víztartalom fenntartása mellett (drought tolerance & dehydration

avoidance). 3) A száraz periódus hasonló túlélése, de ezalatt jelentős szöveti

vízvesztés elviselése (drought tolerance & dehydration tolerance). Ennek szélsőséges

esete a poikilohidrikus kriptogámok kiszáradás-tűrése (desiccation tolerance).

Valójában 2) és 3) olyan növényi mechanizmusok, melyekkel valamennyi faj

rendelkezik valamekkora, ám nagyon különböző mértékben [Chabot & Bunce 1979].

Szokás a domináló komponens szerint a faj viselkedését minősíteni, de ez sokszor

jelentős túlegyszerűsítéshez vezet.

Az eltérő környezeti nedvességviszonyok mellett egyidejűleg regisztrált

növényi vízállapot (WSD) és anyagcsereműködés (E és Pn) adataim lehetővé teszik

annak értékelését, hogy a vizsgált fajoknál miként érvényesülnek ezek az ellenállási

mechanizmusok. Ehhez a legmagasabb észlelt WSD értékeket valamint a levél

egyidejűleg (de 1000 µmol foton m-2 s-1-nál magasabb fényintenzitás mellett)

mutatott 4nettó fotoszintézisét használom (3.8. táblázat). Látható, hogy Alkanna,

Festuca és Koeleria elsősorban a 2) viselkedést mutatja (szöveti vízstressz kerülése):

Page 61: Kalapos T. 1994

60

alacsony (20% körüli) MAXWSD jellemző rájuk, mikoris fotoszintetikus kapacitásuk

(MAXPn) 23-44%-ával működnek. Ugyanakkor Potentilla jelentős szöveti

vízhiány-tűrésére utal, hogy 43%-os MAXWSD mellett is MAXPn közel 40%-ára

képes. Ugyancsak erre vezethető vissza, hogy a többi fajjal ellentétben Potentilla

fotoszintézise szinte változatlan szorossággal követi a fényintenzitás napi alakulását a

csökkenő talajnedvességtartalom ellenére is (3.2. ábra). (Valószínűleg ennek a magas

vízhiány-toleranciának jelentős szerepe van a faj előfordulásának másik jellemző

élőhelyén, a könnyen kiszáradó, sekély talajú sziklagyepekben is). Carex nem képes

az itt vizsgált füvekéhez hasonló stabil nedvességállapot fenntartására

(MAXWSD=29%), ám fotoszintézisének vízhiánytoleranciája valamivel magasabb

azokénál.

Rendkívül érdekes, hogy a C4-es Tragus levelei víztartalmuk 23%-ának

elvesztése után is MAXPn 80%-val működnek, holott a fenti C3-as füvek ekkora

WSD-nél mindössze 20-30%-os teljesítményt mutatnak. Több más tényező mellett

bizonyára jelentős szerepe van ebben a C4-esek jellemző "Kranz" levélanatómiájának.

Itt ugyanis a tényleges szénasszimiláció (RUBPC működése) az edénnyalábok körüli

nyalábhüvely-parenchimában folyik [Edwards & Walker 1983], ami a levél

vízvesztése során relatíve védettebb "mikromiliőt" biztosít. Sőt az is ismert, hogy a

3.8. táblázat. Az észlelt legmagasabb levél-vízhiány (MAXWSD, %) és az ugyanakkor mért pillanatnyi nettó fotoszintézis a szokásos egységben (Pn, µmol CO2 m-2 s-1) és a faj fotoszintetikus kapacitásának (MAXPn) százalékában kifejezve (Pn%), valamint az egyidejű fényintenzitás (PAR, µmol foton m-2 s-1). Feltűnő Potentilla és Tragus fotoszintézisének magas vízhiány-toleranciája.

Faj MAXWSD Pn Pn % PAR

C3-as Alkanna tinctoria 20.8 10.8 44.3 1657 Carex liparicarpos 28.8 2.27 19.2 1235 Festuca vaginata 19.0 2.41 26.7 1893 Koeleria glauca 22.2 5.65 23.2 1660 Potentilla arenaria 43.4 8.10 37.7 1247 C4-es Tragus racemosus 23.0 27.3 80.5 1714

Page 62: Kalapos T. 1994

61

C3-as út primér CO2 kötő enzimének (RUBPC) aktivitása jóval érzékenyebb a szöveti

vízhiányra mint a C4-eseknél ezt a szerepet betöltő PEPC [H-Nagy & Horánszky

1980]. Tragus levélszövetének jelentős részét töltik ki a magas víztartalmú

epidermális bulliform sejtek [Nyakas 1992]. A levél víztartalmának csökkenésekör

valószínűleg ezekből a fotoszintetikusan inaktív struktúrákból távozik a víz először. A

közel rokon Tragus berteronianusnál megfigyelték, hogy a növény víztartalmának

jelentős részét is elveszítheti rövidebb időszakokra, majd újranedvesedéskor képes

visszanyerni fotoszintetikus aktivitását [Veenendaal 1991].

A "víztakarékos" fűneműeknél a visszafogott transzspiráció a levél stabil

vízállapotának megőrzését segíti elő. Így viszont elmarad a párologtatás hűtő hatása,

ami a homokpusztagyephez fogható élőhelyeken a levél magas hőmérsékleti

terheléséhez vezethet. Az így jelentkező levélhőmérséklet először az

anyagcsereműködések (pl. fotoszintézis) számára válhat szuboptimálissá, egy

küszöbérték felett pedig már közvetlen anyagcsere-károsodást is okozhat (pl. fehérjék

hődenaturálódása). Hogy ezt elkerüljék ezek a növények mérsékelik a levél

sugárzásabszorpcióját (pl. levélállásukkal, "fényvisszaverő" szőrök /Alkanna,

Potentilla/ vagy kutikuláris viaszbevonat /Festuca/ segítségével), míg a levél apró

mérete és keskeny alakja elősegíti a gyors turbulens hőáramlást a levélfelszín és a

légtér fő tömege között (terhelés-kivédési mechanizmusok, pl. Jones [1992], Levitt

[1980]). Emellett jelentős lehet a levélszövet magas hőmérsékleti toleranciája is. Tuba

[1984a] Festuca fotoszintézisének széles hőmérsékleti tűrőképességét (3-40ºC)

tapasztalta, sőt megfigyelte Pn hőmérsékleti optimumának emelkedését tavaszról

nyárra Festucánál, Potentillánál és Achillea ochroleucanál (évszakos akklimáció). 3.3.8. Az asszimilációs tevékenység napi összesített értékei

A növényi gázcsere pillanatnyi változásai eredőjeként adódik a levél napi

asszimilációs teljesítménye. Itt a napi összesített értékeket 12 órás nappali időszakra

(7-19 óra) közlöm igazodva a napi menet mérések tartamához. (Az éjszakai

sötétlégzésből adódó asszimilátumveszteséget és a valószínűleg elhanyagolhatóan

kicsiny éjszakai transzspirációt így nem vettem figyelembe).

Page 63: Kalapos T. 1994

62

A.) Nettó fotoszintézis napi összege

A vizsgált fajok levélterületegységre vonatkoztatott nettó fotoszintézisének

napi összege 150-830 mmol (6.6-36.5 g) CO2 m-2 nap-1 tartományban mozog (3.8.A

ábra). A fajok közötti különbségek jelentősek, akár 2-3-szorosak is lehetnek. A C4-es

fajok (Cynodon dactylon és Tragus racemosus) napi összteljesítménye (400-830

mmol CO2 m-2 nap-1) legtöbbször jóval meghaladja az egyidejűleg mért C3-asokét

(150-690 mmol CO2 m-2 nap-1, nyári napok), legfeljebb Alkanna tinctoria ér el a

C4-esekhez mérhető magas aktivitást. A C3-as típuson belül a vizsgált kétszikűek

(Alkanna és Potentilla) napi összege (300-690 mmol CO2 m-2 nap-1) általában

magasabb a fűneműekénél (Festuca vaginata, Koeleria glauca és Carex liparicarpos

= 150-460 mmol CO2 m-2 nap-1). A kétszikűeknél Alkanna napi összege mindig

meghaladja Potentillaét. A fűneműek közül Festuca és Carex hasonlóan alacsony

értéke (<250 mmol CO2 m-2 nap-1) jelentősen alatta marad Koeleriaénak (200-460

mmol CO2 m-2 nap-1), amié viszont sokszor megközelíti a kétszikű Potentillaét. Ezek

a fajok ill. csoportok közötti különbségek tartósan nyomon követhetők. A

legmagasabb napi fotoszintézisösszegeket június során tapasztaltuk, a tavaszi és

július-augusztusi napokon mutatott aktivitás ennél alacsonyabb. Valószínűleg

tavasszal a kisebb napi besugárzás (rövidebb nappalok), nyáron a talaj szűkös

vizkészlete lehet az asszimilációt korlátozó legfőbb tényező.

Az F.1. táblázat a korábban használatos, száraztömegre vonatkoztatott

egységekben mutatja a napi összteljesítményeket. Festuca vaginata napi összegei

jóval magasabbak Tuba [1984a] ugyanerre vonatkozó értékeinél, ami azzal

magyarázható, hogy ott napi összegek csak a hideg- és fénylimitált időszakról

(március) ill. a nyári aszály idejéről (augusztus) szerepelnek. Inkább csak kvalitatív

öszzehasonlítás lehetséges a korábbi bruttó CO2 fixációs mérések eredményeivel.

Koeleria napi CO2 asszimilációja ugyancsak két-többszöröse volt Festucaénak

egyidejűleg vizsgált növényeknél [Kovács-Láng & Mészáros-Draskovits 1985,

Kovács-Láng et. al. 1989]. Tavasszal Carex liparicarpos is mutatott Koeleriaéhoz

mérhető magas bruttó CO2 fixációt [Kovács-Láng et. al. 1989].

Page 64: Kalapos T. 1994

63

Page 65: Kalapos T. 1994

64

Page 66: Kalapos T. 1994

65

B.) A transzspiráció napi összege

A vizsgálatba vont fajok levélterületegységre számított transzspirációjának

napi összege 50 és 330 mol (0.9-5.9 kg) víz m-2 nap-1 között változik (3.8.B ábra). A

fajok közötti különbségek a fotoszintézishez hasonlóan akár 2-3 szorosak lehetnek. A

C4-es füvek (Cynodon és Tragus) napi transzspirációja magas (180-300 mol víz m-2

nap-1, nyári napok), ám rendszerint nem haladja meg a "vízpazarló" C3-asok

(elsősorban Alkanna) ugyanakkor mért értékét. A C3-as növények közül a kétszikű

Alkanna és Potentilla napi összege (180-280 mol víz m-2 nap-1) következetesen

magasabb a szklerofill fűneműekénél (50-330 mol víz m-2 nap-1). Ez utóbbiak közül

Koeleria jelentősen meghaladja a "víztakarékos" Festucat és Carexet. A napi

transzspiráció tavasszal alacsonyabb mint nyáron, aminek oka minden bizonnyal az

kisebb besugárzás (rövidebb nappalok) és a kisebb légköri evaporációs igény

(alacsonyabb hőmérséklet és magasabb relatív páratartalom) miatt. A fajok

viselkedése lényegében nem változik évszakosan, vagyis egy nyáron "víztakarékos"

faj tavasszal is hasonlóan működik. Az F.1. táblázatban közölt napi transzspirációs

összegeknél alacsonyabbakat mért Magyar [1936] Alkannanál és Potentillanál, míg jó

egyezés tapasztalható Kovács-Láng et al. [1989] Carexre, Festucara, Koeleriara és

Potentillara adott értékekeivel. Almádi [1984] Festuca vaginatahoz hasonlóan

alacsony (<15 g víz g-1 sza. nap-1) párologtatást tapasztalt Festuca pallensnél dolomit

sziklagyepben.

A levél víztartalma és vízforgalma együttesen határozzák meg az egységnyi

víztartalomra vonatkoztatott transzspiráció, az ún. vízkicserélődési ütem (water

turnover rate, WTR) értékét. Ez azt mutatja, hogy a levél saját víztartalmának

megfelelő vízmennyiség hányszorosát párologtatja el a nap folyamán. E mutató

segítségével a jelentősen különböző szerkezetű levelek vízforgalma is szemléletesen

összevethető [Rychnovská et al. 1972]. Az itt vizsgált fajok közül Potentilla mutatja a

legmagasabb értékeket; a szokatlanul aszályos '92 V.1.-től eltekinte levele

víztartalmának 20-35-szörösét párologtatja el naponta (F.1. táblázat). Bár Alkanna

általában valamivel magasabb transzspirációjú (levélterületre és száraztömegre

Page 67: Kalapos T. 1994

66

vonatkoztatva) mint Potentilla, vízkicserélődési üteme mégis alacsonyabb annál (17-

21 g víz g-1 víztartalom nap-1), mert levelének magasabb a fajlagos víztartalma

(LWC, v.ö. 3.11. ábra). Festuca mutatja a legalacsonyabb WTR-t, levele a

víztartalmának mindössze 7-11-szeresét forgalmazza naponta (F.1. táblázat). Ehhez

hasonló értéket közölt Tuba [1984a] Festuca vaginatara egy aszályos nyári napon a

"Tece" homokpusztagyepből, ill. Rychnovská és munkatársai [1972] Festuca

sulcatara Dél-Morva száraz gyepekből.

C.) Napi vízhasznosítási hatékonyság

A hét faj napi vízhasznosítási hatékonysága (WUE) 0.5 és 3.5 mmol CO2

mol-1 víz (1.2-8.7 mg CO2 g-1 víz) között változik (3.8.C ábra). A C4-es fajok napi

WUE-ja nem minden esetben haladja meg az egyidejűleg mért C3-asokét. Ez érthető

az eltérő napi menetek alapján, hiszen a C4-esek pillanatnyi WUE-ja csak a magas

besugárzású és hőmérsékletű napszakokban magasabb a C3-asokénál. A C3-as fajok

között a különbségek kevésbé konzisztensek mint a gázcserénél (Pn és E) voltak. A

szklerofill fűneműek sokszor felülmúlják a kétszikű Alkannat és Potentillat. Általános

tendencia a WUE csökkenése tavaszról nyárra (kivétel a nyáriasan meleg, aszályos

'92.V.1.). Ez a változás valószínűleg magyarázható a légköri evaporációs igény

emelkedésével tavaszról nyárra, ami azonos sztómanyitottság mellett jóval nagyobb

transzspirációs vízvesztést eredményez nyáron mint tavasszal. Erre vezethető vissza

az is, hogy a C3-asok napi WUE értéke magasabb lehet tavasszal a C4-es növények

nyáron mutatott értékénél (3.8.C ábra).

D.) A levél napi átlagos vízállapota

A levél átlagos napi víztelítettségi hiánya (WSD) 2 és 28 % között alakul a vizsgált

fajoknál (3.8.D ábra). Szinte mindig Potentilla mutatja a legmagasabb értéket

(12-28%), Alkanna és a szklerofill füvek tartósan alacsony (4-13%) szöveti

vízhiányúak. Carex értéke viszont sokszor megközelíti Potentillaét. Az

interspecifikus különbségek jellege hasonló az egyes mérési napok során, vagyis a

fajok karakterisztikus viselkedése nem változik évszakosan.

Page 68: Kalapos T. 1994

67

3.3.9. A vizsgált fajok levélszerkezetének összehasonlítása

A növények asszimilációs tevékenységében talált különbségek

értelmezéséhez nyújt segítséget a levelek szerkezetének ismerete. Bár levélanatómiai

vizsgálatokat nem végeztem, a gázcseremérésekhez kapcsolódó levéltömeg és

levélterület mérések adataiból mégis számítható néhány egyszerű mutató, mellyel a

levél egyféle durva szerkezete jellemezhető. Különösen összehasonlító ökofiziológiai

vizsgálatoknál használják már régóta eredménnyel ezt az eljárást [pl. Magyar 1936,

Larcher 1975, Almádi 1985].

Az élő szövetek nagy részét víz alkotja, ám jelentős különbség lehet a víz és

a szárazanyag részarányában az egyes szövetféleségek között, ill. azonos

szövettípuson belül is fajok, ökotípusok, stb. között, sőt azonos populáción belül

térben vagy időben. A növények rendkívül nagy plaszticitást mutatnak e téren,

jelentős a környezeti tényezők hatása is. Ennek vizsgálatára a víztelített levél

százalékos szárazanyagtartalmát (DM%) használtam. Arid élőhelyek növényeinél

gyakori a szklerofillia jelensége, ahol szilárdító szklerenchima, vastag sejtfalak és

apró sejtek jelenléte a levélben magas DM%-hoz vezet. Az itt vizsgált

homokpusztagyepi évelők levelének szárazanyagtartalma viszonylag nagy (30-45%),

különösen az Festucanál és Carexnél (3.9. ábra). Potentilla ezekhez hasonló

értékében valószínűleg szerepe van a levélfelszínét dúsan borító csillagszőröknek, ill.

annak, hogy itt a minta a levélnyél egy rövid (3-10 mm-es) darabját is tartalmazta.

Feltűnő ugyanakkor a szintén xerofiton Alkanna 30% alatti szárazanyagtartalma. A

tavaszi évelő Colchicum és a nyári egyéves Tragus levéllemezének (a vizsgált

időszakban) kevesebb mint 20%-a szárazanyag. Magas DM% elsősorban az

asszimilációban részt nem vevő struktúráknak (pl. sejtfal, szklerenchima) köszönhető,

így az ilyen levelű növények fotoszintetikus kapacitása mérsékeltebb mint a kevesebb

szárazanyagot tartalmazóké (v.ö. 3.1. táblázat).

A legtöbb évelő fajnál markáns a levél szárazanyagtartalmának évszakos

változása; DM% emelkedik tavaszról nyárra (3.9. ábra). A szklerofill fűneműeknél a

Page 69: Kalapos T. 1994

68

legnagyob (akár a 15%-os) a változás, Potentillanál és Alkannanál mérsékeltebb.

Ennek hátterében feltehetőleg olyan jelenségek állhatnak, mint az hogy, az

évszakosan csökkenő nedvességellátás mellett fejlődő leveleknél kisebb a

megnyúlásos sejtnövekedés, így a levél apróbb, vastagabb falú sejtekből áll nyáron

("sűrűsége" így növekszik). Valószínűleg jelentős szerepe van ennek a változásnak a

növény évszakos akklimatizációjában, részben a levél jobb szilárdítása, részben pedig

a gyökér hatékonyabb vízfelvételét elősegítő meredekebb vízpotenciálgrádiens

létrehozása miatt a nyári szárazság idején (lásd 3.3.6. fejezet).

3.9. ábra. A víztelített levéllemez százalékos szárazanyagtartalma (DM%) - mint a szklerofillia egy mutatója - az évelő homokpusztagyep néhány növényfajánál. 1993 évi mérések alapján, csak a V.1.-i adatok származnak 1992-ről. Átlagértékek + SE, (n=21, kivétel IV.22. /n=35/, V.6. és VI.3. /n=18/). Feltűnő DM% növekedése tavaszról nyárra.

További információt nyújt a levél szerkezetéről az egységnyi levélterületet

szárazanyagtartalma, vagyis a fajlagos levéltömeg (SLW, másutt u.ez szklerofillia

index [Larcher 1975] vagy keménylevelűségi hányados [Almádi 1985]). Könnyen

Page 70: Kalapos T. 1994

69

belátható, hogy minél vastagabb a levéllemez (pl. többrétegű paliszád-parenchima

miatt) ill. minél több sejtfalat és szklerenchimát tartalmaz, annál magasabb SLW

értéke. A vizsgált fajok közül Festuca a leginkább szklerofill, egy m2 levélterület

száraztömege akár a 100 g-ot is meghaladhatja (3.10. ábra). Ezt jól magyarázza a

növény hengeres, több szklerenhimaköteget tartalmazó levele. Míg Carex DM%

értéke nem különbözik lényegesen Festucaétól (3.9. ábra), addig SLW-je jóval

alacsonyabb annál (3.10. ábra). Ez Carex vékony, lapos levéllemezével

magyarázható, ahol azonos szárazanyagmennyiség nagyobb levélterületen oszlik el.

Kisebb a SLW különbség Alkanna és az egyszikűek között mint az DW%-nál volt. Ez

valószínűleg Alkanna relatíve vastag levéllemezével magyarázható. Ugyanez a

helyzet Colchicumnál is. A legtöbb évelő fajnál határozott SLW növekedése tavaszról

nyárra, Festucanál a június végi érték közel kétszerese a május elejinek (3.10. ábra).

3.10. ábra. Fajlagos levéltömeg (SLW, az egységnyi levélterület száraztömege, szintén mint a szklerofillia mutatója) az évelő homokpusztagyep néhány növényfajánál. 1993 évi mérések alapján, csak a V.1.-i adatok származnak 1992-ről. Átlagértékek + SE, (n=21, kivétel IV.22. /n=35/, V.6. és VI.3. /n=18/).

Page 71: Kalapos T. 1994

70

A levéllemez egységnyi területére jutó, ún. fajlagos víztartalma (SWC, vagy

szukkulencia hányados [Larcher 1975, Almádi 1985]) kiugróan magas Colchicumnál,

mutatva a levél szinte szukkulens jellegét (3.11. ábra). Tragusnál valószínűleg a

magas víztartalmú epidermális bulliform sejteknek [Nyakas 1992] van jelentős

szerepe a magas SWC-ben. A fajlagos víztartalom csökken a levél

szárazanyagtartalmának (DM%) növekedésével, legalacsonyabb Carex vékony,

"kemény" leveleinél. A vizsgált időszakban SWC évszakos változása kisebb mint a

másik két struktúrális mutatóé, általános tendencia nem állapítható meg.

Almádi [1985] a keménylevelűségi hányados növekedését figyelte meg

tavasztól nyár végéig dolomitnövényzet számos fajánál. Az itt vizsgált növények

közül Magyar [1936] Alkanna tinctoria levelének magas (75%-os) víztartalmára (azaz

alacsony DM%-ra) hívta fel a figyelmet, míg Potentilla arenaria keménylevelű-

ségében nem tapasztalt évszakos változást. Koeleria fajlagos víztartalmát jóval maga-

sabbnak találta Festucaénál Almádi et al. [1986], az évszakos változás is jelentős volt.

3.11. ábra. A víztelített levél fajlagos víztartalma (SWC= az egységnyi levélterületre számított víztartalom, másutt szukkulencia hányados [Larcher 1975, Almádi 1985]) az évelő homokpusztagyep néhány növényfajánál. 1993 évi mérések alapján, csak a V.1.-i adatok 1992-ről. Átlagértékek + SE, (n=21, kivétel IV.22. /n=35/, V.6. és VI.3. /n=18/).

Page 72: Kalapos T. 1994

71

4. TALAJSZÁRAZODÁS HATÁSÁNAK KÍSÉRLETES VIZSGÁLATA HÁROM EGYÉVES PÁZSITFŰNÉL2

4.1. A kísérlet célja

Arid élőhelyeken a víz hiánya kétféle terhelés (stressz) formájában

jelentkezhet a növény számára. Az egyik a talaj alacsony felvehető vízkészlete

(talajszárazodás), a másik az alacsony légköri páratartalom okozta légszárazság. Bár a

két jelenség rendszerint együtt jelentkezik, egymáshoz viszonyított arányuk változó

lehet. Sőt, vannak olyan szituációk, mikor a két terhelés egyike lép fel csupán. Így a

talajszárazság társulhat magas légnedvességgel (pl. ködsivatagokban [Smith & Nobel

1986], vagy a homokpusztagyepben nyári aszálykor hajnalonként), akárcsak az

(időszakos) légszárazság a talaj kielégítő nedvességtartalmával (pl. csapadékos

időszakot követő derült, forró és szeles nyári napokon). Ismeretes, hogy a növények

mindkét stressz (akár egymástól független) érzékelésére képesek és megfelelő

válaszreakciókat mutatnak (lásd Schulze [1986] összefoglaló tanulmányát). A

környezeti terhelésre egyidejűleg több szerveződési szinten jelentkeznek a növényi

válaszok, az egyes szintek működései befolyásolhatják egymást. Ökológiai

megközelítéskor a levél és az egyed szintjén jelentkező élettani változások kiemelt

fontosságúak, összegezve mutatják az alacsonyabb szintek fiziológiai reakcióit.

Számos C4-es fotoszintézisű növényfaj fordul elő (legalább időszakosan)

száraz élőhelyen, de a C4-es fotoszintézisút önmagában nem hordoz a C3-asnál

nagyobb növényi vízhiány-toleranciát [Osmond et al. 1982, Pearcy & Ehleringer

1984]. A C4-es út fotoszintetikus vízhasznosítási hatékonysága (WUE) magasabb

ugyan a C3-asénál, mégsem mutatnak a C4-esek egyértelmű preferenciát az arid

élőhelyekért. Megfelelő környezeti feltételek mellett a C4-esek magasabb

fotoszintetikus kapacitása gyorsabb növekedési ütemet és nagyobb biomassza

produkciót eredményezhet a C3-asokénál, de ez nincs mindig így (lásd Poorter [1989]

irodalmi áttekintését). Vízhiány idején hasonlóan alacsony növekedési ütemet

2 közlésre benyújtva Physiologia Plantarum folyóirathoz: Kalapos, van den Boogaard & Lambers 1994.

Page 73: Kalapos T. 1994

72

tapasztaltak összehasonlított C3-as és C4-es fajoknál [Hofstra & Stienstra 1977,

Ludlow 1976].

Ezeket a problémákat vizsgáltam egy klímakamrás kísérletben amikor három

egyéves pázsitfüvet neveltem rövid időtartamú talajszárazodás mellett. Két C3-as és

egy C4-es fajt tanulmányoztam, a lomblevél asszimilációjának és a növényegyed

növekedésének alakulását követtem nyomon. A kísérletet az Utrechti Egyetem

(Hollandia) Növényökológiai és Evolúcióbiológiai Tanszékén végeztem Prof. Hans

Lambers és Riki van den Boogaard együttműködésével. Mielőtt az eredményekre

térek először a növényi növekedésanalízis módszerét ismertetem röviden, majd a

kísérlet pontos leírását közlöm.

4.2. A növényi növekedésanalízis módszere

A növényegyed növekedési üteme mintegy összegezve mutatja az

alacsonyabb szerveződési szinteken (szerv, szövet, sejt) zajló anyagcserefolyamatok

aktivitását. Ugyanakkor a magasabb (populációs ill. társulás) szintű folyamatok

megértéséhez is hasznos információk nyerhetők vizsgálatával, hiszen számos

szünbiológiai jelenség (pl. kompetíció, reproduktív hozam, fitness) függ az egyed

méretétől, növekedésétől. Valószínűleg épp a növényegyed növekedésének és a

biomasszája (gyökér, szár, levél és reproduktív részek közötti) megoszlásának a

vizsgálata szolgálhat alkalmas összekötő kapocsként a hagyomány szerint külön

utakon haladó növényi ökofiziológia és populációbiológia diszciplínák között

[McGraw & Wulff 1983]. Közel egy évszázados múltra tekint vissza a növényi

növekedés analízise, a mezőgazdasági kutatásban igen széles körben használják.

Ökológiai szempontból egyik legfontosabb eredménye az a felismerés, hogy a forrás-

szegény élőhelyekről származó növények (stressz toleránsok) rendszerint

potenciálisan lassú növekedésűek, míg a forrásokban gazdag élőhelyekre jellemző

fajok (kompetítorok és gyomok, Grime [1979] szerinti értelemben) potenciális

növekedési üteme általában gyors [Tilman 1988, Poorter 1989]. A növényi növekedés

vizsgálatának számos módszere [lásd pl. Chiariello et al. 1989] közül itt a munkám

Page 74: Kalapos T. 1994

73

során használt hagyományos eljárást ismertetem, ahol a növényegyed szárazsúly

szerinti gyarapodását követik.

A növekedésanalízis útján kapható legfontosabb paraméter az egyed relatív

növekedési üteme (RGR), ami a biomassza pillanatnyi növekedési sebességét mutatja

a már meglevő növényi szárazsúly arányában:

RGR = dW/dt * 1/W = d(lnW)/dt ,

ahol W a növény teljes szárazsúlya. Szokásos egysége: mg g-1 szárazanyag nap-1. Az

új szervesanyag a fotoszintézis terméke, ami elsősorban a levelekben folyik. Így RGR

két komponensre bontható; az egységnyi levélterület asszimilációjának

teljesítményére (nettó asszimilációs ütem, NAR) és a levélterület relatív nagyságára

(LAR). Vagyis:

RGR = NAR * LAR ,

NAR = dW/dt * 1/LA és

LAR = LA/W ,

ahol LA a növényegyed teljes levélterülete. (Bár hasonló jelentésűek, mégsem azonos

NAR és Pn mennyiségek, ugyanis NAR-ban figyelembe vesszük a zöld részek és a

gyökérzet sötétlégzését is, míg Pn-ben nem. NAR a biomassza gyarapodását méri, Pn

a beépített C-t.) LAR tovább bontható a levélzet súlyrészedésére a növény teljes

biomasszájából (levél-súlyarány, LWR) és az egységnyi levélsúlyra jutó levélterületre

(fajlagos levélterület, SLA):

LAR = LWR * SLA ,

LWR = Wlevél/W és

SLA = LA/Wlevél .

Lényegében SLA a levélszerkezet egy jellemzője, nagyságát a levél vastagsága és a

mechanikai szövetek (pl. szklerenchima) aránya határozzák meg. Jelentősen

különbözhet a növényfajok között, és fajon belül is nagy varianciát mutat (v.ö. 3.3.9.

fejezet). A növekedésanalízis során a biomassza növényen belüli megoszlását

(allokációját) is figyelik a megfelelő mutatókkal:

Page 75: Kalapos T. 1994

74

RWR = Wgyökér/W, LWR, SWR = Wszár/W és IWR = Wrepr./W ,

ahol Wgyökér, Wszár és Wrepr. a gyökérzet, a szár ill. a reproduktív részek szárazsúlyát

jelöli. A hányadosok egyszerű súlyarányok; a gyökér (RWR), a levél (LWR), a szár

(SWR) és a reproduktív részek (IWR) részesedését mutatják a növény teljes

biomasszájából.

A növekedésanalízishez szükséges változók (pl. Wgyökér) mérése

nehézségekbe ütközik természetes vegetációban, ezért azt leggyakrabban ellenőrzött

körülmények között (klímakamrában vagy üvegházakban) végzik. A vizsgálat

lényegében abból áll, hogy egy egységesen nevelt populációból meghatározott

időközönként mintát vesznek ("aratás"), ezeknél a növényeknél mérik a megfelelő

súly és levélterület értékeket. Az ismételt mintavételek közötti változásokból

számítható RGR és NAR. Mivel az eljárás destruktív (a növény elpusztításával jár), a

minták különböző egyedekből állanak. A minták közötti nemkívánt variancia a minta

méretének növelésével vagy a mintába kerülő egyedek "válogatásával" csökkenthető.

RGR számítási módjai közül az ún. funkcionális eljárás [Hunt 1982] küszöböli ki

leginkább ezt a problémát. Ennél több ismételt mintavétel ("aratás") adataira illesztett

függvényből számítható RGR, itt viszont a függvényválasztás (pl. exponenciális,

polinomiális) jelenthet nehézséget. A dolgozatban 4-6 szukcesszív mintára illesztett

másodfokú polinomiális függvényből számítottam RGR-t. A növekedésanalízis

további módszertani részletei és ökológiai alkalmazásai találhatók - többek között -

Chiariello et al. [1989], Hunt [1982], Lambers et al. [1989], Lambers & Poorter

[1992], Précsényi et al. [1976] és Virágh [1980a,b, 1981] munkáiban.

4.3. A kísérlet részletes leírása.

A növények nevelésének körülményei

A vizsgálathoz az egyéves homokpusztagyep (Brometum tectorum) egyik

domináns fűfaját, Bromus tectorumot (C3), a homokpusztai nyári egyéves Tragus

racemosust (C4) és egy szárazságtűrő búzafajtát, Triticum aestivum L. cv. Katya-A-1

(C3) választottam. A kísérletet magról nevelt növényeken végeztem. Bromus tectorum

Page 76: Kalapos T. 1994

75

és Tragus racemosus fajoknál a magokat a természetes élőhelyen

(homokpusztagyepben, Bugacon) gyűjtöttem, míg Triticumé a Száraz Területek

Mezőgazdáságának Nemzetközi Kutatóközpontjából (ICARDA, Aleppo, Syria)

származott. A magokat néhány napig alacsony (5ºC) hőmérsékleten tároltam, majd

Petri-csészékben szűrőpapiron csíráztattam 20ºC-on. Amint a csíranövények alkalmas

méretet értek el (2-3 nap után), átültettem azokat vályogos homoktalajjal töltött, 2.4

dm3 térfogatú nevelőedényekbe (ez a nap volt a kísérlet első napja). A növényeket

klímakamrában neveltem a következő feltételek mellett: 20ºC léghőmérséklet, 70%

relatív páratartalom, 500-550 µmol foton m-2 s-1 fényintenzitás a nevelőedények

magasságában, 400 ppm CO2 koncentráció és 14 órás nappal / 10 órás éjszaka

periódus. A nevelőedények pozícióját rendszeresen változtattam a nevelőasztalon a

klímakamrán belüli esetleges inhomogén fényeloszlás nemkívánt hatásának

elkerülésére. A nevelőedények talajának felszínét műanyag sörétekkel borítottam az

evaporáció csökkentésére, amit pontosan mértem is kezelésenként két növény nélküli

nevelőedénynél. Két-három naponta öntöztem a növényeket azonos

talajnedvességtartalomra hozva ekkor az edényeket. Az ásványi tápanyagokat a

kísérlet kezdete előtt adtam minden edény talajához a következő mennyiségekben: 6

mM Ca(NO3)2•4H2O, 8 mM KNO3, 2 mM KH2PO4, 2.75 mM MgSO4•7H2O, 4 µM

MnSO4•H2O, 1.7 µM ZnSO4•7H2O, 0.3 µM CuSO4•5H2O, 40 µM H3BO3, 0.5 µM

Na2MnO4•H2O, 81 µM FeSO4•7H2O és 80 µM NaEDTA. A szárazságkezelés előtt

három nappal és annak kezdetekor további tápanyagokat adagoltam minden

növénynek az előző felsorolás első négy vegyületéből 1/3-nyi mennyiségben. A

kísérlet 19-edik (Triticum), 20-adik (Tragus) ill. 25-ödik napján (Bromus) a növények

felétől megvontam a vizet (szárazságkezelés), másik felüket továbbra is rendszeresen

öntöztem (kontroll). Kettő-öt naponként mértem a klímakamrán belül a levél

gázcseréjét és vízállapotát növényfajonként és kezelésenként 3-3 ismétlésben. Ezután

a vizsgált növényeket "learattam" és megtettem a növekedésanalízishez szükséges

terület- és tömegméréseket (4.2. fejezet). A kísérlet tartama 36 (Triticum), 42

(Bromus) ill. 44 nap (Tragus) volt.

Page 77: Kalapos T. 1994

76

A növényeken végzett mérések

A levél gázcseréjét és vízállapotát az alulról számított ötödik (Triticum) vagy

harmadik (Bromus és Tragus) levélen vizsgáltam. A gázcserét intakt leveleken

mértem egy ADC LCA-2 típusú hordozható infravörös gázanalizátorral PLC-2N

típusú, pázsitfüvekhez készített levélkamrát (ADC Ltd., Hoddesdon, UK) használva

(v.ö. 3.2.2.a. fejezet). A levél vízpotenciálját (Ψl) nyomáskamrával (TFDL,

Wageningen, Hollandia) mértem ugyanazon a levélen azonnal a gázcseremérések

után (v.ö. 3.2.1.b. fejezet). Ezek után a mért növényeket learattam, biomasszájukat

szétválogattam gyökérre, szárra és levélre (valamint reproduktív részekre Tragusnál).

A levelek területét egy LI-3100 típusú levélterületmérő készülékkel (LI-COR Inc.,

Lincoln, Nebraska, USA) határoztam meg (3.2.3. fejezet). A növényi anyagot 70°C-

on 1-2 napig szárítottam, a friss- és száraztömegeket laboratóriumi mérlegen mértem

1 mg pontossággal. A növényegyedek transzspirációs vízvesztését a nevelőedények

súlycsökkenésének mérésével követtem nyomon, a talajfelszini evaporáció

figyelembevételére korrekciót alkalmaztam. A talaj vízpotenciálját (Ψs) a százalékos

talajnedvességtartalom értékekből számítottam korábban meghatározott pF görbe

(van den Boogaard, személyes közlés) alapján .

Statisztikai értékelés

A növény relatív növekedési ütemét (RGR) a funkcionális eljárás [Hunt

1982] szerint számítottam másodfokú polinomot illesztve a növényi száraztömeg

természetes alapú logaritmusára. A fajok ill. kezelések közötti különbségeket

páronként végzett t-tesztekkel [Sváb 1981] ellenőriztem. Minden különbséget P<0.05

szinten tekintettem szignifikánsnak. 4.4. A kísérlet eredményei A levél gázcseréje

A növények eltérő mérete és növekedési üteme miatt a kezelés időbeni

lefutása nem volt azonos a három fajnál (a nagyobb termetű Triticum egyedek

valamivel gyorsabban merítették ki a nevelőedény vízkészletét mint a kisebb

Page 78: Kalapos T. 1994

77

homokpusztai füvek). Ezért a fajok összehasonlításának alapjául az azokon a napokon

mért adatokat használtam, mikor a talaj vízpotenciálja (Ψs) a legszorosabban egyezett

a három növényfajnál (közel azonos terhelés-intenzitás, lásd 4.1 és 4.2 táblázatok).

Bromus és Triticum fajoknál az alkalmazott kísérleti összeállítás lehetőséget nyújtott

arra, hogy egyidejűleg nyomon követhessem a talajszárazodás hatását mind a levél

gázcseréjére, mind pedig a növényegyed növekedésére. Tragusnál viszont - a

növények viszonylag kis termete és gyors fejlődése miatt - a szárazságstressz már

csak akkorra alakult ki, mire azok a reproduktív életfázisukba lépve befejezték

vegetatív növekedésüket. Így Tragusnál a vízhiány jelentős hatással volt ugyan a

levél gázcseréjére, de már nem befolyásolhatta a növényegyed növekedését.

Elégséges nedvességellátás mellett a levéllemez gázcseréjének (Pn és E)

intenzitása hasonló volt a két C3-as fajnál (Bromus és Triticum), ezektől viszont

jelentősen eltért a C4-es Tragus aktivitása (4.1. táblázat, kontroll). A nettó

fotoszintézis üteme (Pn) magasabb, míg a sztómás vízpáravezetés (gst), a mezofillum

relatív CO2 koncentrációja (pi/pa) és a levélterületegység napi vízleadása (Ela)

alacsonyabb volt Tragusnál mint a két C3-as fűnél. Tragus fotoszintézisének

pillanatnyi vízhasznosítási hatékonysága (itt a Pn/gst hányadossal mérve) több mint

kétszerese volt a vizsgált C3-asokének.

A hasoló fokú szárazságterhelés (-0.6 < Ψs < -0.36 MPa) mellett a fajok

különböző Ψl értékeket mutattak: Tragus -2.0 MPa-t, Triticum -3.0 MPa-t, míg

Bromus még Ψs=-0.59 MPa-nál is csupán -2.8 MPa-t (4.1.táblázat). Ez a fajok eltérő

képességét mutatja a szöveti vízhiány elkerülésére. Megfigyeltük, hogy Tragus

gyökerei jóval vékonyabbak (így nagyobb fajlagos felületűek), mint a másik két fajé.

Ilyen erős szárazságterheléskor mindhárom faj Pn-e hasonlóan alacsony volt, a C4-es

faj sem mutatott magasabb teljesítményt (4.1. táblázat). Mindegyik fajnál csökkent

gst, pi/pa és a növény napi vízforgalma (E), de leginkább Triticumnál.

Page 79: Kalapos T. 1994

78

Page 80: Kalapos T. 1994

79

Page 81: Kalapos T. 1994

80

A szárazságekezelés időbeni lefutásának részletes nyomonkövetése csak

Triticumnál volt lehetséges (4.1. ábra). A kísérlet legvégén a kontroll növények is

enyhe szárazságterhelést kaptak (4.1.A ábra), mivel az időközben nagyra nőtt

egyedek egyre jobban kimerítették két öntözés között a nevelőedény talajának

nedvességtartalmát. Ez a kis eltérés azonban nem befolyásolta lényegesen a kísérlet

eredményét. A talaj csökkenő (egyre negatívabb) vízpotenciáljával a levél gázcseréje

jóval hamarabb csökken mint a levél vízállapotát tükröző Ψl (4.1.B-D ábrák); a

szárazságkezelt növényeknél Pn, gst és pi/pa lényegesen alatta maradt a kontrollnak

már a kísérlet 31. napján (4.1.C-E ábrák), míg Ψl ilyen különbsége a 33. napon

jelentkezett legkorábban (4.1.B ábra). Ehhez hasonlóan, a kontroll növényeknél a

kísérlet legvégén fellépő enyhe szárazságstressz (4.1.A ábra) nem okozott Ψl

változást (4.1.B ábra), ugyanakkor Pn, gst és pi/pa jelentősen csökkent (4.1.C-E

ábrák). A szárazságkezelt sorozatban gst szoros pozitív korrelációt mutatott Ψs-al

(r2=0.90), ám jóval gyengébbet Ψl-el (r2=0.39). Hasonló aszinkronitást tapasztaltak

szárazságstressznek kitett növényeknél a levél vízállapota és gázcseréje között

kukoricánál [Zhang & Davies 1990] és Lupinus albusnál [Quick et al. 1992]. A

sztómás vízpáravezetés változásával magyarázható Pn varianciája a szárazságkezelés

alatt (r2=0.94), a változás mértéke gst-nél volt a nagyobb (4.1.C-D ábrák). A talaj

szárazodásával Pn/gst monoton emelkedett a 33. napig, majd hirtelen csökkent a 36.

napon, mikor Ψl értéke elérte a -3.0 MPa. Hasonló jellegű, de ellenkező irányú

változást mutatott pi/pa is. Bár ilyen jelenség a fotoszintetikus kapacitás nem sztómás

limitációjakor (pl. kloroplasztiszok vízvesztéséből adódó működés-csökkenésekor)

szokott előfördulni, adataim alapján mégsem értelmezhetem egyértelműen ezt a

változást így, mert a kísérlet végén mért alacsony gázcsereintenzitásnál a mérés ill. pi

számításának relatív hibája nő. Ezért a továbbiakban ezzel a jelenséggel már nem

foglalkozom.

Page 82: Kalapos T. 1994

81

4.1. ábra. Rövid időtartamú talajszárazodás hatása a levél gázcseréjére Triticum aestivum cv. Katya-A-1 búzafajtánál. A növényi válasz időbeni alakulása. Átlagértékek ± SE, (n=3). Ahol a hibaszórást nem tüntettem fel, ott az kisebb a használt jel méreténél. Jelek és rövidítések mint a 4.1. táblázatban.

Page 83: Kalapos T. 1994

82

4.2. ábra. Rövid időtartamú talajszárazodás hatása a növényegyed növekedésére Triticum aestivum cv. Katya-A-1 búzafajtánál. A növényi válasz időbeni alakulása. Átlagértékek ± SE, (n=3). Ahol a hibaszórást nem tüntettem fel, ott az kisebb a használt jel méreténél. Jelek és rövidítések mint a 4.2. táblázatban.

Page 84: Kalapos T. 1994

83

A növényegyed növekedése

A vizsgált fajok relatív növekedési üteme (RGR) 150 és 200 mg g-1 nap-1

között alakult kedvező nedvességellátás mellett, és kicsi volt a fajok közötti eltérés

(4.2 táblázat, kontroll). Bár a C4-es Tragus mutatta a legmagasabb RGR és nettó

asszimilációs ráta (NAR) értéket, ám csak némileg múlta felül a két C3-as füvet.

Ugyanakkor jelentős interspecifikus különbségek adódtak a biomassza növényen

belüli eloszlásában (4.2 táblázat, kontroll). A levelek súlyaránya (LWR) a Bromus >

Triticum > Tragus irányban csökken, míg a fajlagos levélterület (SLA) Tragusnál a

legmagasabb és Triticumnál a legalacsonyabb. A két mennyiség szorzataként adódó

egységnyi növényi száraztömegre jutó levélterület (LAR) Bromus esetében magasabb

mint a két másik fűnél. Bromusnál és Triticumnál a növény biomasszájának közel 1/3-

a van a gyökerekben, míg Tragusnál ez mindössze 1/10, ahogy azt a gyökérzet

súlyaránya (RWR) mutatja (4.2 táblázat, kontroll). A szárak összsúlyának részedése a

teljes növényéből (SWR) közel 0.5 Tragusnál, míg csupán 0.25 Triticum és 0.18

Bromus fajoknál.

A szárazságkezelés nyomán jelentősen csökkent RGR és NAR Bromusnál és

Triticumnál (4.2 táblázat, kezelt). LAR ugyancsak kisebb a kezelt növényekben a

kontrollnál, ami egyszerre adódik LWR és SLA csökkenéséből. RWR ugyanakkor

növekszik a talaj víztartalmának kimerülésével. Mindezek következményeként az

egységnyi gyökértömeg egyre kisebb levélterületet lát el vízzel (LA/RW).

A szárazságkezelés növényegyed szintű hatásának időbeli lefutását is

Triticumnál tudtam pontosan követni (4.2 ábra). A növény össztömegének lényeges

csökkenése csak a kísérlet 36. napján észlelhető (4.2.A ábra), míg a biomassza

növényen belüli megoszlása (LWR, RWR) ennél öt nappal korábban jelentkezik

(4.2.E,G-H ábrák). A kísérlet végére a szárazságkezelt egyedek teljes levélterülete

kevesebb mint fele a kontrollnak (4.2.B ábra).

Tragusnál a kontroll (27. napi adatok) és kezelt (44. nap) közötti

különbségek a növény egyedfejlődésével jelentkező változásokat tükrözik (4.2

Page 85: Kalapos T. 1994

84

táblázat). (Itt a vízhiány a növények vegetatív növekedésének befejeződése után

jelentkezett csak). Az egyed növekedésének üteme (RGR) csökken a növény

ontogenezise során, NAR értéke viszont lényegesen nem változik. Az adott

intervallumban változatlan a szár és a gyökérzet részesedése, ugyanakkor nő a

reproduktív részek súlyaránya (IWR), nagyrészt LWR rovására.

A talajszáradás jelentősen csökkentette a vízforgalmat a növényegyed

szintjén is, ill. a biomassza különböző frakcióinak egységeire megadva (Ela, Erw, 4.1.

táblázat, 4.1.G ábra). Bromus mutatta a legintenzívebb vízforgalmat, míg Tragus a

legkisebbet. Ugyanakkor az egységnyi gyökértömegre jutó vízfelvétel Tragusnál volt

a legmagasabb és Triticumnál a legalacsonyabb (bár itt a különbség csak p<0.1

szinten szignifikáns). Ez együttes következménye a fajok transzspirációs

teljesítményében és biomassza allokációjában jelentkező eltéréseknek.

4.5. Az eredmények értékelése

A rövid időtartamú talajszárazodás jelentősen befolyásolta a növényi

működéseket mind a levél, mind az egyed szintjén. A talaj csökkenő vízpotenciáljával

csökkent a levél gázcseréjének pillanatnyi üteme (4.1. táblázat), amit a sztómás

vízpáravezetés jelentős redukciója idézett elő. A sztómák úgy reagáltak a

szárazságterhelésre, hogy a levél fotoszintetikus vízhasznosítási hatékonysága

emelkedett. Triticumnál a levél gázcseréjének változása jóval szorosabb kapcsolatot

mutatott a talaj vízállapotával mint a levél vízpotenciáljával (4.1.A-D ábrák). Ez

sejteti, hogy a sztómás vízpáravezetés szabályozásában feltételezhetően szerepe van

valamilyen, közvetlenül a gyökérből érkező jelzésnek is. A nyolcvanas évek

közepétől egyre több kísérletes bizonyíték erősíti meg az ilyen gyökér-hajtás

kommunikáció létezését, elsősorban az abszcizinsav (ABA), mint kémiai jelzőanyag

szerepére mutatva rá [Blackman & Davies 1985, Gollan et al. 1986, Schulze 1986,

Zhang & Davies 1990, Tardieu & Davies 1993]. Elégséges nedvességellátás mellett a

C4-es Tragus pillanatnyi fotoszintetikus teljesítménye (Pn) és vízhasznosítási

hatékonysága (Pn/gst) felülmúlta a két C3-as fű értékét. Ez a különbség eltűnt a

Page 86: Kalapos T. 1994

85

kísérlet végére, a kialakult intenzív szárazságstressz mellett mindegyik faj gázcseréje

radikálisan csökkent. Ez megerősíti, hogy a C4-es út magasabb fotoszintetikus

vízhasznosítási hatékonysága (WUE) nem feltétlenül jelent egyben nagyobb vízhiány-

toleranciát is [Osmond et al. 1982, Pearcy & Ehleringer 1984]. Tragus levelének

magas WUE-ja a növenyegyed szintjén is a biomasszaprodukció hatékonyabb

vízhasznosítását (WUEB) eredményezte, mint a vizsgált C3-as füveknél (4.2.

táblázat). Ezen WUE különbségek értelmezésénél ugyanakkor figyelembe kell venni

a növények eltérő fenológiáját is a természetes élőhelyükön. A C3-as Bromus és

Triticum tavasszal nő, amikor a levegő vízgőztelítettségi hiánya (VPD) rendszerint

kicsiny (így viszonylag nagy gst-nél is mérsékelt a transzspiráció), míg Tragus a nyár

közepén működik, amikoris VPD jóval magasabb (tehát viszonylag kis

sztómanyitottság is jelentős vízvesztéshez vezethet).

Az egyed szintjén a C4-es Tragus növekedési és asszimilációs üteme (RGR

és NAR) csak némileg múlta fölül a két C3-as fűét. Ennek értelmezésekor ám azt is

figyelembe kell venni, hogy a növények nevelési körülményei (léghőmérséklet =

20ºC, PPFD < 600 µmol foton m-2 s-1) kedvezőbbek voltak egy C3-as mint egy C4-es

növény számára, ha összevetjük a két típus jellemző fotoszintetikus hőmérsékleti és

fényreakcióját [Pearcy & Ehleringer 1984]. C3-as és C4-es növényeket összehasonlító

kísérletekben meghatározó volt a hőmérséklet szerepe RGR értékére nézve [Kemp &

Williams 1980, Pearcy et al. 1989]. Ugyanakkor egyre több vizsgálat mutatja, hogy a

C4-esek levelének magasabb fotoszintetikus teljesítménye nem mindig vezet a növény

magasabb növekedési üteméhez [Bazzaz et al. 1989, Gifford 1974, Hofstra &

Stienstra 1977, Slatyer 1971]. A szakirodalom kritikus értékelése után Snaydon

[1991] úgy véli, hogy a C4-esek C3-asokénál magasabb produktivitása nem az eltérő

fotoszintézistípusnak tulajdonítható (hanem pl. a relatíve hoszabb vegetációs

periódusnak a C4-esek természetes élőhelyén ill. termőterületén).

A talajszárazság jelentősen csökkentette a növényegyed növekedési ütemét

(RGR) és asszimilációját (NAR) Bromus és Triticum fajoknál (Tragusnál ezt nem

vizsgálhattam). A biomassza növényen belüli eloszlása úgy változott, hogy a

Page 87: Kalapos T. 1994

86

gyökerek részaránya növekedett, a leveleké pedig csökkent. Így a növény a

vízfelvevő részekbe való megemelt biomassza-allokációval igyekszik mérsékelni a

talaj fogyatkozó nedvességkészletének korlátozó hatását. Triticumnál ez a

válaszreakció jóval hamarabb jelentkezett a szárazságkezelés során mint RGR

érzékelhető csökkenése. Így viselkedik a legtöbb növény mérsékelt vízhiány hatására

[Bradford & Hsiao 1982, Sharp & Davies 1989].

A rendszeres öntözés mellett nevelt kontroll növények összehasonlításakor

feltűnik, hogy az egyes növényi részek súlyaránya Tragusnál jelentősen eltér a másik

két fű értékétől. Itt az egyed száraztömegének csupán 10%-át teszi ki a gyökérzet,

míg Bromusnál és Triticumnál ez 30% körül alakul. Két elképzelésem van ennek

magyarázatára. 1.) Megfigyeltem (bár konkrét kvantitatív vizsgálatot nem végeztem),

hogy Tragus gyökerei jóval vékonyabbak mint a másik két fűé. Így a nagyobb

felület/térfogat arány következtében az egységnyi gyökértömeg vízfelvétele itt

valószínűleg hatékonyabb. Ezt alátámasztani látszik a gyökértömegegységre számított

transzspirációs ütem (Erw, 4.1. táblázat), ami Tragusnál a legmagasabb. 2.)

Elképzelhető, hogy magasabb fotoszintetikus víz- és nitrogénhasznosítási

hatékonyságuk (WUE ill. NUE) következtében a C4-es növények képesek ugyanazt a

biomasszamennyiséget kevesebb gyökérrel is előállítani mint a C3-asok. Magasabb

NAR-jú növényfajoknál általában a gyökérzet súlyaránya (RWR) is relatíve nagy

[Konings 1989], de az még nem ismert, hogy ez a trend vajon érvényes-e eltérő

fotoszintézistípusok összehasonlításakor is. C3-asokkal összevetve a C4-esek relatív

gyökértömege alacsonyabb [Gebauer et al. 1987, Kemp & Williams 1980, Saxena &

Ramakrishnan 1983, Wong & Osmond 1991], magasabb [Caldwell et al. 1977,

Hofstra & Stienstra 1977, Roush & Radosevich 1985, Sage & Pearcy 1987a] vagy

hasonló volt [Bazzaz et al. 1989]. Taxonómiailag közel rokon C3-as és C4-es fajpárok

szisztematikus összehasonlítása szükséges annak eldöntéséhez, hogy vajon képesek-e

a C4-es növények relatíve kisebb gyökérzettel működni mint a C3-asok.

A levéltömeg részesedése is mintegy 10%-al alacsonyabb volt Tragusnál

mint a másik két fajnál. Egyenlőre nem tudható, hogy ez vajon a C4-es levél

Page 88: Kalapos T. 1994

87

magasabb fotoszintetikus teljesítményének következménye vagy sem. Elképzelhető

viszont, hogy a C4-es fajoknál a gyökérzeten és/vagy a leveleken "megspórolt"

asszimilátumok olyan más struktúrákra vagy működésekre fordíthatók, melyek

növelik a növény rátermettségét a természetes élőhelyen. Tragusnál ez a "többlet" a

szár fejlesztésére fordítódik, melynek tömegrészesedése mintegy 50% (Bromusnál és

Triticumnál ez kb. 20%). Saxena és Ramakrishnan [1983] két évelő C4-es gyom

biomasszájának nagy részét a növény földalatti rizómájában mérte, és a növények

növekedési üteme (RGR) szintén nem volt magasabb a velük együtt előforduló C3-

asokénál. Tragus racemosus magas SWR-ját a növény jellegzetes moduláris

felépítése magyarázza (4. fotó, 3.1. fejezet), ami valószínűleg több előnyt is jelent a

természetes élőhelyen. Az újabb nóduszokon (ramet) formálódó gyökérzet nagyobb

talajtérfogatból teszi lehetővé a víz- és ásványi tápanyagok kiaknázását. A levelek

önárnyékolása is minimális így, ami különösen fontos a magas fényigényű C4-

eseknél. Az általában magas fotoszintetikus hőmérsékleti optimumot mutató C4-es

növények számára a hőmérséklet valószínűleg lényeges korlátozó tényező

mérsékeltövi élőhelyeken. Ez a hatás mérsékelhető, ha a növény viszonylag magasabb

hőmérsékletű mikromiliőt hasznosít. A homokpusztagyepben a talajfelszini

hőmérséklet jelentősen meghaladhatja a léghőmérsékletet derült napokon, így a

talajhoz simuló C4-es Tragus valószínűleg jobban megtalálja a hőmérsékleti igényét

kielégítő feltételeket.

Összefoglalva tehát: a C4-es levél magasabb fotoszintetikus kapacitása

gyorsabb növekedést eredményezhet az egyed szintjén is a C3-asokkal

összehasonlítva, ami valószínűleg olyan élőhelyek növényeinél fontos, ahol a gyors

növekedés előnyt jelent. Ugyanakkor a forrásokban szegény élőhelyeken az

asszimilátumok allokációja nem a növekedés sebességét (RGR), hanem a túlélést

növelő szerkezetekbe és/vagy működésekbe térül meg a leginkább. Ez egy lehetséges

magyarázata annak, hogy gyakran hasonló RGR-t találtak C3-as és C4-es

növényekben. Jelen kísérletben az intenzív szárazságterhelés a levél hasonlóan

alacsony asszimilációs aktivitását eredményezte a vizsgált C3-as és C4-es füvekben.

Page 89: Kalapos T. 1994

88

5. AZ ELTÉRŐ CO2 FIXÁCIÓS UTAK ÖKOLÓGIAI JELENTŐSÉGE

5.1. A fotoszintetikus CO2 fixáció módjai a szárazföldi hajtásos növényeknél; ökológiai és evolúciós vonatkozások.

A légköri CO2 megkötésének a növényvilágban általánosan elterjedt módja

az ún. C3-as anyagcsere, melynek során a CO2 közvetlenül az ún. Calvin ciklusba

kerül a Ribulóz-1-5-biszfoszfát-karboxiláz (RUBPC) primér karboxilációs enzim

segítségével. A reakciósor első terméke a három szénatomos glicerinsav-3-foszfát

(PGA, lásd pl. Edwards & Walker [1983], Taiz & Zeiger [1991]), innen a C3-as út

elnevezés. A jelenlegi légköri CO2 koncentráció mellett a folyamat hatékonyságát

jelentősen csökkenti, hogy a RUBPC enzim aktív kötőhelyéhez az oxigén is

kapcsolódhat. Ennek eredményeként a fénylégzésnek (fotorespiráció) nevezett

reakciósoron keresztül CO2 szabadul fel. Ez a szénveszteség különösen magas

hőmérsékleten és alacsony mezofillum CO2 koncentráció (ci) mellett jelentős

[Edwards & Walker 1983], ami csökkenti a növény növekedését és produkcióját. Ezt

kiküszöböli ki az evolúció során kialakult két, a C3-astól eltérő fotoszintézisút; a C4-

es (vagy Hatch-Slack féle) és a CAM (Crassulaceae típusú) fotoszintézis. Mindkettő

az eredeti C3-as anyagcserére épül, de anatómiai, ultrastruktúrális és biokémiai

módosulások optimális környezetet biztosítanak a RUBPC enzim CO2 kötő

működéséhez. Mivel a CAM típus vizsgálatával nem foglalkoztam, itt csak a C4-es

utat tárgyalom.

A zárvatermő növények egyes csoportjaiban a C4-es fixációs út működik,

ami lényegében a Calvin-ciklus "elé épített" CO2 sűrítő mechanizmus [Osmond et al.

1982, Pearcy & Ehleringer 1984, Ehleringer & Monson 1993]. A C4-es növények

levélparenchimája két működési egységre különül. A szállítóedényeket körülvevő

nyalábhüvely-parenchima (Kranz struktúra) kloroplasztiszaiban működik a RUBPC

és a Calvin-ciklus, míg a mezofillum sejtjek citoplazmájában egy másik enzim, a

foszfo-enol-piroszőlősav-karboxiláz (PEPC) köti a HCO3--t. A mezofillumban így

Page 90: Kalapos T. 1994

89

keletkező 4 szénatomos (C4) szerves savak (malát, aszpartát) a sejteket összekötő

plazmodezmoszokon át a nyalábhüvelybe szállítódnak, ahol újabb enzimatikus

reakció révén felszabadul belőlük a CO2. Ez lép be azután a Calvin-ciklusba, a

folyamat a továbbiakban a C3-asokkal megegyezően halad. Látható tehát, hogy a

PEPC aktivitása nyomán nettó CO2 fixáció nem történik, csupán a CO2 koncentráció

emelése a RUBPC működésének a helyén (a mezofillumbeli érték 10-20-szorosára,

[Osmond et al. 1982, Ehleringer & Monson 1993]). Így a C4-es növényeknél a CO2

megkötése és redukciója szénhidrátokká térben elkülönül a levélszöveten belül (az

előbbi folyamat a mezofillumban, az utóbbi a nyalábhüvelyben zajlik).

A C4-es anyagcsereút polifiletikus eredetű, C3-as ősből fejlődhetett ki

egyidejűleg több növénycsoportban [Moore 1982, Ehleringer & Monson 1993]. Ma

16 növénycsalád több mint 200 nemzetségében ismerjük előfordulását [Raghavendra

& Das 1978, Watson & Dallwitz 1993]. Feltételezhetően már a Paleocénben (kb. 60

millió éve) kialakult [Ehleringer et al. 1991], de tömeges elterjedése csak a Késő-

Miocénre (5-7 millió éve, Cerling et al. [1993]) vagy a Pliocénre - Pleisztocénre (kb.

1.7 millió éve, Cerling [1992]) tehető. A legkorábbi bizonyosan Kranz anatómiájú

(azaz C4-es) levélmaradvány a Késő-Miocénből származik [Thomasson et al. 1986].

A pázsitfűfélék kizárólag C4-es növényeket tartalmazó Eragrostoideae

(Chloridoideae) alcsaládjának keletkezését Hartley és Slater [1960] az Oligocénre

helyezi. A legújabb elképzelések [Ehleringer et al. 1991, Cerling et al. 1993,

Ehleringer & Monson 1993] szerint a C4-es növények robbanásszerű fellépését a

légköri CO2 koncentráció drasztikus globális csökkenése váltotta ki (kb. 3000 vpm-

ről a Kréta időszakban 300 vpm-re a Felső-Miocénben).

A C4-es út kialakulásának kezdeti evolúciós hajtóereje a C3-as fixációval

járó fénylégzéses CO2 veszteség mérséklése lehetett [Monson 1989], ami forró és arid

körülmények között válik különösen jelentőssé (a fixált CO2 akár 1/3-a is lehet). A

C4-es anyagcsereút evolúciójának második szakaszában a víz- és nitrogénhasznosítási

hatékonyság (WUE ill. NUE) fokozása válhatott hajtóerővé. Nagyon valószínű, hogy

az evolúció első szakaszára a jellegzetes "Kranz" (=gyűrű) anatómia kialakulása és a

Page 91: Kalapos T. 1994

90

fénylégzéskor felszabaduló CO2 újramegkötése tehető, míg a második szakaszára a

fixációs enzimek (RUBPC és PEPC) eltérő kompartmentalizációja a nyalábhüvely és

a mezofillum között valamint a "CO2-sűrítő" mechanizmus kialakulása jellemző

[Monson 1989]. Ezt a fejlődési útvonalat látszanak megerősíteni a mai C3-C4

intermedier fajok is [Brown & Hattersley 1989, Ehleringer & Monson 1993, Monson

et al. 1984, Monson & Moore 1989].

A C3-C4 intermedier növények átmeneti evolúciós alakok, melyekben a C4-

es anyagcsereút kialakulása még folyamatban van [Monson & Moore 1989]. Bár

többé-kevésbé fejlett Kranz anatómiával rendelkeznek, ám a sejtorganellumok

(kloroplasztiszok és mitokondriumok) sűrűsödése a nyalábhüvelyben, a fotoszintézis

CO2 kompenzációs pontja (Γ, 8-35 ppm) és az oxigén CO2 fixációt gátló hatása

köztes értékeket mutat a C3-as és a C4-es növényekre jellemzők között [Brown &

Hattersley 1989, Monson et al. 1984]. Eddig 23 növényfajt találtak C3-C4 intermedier

fotoszintézissel a Mollugo (Aizoaceae), Alternanthera (Amaranthaceae), Flaveria és

Parthenium (Compositae), Moricandia (Cruciferae) valamint Neurachne és Panicum

(Poaceae) nemzetségekben [Monson & Moore 1989]. Egyik csoportjukban

(Alternanthera, Moricandia, Panicum) a C4-es út jellemző enzimjeinek aktivitása

még rendkívül alacsony, hatékonyabb asszimilációjukat csupán a nyalábhüvelyben

koncentrálódó fénylégzés termelte CO2 újramegkötésének köszönhetik. Másik

csoportjukban (Flaveria, Neurachne) már kimutatható a C4-es enzimek katalizálta

CO2 sűrítés a nyalábhüvelybe, de ennek hatékonysága még olyan alacsony, hogy

fotoszintetikus fényhozamuk még a C3-as növényekénél is alacsonyabb.

A '70-es években volt elterjedt az elképzelés, mely szerint egyes növények

képesek lennének a C3-as és C4-es fixációs út közötti átkapcsolásra a környezeti

tényezők változásával [pl. Huber & Sankhla 1976, Shomer-Ilan et al. 1979, H-Nagy

& Horánszky 1980]. Ezt a feltevést a CO2 fixációban résztvevő enzimek, elsősorban a

RUBPC és PEPC aktivitásváltozására alapozták. A legújabb kutatási eredmények

azonban arra utalnak, hogy nem valószínű az ilyen működésváltás [Osmond et al.

1980, 1982, Öztrük et al. 1981, Ehleringer & Monson 1993, Huber Ziegler, személyes

Page 92: Kalapos T. 1994

91

közlés]. Bár a környezeti hatásra bekövetkező C3<->CAM átkapcsolás jól ismert és

igazolt számos szukkulensnél [pl. Shomer-Ilan et al. 1979, Tuba 1984a, Winter &

Lüttge 1976], hasonló működésváltás létezése a C3 és C4 utak között a következők

miatt nem képzelhető el:

A. A C4-es fixációs út olyan bonyolult anatómiai, ultrastrukturális és biokémiai-

differenciálódással jár, ami nem indukálódhat egyszerűen ugyanazon a levélen

ill. növényen belül a környezet változásával. Ma már teljesen bizonyos, hogy jól

fejlett Kranz anatómia elengedhetetlen a C4-es anyagcsere működéséhez [Brown

& Hattersley 1989].

B. Mérsékeltövi szemiarid klímában mindkét primér karboxiláló enzim aktivitása

csökken tavaszról nyárra, ám RUBPC-é jobban mint PEPC-é [H-Nagy &

Horánszky 1980]. A PEP-karboxiláz RUBPC-hez viszonyított relatív

aktivitásának ilyen emelkedése ömagában nem elégséges bizonyítéka a C4-es út

működésének, már az alábbiak miatt sem:

B.1. A fenti aktivitásváltozás jóval inkább tükrözi a két enzim (ill. az általuk

katalizált folyamatok) eltérő szöveti-vízhiány (és az azzal rendszerint párosuló

magas hőmérsékleti) toleranciáját. RUBPC a kloroplasztiszok sztrómájában

működik, aholis a finom membránstruktúra jelentős ultrastruktúrális

változásokon megy át vízhiány hatására [Maróti et al. 1984]. Ez nagymértékben

redukálhatja RUBPC működését. Ugyanakkor PEPC citoplazmatikus enzim,

valószínűleg kevésbé érzékeny a mérsékelt vízhiányra.

B.2. PEPC relatív aktivitásnövekedését csak akkor tekinthetnénk a C4-es CO2

fixáció fokozódás egyértelmű jelének, ha ez az enzim csak ennek az egy

folyamatnak lenne a katalizálátora. Ez pedig nincs így, mivel az a C3-as

növényekben is legalább két másik folyamatban (sejtlégzés ill. aminósav

szintézis) is szerepel.

B.2.a. A sejtlégzés biokémiájának egyik növényi különlegessége éppen az, hogy

a glikolízisből származó foszfo-enol-piruvát (PEP) nemcsak közvetlenül

piruváttá (Pi) alakítva léphet be a mitokondrium trikarbonsav (TCA) ciklusába,

Page 93: Kalapos T. 1994

92

hanem a PEPC közreműködésével egy "kerülőúton" is almasavként [Taiz &

Zeiger 1991]. A legújabb eredmények azt mutatják, hogy ez az utóbbi, "almasav"

út működése messze dominál a "Pi" út fölött a növényekben [Hans Lambers,

személyes közlés], vagyis jelentős PEPC aktivitást jelent. Bár a turgor

csökkenésével általában mérséklődik a sejtlégzés [Bradford & Hsiao 1982], a

nyári szárazságstresszel járó hőmérsékletnövekedés viszont emelheti a légzés

(így PEPC) relatív aktivitását is.

B.2.b. PEPC jelentős szerepet játszik az aminósav bioszintézisben is. Jól ismert,

hogy a glikolízis és a TCA ciklus nemcsak a sejt energiaháztartásában fontos

folyamat, hanem a növényi anyagcsere számos vegyületének (aminósavak,

nukleinsavak, porfirinek, szekundér anyagcsere termékek, stb.) szintéziséhez ad

kiindulási építőköveket [Láng & Vágújfalvi 1993, Taiz & Zeiger 1991].

Általános megfigyelés, hogy szárazságstressz hatására jelentősen fokozódik a

prolin (és kisebb mértékben a betain) aminosavak szintézise. Ez pedig PEPC

aktivitásának növekedését is jelenti a következő (elnagyolt) reakciósor szerint

(PEPC aktivitását * jelzi): glikolízis --> PEP -*-> oxálecetsav--> almasav -->

TCA ciklus --> α-keto-glutársav --> glutaminsav --> prolin [Láng & Vágújfalvi

1993 alapján]. Ezekből tehát látható, hogy csupán a PEPC aktivitásának

változásából nem dönthető el, hogy a három folyamat (CO2 fixáció, sejtlégzés

és/vagy aminósav szintézis) melyike (vagy mely kombinációja) változik.

B.3. Megfigyelték, hogy a C4-es növényekben a PEPC enzim más formája (allo-

enzimje) végzi a fotoszintetikus CO2 fixációt, mint ami a C3-as növényekben

(vagy akár a C4-esek nem-zöld részeiben) szerepel más folyamatokban [Ting &

Osmond 1973 cit. in Long 1983].

Így tehát a RUBPC/PEPC enzimaktivitási arányok alapján korábban

működésváltó "C3-C4 intermediernek" minősített növényeknél (pl. Festuca vaginata

[H-Nagy & Horánszky 1980]) nem áll rendelkezésre elégséges bizonyíték a ma

általánosan elterjedt értelemben használt C3-C4 intermedier jelleg alátámasztására.

Ezért taxonómiai helyzete és tapasztalt fotoszintetikus viselkedése alapján Festuca

vaginatat C3-as növénynek tekintem.

Page 94: Kalapos T. 1994

93

A C4-es fotoszintézisút felfedezése ('60-as évek) óta töretlen lendülettel

folyik a C4-es taxonok felkutatása és a fotoszintézisút ökológiai sajátságainak

feltárása. A C4-es növényfajok első átfogó listáit [Downton 1975, Raghavendra &

Das 1978] követően a C4-es növények földrajzi elterjedését és annak klimatikus

tényezőkkel mutatott kapcsolatát vizsgáló dolgozatok láttak napvilágot (különösen a

sok a Poaceae családról). A C4-es fajok a forró, fényben gazdag és legfeljebb

időszakosan száraz trópusi - szubtrópusi területeken gyakoriak, számuk a sarkok felé

haladva gyorsan csökken, a mérsékelt övben már csak kevés képviselőjük él [Osmond

et al 1982]. Az elterjedésüket meghatározó legfontosabb környezeti tényező a

hőmérséklet, legtöbbször a nyári hónapok napi minimumhőmérséklete [Teeri &

Stowe 1976, Ehleringer 1978, Vogel et al. 1978, Ellis et al. 1980, Long 1983,

Batanouny et al. 1988], másutt a nedvességviszonyok is fontos szerepet játszanak

[Chazdon 1978, Stowe & Teeri 1978, Hattersley 1983]. Trópusi hegyvidékeken a C4-

es füveket C3-asok váltják fel 2-3000 m tszf. magasság felett [Tieszen et al. 1979,

Rundel 1980], ami a hőmérséklet és a csapadék együttes változásával mutat szoros

összefüggést. Kisléptékű elterjedések az élőhely térbeli [Cowling 1983, Young &

Young 1983] vagy időbeli [Ode et al. 1980] felosztását mutatják az eltérő fixációs

típusú füvek között. Évszakos klímájú területeken a C4-es fajok a meleg, a C3-asok a

hűvös (tavasz vagy tél) évszakban aktívak [Long 1983, Mulroy & Rundel 1977,

Hattersley 1983, Batanouny at al. 1988], bár egyes fajoknál nincs ilyen szezonális

elkülönülés [Caldwell et al. 1977]. Maga a C4-es csoport sem teljesen egységes; a

fotoszintézisút három biokémiai altípusa (NADP-ME, NAD-ME és PEPCK, lásd pl.

Edwards & Walker [1983]) eltérő ökológiai viselkedést mutat [Ellis et al. 1980, Vogel

et al. 1986, Hattersley 1992]. Bár mindhárom a forró trópusi - szubtrópusi területeken

tömeges, a NADP-ME és a PEPCK füvek a viszonylag csapadékos, a NAD-ME

inkább az arid élőhelyekre jellemző. (Sokáig úgy tartották, hogy minden biokémiai

altípushoz egyetlen jellemző levélanatómiai felépítés rendelhető hozzá. A legújabb

eredmények szerint [Hattersley 1992] 8-10 anatómiai típus különböztethető meg a

füveknél, a PEPCK biokémiai típus nem azonosítható csupán levélanatómiai bélyegek

Page 95: Kalapos T. 1994

94

alapján. Így korábbi hibás típusbasorolások okozták, hogy a PEPCK csoport ökológiai

viselkedése nem volt teljesen egyértelmű.)

Egyre többen vizsgálják a fixációs típusok eltérő ökológiai viselkedésének

fiziológiai hátterét [pl. Kemp és Williams 1980, Monson et al. 1983] vagy

kísérletesen a kompetíciós kölcsönhatásokat C3-as és C4-es fajok között [pl. Pearcy et

al. 1981, Allen 1982, Bazzaz et al. 1989]. A C4-es fajok ökológiai viselkedését az

élettani sajátságaik jól magyarázzák [Osmond et al. 1982, Pearcy & Ehleringer 1984].

A C4-es fixáció hőmérsékleti optimuma jóval magasabb (25-35ºC) mint a C3-asé (15-

25ºC), sőt sokszor 50-60ºC-nál is károsodás nélkül működhet. Ugyanakkor a 10-15ºC

alatti hőmérséklet már gátolja a folyamatot (bár néhány mérsékeltövi C4-es növénynél

az alacsony (8-10ºC) hőmérséklet tűrését találták [Long 1983, Schwarz & Redmann

1989]). A "CO2 pumpa" jóvoltából a C4-esek rendkívül alacsony CO2 koncentrációig

képesek pozitív szénasszimilációra (CO2 kompenzációs pontjuk (Γ) 5 ppm alatt, míg

a C3-asoknál ez 50 ppm felett van). A fénylégzéses CO2 veszteség hiánya és a

RUBPC hatékony működése következtében a C4-esek nettó fotoszintetikus kapacitása

(40-60 µmol CO2 m-2 s-1) akár másfélszerese is lehet a C3-asokénak (kb. 35 µmol

CO2 m-2 s-1), de a környezeti tényezők sokszor korlátozzák ennek kifejeződését a

valóságban. A C4-es anyagcsereút azonos sztómanyitottság (gst) mellett képes jóval

intenzívebb szénasszimilációra (Pn) mint a C3-as, így a C4-es fotoszintézisút

vízhasznosítási hatékonysága (WUE) jelentősen felülmúlja a C3-asét. A C3-as

növények levelében a RUBPC enzim az oldható fehérjetartalom akár 45-50%-át is

kiteheti [Ku et al. 1979 cit. in Pearcy & Ehleringer 1984], tehát ezeknél a levél N-

készletének jelentős része a RUBPC-ben van kötve. A C4-es útnál viszont a CO2-

sűrítő mechanizmusnak köszönhetően ennél jóval kevesebb RUBPC sokkal

hatékonyabban működik a nyalábhüvelyben. Így a C4-esek fotoszintetikus

nitrogénhasznosítási hatékonysága (NUE, egységnyi levél-N által nettó fixált CO2) is

magasabb mint a C3-asoké [Pearcy & Ehleringer 1984, Sage & Pearcy 1987b]. A

"CO2 sűrítő pumpa" működése CO2 molekulánként két molekula ATP energiát

fogyaszt, így a C4-es út ennyivel energiaigényesebb a C3-asnál. Ez a fotoszintézis

Page 96: Kalapos T. 1994

95

kisebb fényhasznosítási hatékonyságát (ún. fénykvantum-hozamát) és magasabb

fénykompenzációs pontját eredményezi a C4-eseknél. Ugyanakkor a C4-es

fotoszintézis teljes napsugárzás (kb. 2000 µmol foton m-2 s-1) mellett sem mutat

fénytelítést [Osmond et al. 1982, Pearcy & Ehleringer 1984]. Azt, hogy C4-es út

magasabb asszimilációs potenciálja eredményezi-e a növényegyed ill. az állomány

gyorsabb növekedését vagy nagyobb fitomassza produkcióját a C3-asokkal

összehasonlításban mindig az adott növényfaj és élőhely határozza meg a magasabb

szerveződési szinteken fellépő korlátozások miatt [Osmond et al. 1982, Snaydon

1991].

A globális klímaváltozással járó légköri CO2 koncentráció emelkedése

valószínűleg a C3-as növények számára kedvező, hiszen a fénylégzéses

szénveszteségük csökken, fotoszintetikus hatékonyságuk pedig növekszik. Ez egyben

azt is jelenti, hogy hátrányuk mérséklődik majd a C4-esekkel szemben, melyek

fotoszintézisét a változás nem befolyásolja. Sokan ezért a C4-es növények

tömegességének jövőbeni csökkenését jósolják [pl. Ehleringer & Monson 1993].

Fontos figyelembe venni ugyanakkor a klímváltozással járó hőmérsékletemelkedést

is, ami főleg a mérsékelt övben várható jelentősnek (meglehetősen heterogén földrajzi

eloszlásban). Elképzelhető, hogy itt ez ellensúlyozza a CO2 emelkedését és a magas

hőmérsékleti igényű C4 fajok száma nem változik vagy épp növekedszik majd,

különösen az emberiség folyton növekvő, a természetes vegetációt bolygató

tevékenysége hatására.

5.2. A C3-as és C4-es fotoszintézisút jelenléte a magyar flórában és vegetációban3

Hazánk földrajzi helyzeténél és makroklimatikus adottságainál fogva a C3-as

növények fejlődése számára nyújt kedvező feltételeket. Ugyanakkor az Alföldre

jellemző szemiarid klíma, egyes szélsőséges edafikus hatások és a természetes

vegetáció bolygatása a C4-es növények viszonylag magas részesedéséhez vezet. Itt a

3 megjelent közlemény formájában: Kalapos 1991, Abstracta Botanica 15: 83-88.

Page 97: Kalapos T. 1994

96

pázsitfűfélék (Poaceae) család részletes ismertetésén keresztül mutatom be a két

csoport ökológiai viselkedését. Választásomat indokolja a C4-es fajok magas

gyakorisága a családon belül (a mintegy 10 ezer pázsitfűfaj közel fele C4-es

[Hattersley 1992]) és a füvek nagy jelentősége hazánk vegetációjában.

Egy növény fotoszintézistípusa (C3 vagy C4) a levél anatómiai (pl. Kranz

gyűrű, edénnyalábok közötti sejtek száma) vagy a stabil szénizotóp-arány (ún. δ13C

érték, Osmond et al. 1982] vizsgálatával állapítható meg. Ugyanakkor a Poaceae

családon belül a C4-es út előfordoulása nagyon jól követi az alcsaládok szerinti

felosztást [Gould & Shaw 1983]. A Pooideae, Oryzoideae és Arundinoideae

alcsaládok valamennyi faja C3-as (néhány kivételtől eltekintve a Danthonieae

tribuszban), míg az Eragrostoideae és Panicoideae alcsaládokra a C4-es

fotoszintézisút jellemző (kivétel a Panicum nemzetség, ahol C3-as és C4-es fajok is

vannak). Ez lehetővé teszi a fűfajok taxonómiai alapon történő besorolását a C3-as

vagy a C4-es típusba. Itt is ezt az eljárást alkalmaztam, akárcsak Teeri és Stowe

[1976]. Az így kapott minősítéseket levélanatómiai vizsgálatok is egyértelműen

megerősítették [Nyakas 1992]. (Ahol a taxonómiai evidencia nem volt kielégítő

/Panicum nemzetség/, ott szakirodalmi (anatómiai, biokémiai, vagy δ13C) adatokra

támaszkodtam). Nómenklatúra és taxonómia terén Soó [1973]-hoz igazodom.

A hazai pázsitfű flórában a C3-as fajok dominálnak, a C4-esek részesedése

14.4% (25 faj, 5.1. táblázat). Ez az érték viszonylag magas egy mérsékeltövi terület

számára, ugyanakkor Teeri és Stowe [1976] ennél nagyobb C4-es gyakoriságokat

észlelt Észak-Amerikában, hasonló földrajzi szélességű helyi pázsitfű flórákban.

Jelentős az eltérés a két csoport vegetációban betöltött szerepe között (5.1.

ábra). Míg a hazai C3-as pázsitfűfélék nagy része természetes társulások tagja (Simon

[1988] féle természetvédelmi értékük (TVK): E, K, TP vagy TZ), addig a C4-es

fajaink többsége kozmopolita gyom (TVK: GY). Collins és Jones [1985] szintén a

ruderális fajok magas részesedését találta az európai C4-es zárvatermők között.

Mindössze négy őshonos hazai C4-es pázsitfüvünk van (Botriochloa ischaemum,

Cleistogenes serotina, Chrysopogon gryllus és Crypsis aculeata, TVK: E vagy TZ).

Page 98: Kalapos T. 1994

97

Ezek stressz-toleráns fajoknak minősíthetők a Grime [1979] féle C-S-R

kategóriarendszerben, hiszen szikesek vagy száraz gyepek lakói.

Az erős kompetítorok hiánya a hazai C4-esek között valószínűleg azok C3-

asokénál magasabb fény- és hőmérsékleti igényével magyarázható. Itt a mérsékelt

övön az alacsony éjszakai hőmérsékletek miatt a C4-es fajok jóval később (nálunk

május-június) kezdhetik meg fejlődésüket a vegetációs periódus során mint az

alacsonyabb hőmérséklethez alkalmazkodott C3-as növények [Long 1983] (nálunk

március-április). Így azokon az élőhelyeken, ahol a C3-as növények növekedése

zavartalan ott a gyorsan kifejlődő lombsátoron át már kevés fény juthat a

talajfelszínre mire a hőmérséklet egyébként lehetővé tenné a C4-esek fejlődését. (Sőt

az is valószínű, hogy a talajt így érő csökkent besugárzás nem is emeli a

hőmérsékletet a C4-esek csírázásához szükséges magas értékre). Erős abiotikus

stressznek kitett élőhelyek (pl. homokpuszták, szikesek) nyílt növényzetében vagy

5.1. táblázat. A természetes magyar pázsitfűflóra C4-es fotoszintézisű fajai alcsaládonként. Nómenklatúra és taxonómia Soó [1973] szerint. A C4-es altípus is jelölve ott, ahol az biztosan ismert a= NADP-ME, b=NAD-ME (Nyakas [1992] és Watson & Dallwitz [1992] után). Eragrostoideae Panicoideae Cleistogenes serotina Botriochloa ischaemum a Crypsis aculeata b Cenchrus pauciflorus a Cynodon dactylon b Chrysopogon gryllus a Eleusine indica b Digitaria ciliaris a Eragrostis megastachya b Digitaria ischaemum a Eragrostis pilosa b Digitaria sanguinalis a Eragrostis poaeoides b Echinochloa crus-galli a Heleochloa alopecuroides Echinochloa hostii a Heleochloa schoenoides Echinochloa phyllopogon a Tragus racemosus Echinochloa spiralis a Panicum capillare b Setaria decipiens a Setaria lutescens a Setaria verticillata a Setaria viridis a

Page 99: Kalapos T. 1994

98

bolygatás hatására felnyíló vegetációban viszont biztosított lehet a C4-esek magas

hőmérsékleti- és fényigénye, így érthető hát, miért stressz-toleráns növények vagy

gyomok a hazai C4-es fajok. Valószínűleg hasonlóan magyarázható, hogy bolygatás

hatására erőteljesen nő a C4-es Botriochloa ischaemum abundanciája a C3-as

gyepalkotók rovására löszpusztagyepekben [Zólyomi & Fekete 1994] és

homokpusztákon [Hargitai 1940]. Ezzel illik össze a gyomnövényekkel foglalkozó

szakemberek azon tapasztalata is, hogy számos későnyári egyéves (T4) gyom (pl.

Amaranthus spp., Portulaca oleracea, Setaria spp.) csak a talaj jelentős (kb. 20ºC-ra)

felmelegedése után csírázik, de csak ott nőhet meg, ahol a növénykultúra lombsátra

nem záródik eléggé szorosan (pl. gyümölcsösök, konyhakertek, rosszul fejlődő

gabonavetések [Ujvárosi 1957]). Ma már tudjuk, hogy ezeknek a T4 gyomoknak

jelentős része C4-es fotoszintézisű. (A T4 és C4 jelölések hasonlósága a véletlen

műve, az index más-más tulajdonságra utal). Itt érdemes megemlíteni, hogy a világ

mezőgazdasága számára a legsúlyosabb károkat okozó 18 gyomnövény közül 14 faj

C4-es [Elmore & Paul 1983, Holm et al. 1977].

5.1. ábra. A hazai C3-as és C4-es pázsitfüvek természetvédelmi érték (TVK) szerinti gyakorisági eloszlása. U-V= védett fajok, E= természetes dominánsok, K= karakterisztikus fajok, TP= természetes pionírok, TZ=természetes zavarástűrők, A= adventívok, G= gazdasági növények, GY= kozmopolita gyomok. Kategóriarendszer és besorolás Simon [1988] szerint. A két gyakorisági eloszlás különbsége szignifikáns (Chi2-próba, p<0.001).

Page 100: Kalapos T. 1994

99

Életformájukat tekintve a hazai C4-es füvek zömmel egyévesek (Th), míg a

C3-asoknál az évelők vannak többségben (H vagy G, 5.2 ábra). Ezzel ellentétes

eloszlást tapasztalt Batanouny et al. [1988] Egyiptom pázsitfűflórájában, ahol a C4-

esek dominálnak és nagyrészt évelők. A különbség magyarázata a két terület eltérő

klimatikus adottságaiban rejlik és abban, hogy amint a földrajzi szélességgel változó

(főként hőmérsékleti) viszonyok egyre kedvezőtlenebbé válnak bármelyik (C3 v. C4)

típus számára, az egyéves életforma elterjedése tovább kiterjeszthető mint az évelőké.

A hazai évelő C4-esek természetes társulások alkotói, az egyévesek gyomok. C3-as

füveink között évelő gyomok is akadnak (pl. Agropyron repens), a C4-eseknél nem.

5.2. ábra. C3-as és C4-es pázsitfüveink Raunkiaer-életforma szerinti gyakorisági eloszlása. Ph= Fanerofitonok, Ch= kamefitonok, H= hemikriptofitonok, G= geofitonok, HH= hidato-helofitonok, Th= terofitonok, E= epifitonok. H,G és HH évelők, Th egyévesek. Besorolás Soó és Kárpáti [1968] szerint. A két gyakorisági eloszlás különbsége szignifikáns (Chi2-próba, p<0.001).

A két fotoszintézisút eltérő fenológiáját mutatja, hogy a C3-as füveknél

mintegy két hónappal korábban (május-júniusban) jelentkezik a virágzás maximuma

mint a C4-eseknél (ott július-augusztusban, 5.3. ábra). Más mérsékeltövi élőhelyeken

is a két típus évszakos elkülönülését tapasztalták; a C3-asok a hűvös, a C4-esek a

meleg évszak növényei főleg [Boutton et al. 1980, Ode et al. 1980, Hattersley 1983,

Batanouny et al. 1988]. Ezt jól magyarázza a C4-esek fotoszintézisének magasabb

hőmérsékleti optimuma [Pearcy & Ehleringer 1984, Osmond et al. 1982].

Page 101: Kalapos T. 1994

100

5.3. ábra. A hazai C3-as és C4-es füvek virágzási ideje, Soó és Kárpáti [1968] szerint. A grafikon tetején a havi átlaghőmérsékletek szerepelnek (Kiskunfélegyháza állomás, 50 év átlaga), Kakas [1967] nyomán. A két gyakorisági eloszlás különbsége szignifikáns (Chi2-próba, p<0.05).

A két típus termőhelyi igényeinek összehasonlítására az Ellenberg-féle

ökológiai indikátor értékeket [Ellenberg 1974] használtam Soó [1973] besorolását

követve (5.4.A-D ábrák). Fiziológiai sajátságaik ismeretében nem meglepő, hogy a

C4-es fajok magasabb hőmérsékleti igényt mutatnak mint a C3-asok (T értékek, 5.4.A

ábra), ugyanakkor nincs szignifikáns különbség a termőhelyi nedvességviszonyok

tekintetében (F érték, 5.4.B ábra). Bár a C4-es asszimiláció fotoszintetikus

vízhasznosítási hatékonysága (WUE) magasabb a C3-asénál [Osmond et al. 1982],

mégsem mutatnak a C4-es füvek preferenciát a kifejezetten arid élőhelyekért a hazai

szemiarid mérsékeltövi klíma alatt. Hasonlót tapasztalt Barnes et al. [1983] Észak-

Amerikai prérinövényzetben. Ez arra is utal, hogy a C4-es fotoszintézisút elsősorban

nem a vízhiányhoz, hanem a magas hőmérséklethez és erős fényintenzitáshoz való

alkalmazkodás egyik módja. (Legtöbbször azonban ez utóbbi környezeti feltételek

szárazsággal járnak együtt, főleg a mérsékelt övben). A trópusi-szubtrópusi

Ausztráliában Hattersley [1983] a C4-es fajok növekvő gyakoriságát figyelte meg az

évi csapadékmennyiség emelkedésével.

Page 102: Kalapos T. 1994

101

A C4-es csoporton belül az Eragrostoideae alcsalád képviselői (főleg NAD-

ME fajok) valamivel alacsonyabb nedvességigényt (F átlag kb. 2) mutattak mint a

Panicoideae fajok (zömmel NADP-ME, F átlag 3 körül). Ez jól egyezik Ellis et al.

[1980], Hattersley [1983, 1992] és Vogel et al. [1986] megfigyelésével, miszerint a

NAD-ME füvek rendszerint csapadékszegényebb élőhelyeken fordulnak elő mint a

NADP-ME vagy PCK típusok képviselői. (PCK típusú C4-es füvet nem találtak a

hazai flórában [Nyakas 1992]).

5.4. ábra. A fajok termőhelyi igényeit mutató Ellenberg-féle ökológiai indikátorértékek gyakorisági eloszlása a C3-as és C4-es típusú hazai pázsitfűveknél. A. Hőmérsékleti igény (T érték: 1=termofób, 5=termofil, 0= közömbös), B. Nedvesség igény (F érték: 1= perxerofil, 5= perhigrofil-hidatofil, 0= közömbös), C. Nitrogén igény (N érték: 1= nitrofób, 5= pernitrofil, 0= közömbös), D. Talajkémhatás igény (R érték: 1= acidofil, 5= bazifil, 0= közömbös). Soó [1973] adatai nyomán. A gyakorisági eloszlások Chi2 próba szerint különböznek ***=p<0.001 vagy *=p<0.05 valószínűséggel, ill. NS= az eltérés nem szignifikáns.

C4-es füveink valamivel magasabb talaj-N igényt mutatnak mint a C3-asok

(N érték, 5.4.C ábra), amiben bizonnyal jelentős szerepe van a gyomok magas

Page 103: Kalapos T. 1994

102

részesedésének a C4-es csoportban. Bár a C4-es fotoszintézisút nitrogénhasznosítási

hatékonysága (NUE, egységnyi levél N-tartalomra jutó Pn) jóval magasabb a C3-

asokénál [Pearcy & Ehleringer 1984, Sage & Pearcy 1987a,b], a C4-es fajok általában

másutt sem részesítik előnyben a N-szegény élőhelyeket [Doliner & Joliffe 1979,

Collins & Jones 1985]. Az alacsony N ellátásnál C3-as és C4-es fajok között végzett

kompetíciós kísérletekben sem mutattak versenyfölényt a C4-esek [Christie & Detling

1982, Gebauer et al. 1987].

Nem mutatkozott jelentős különbség a talajkémhatás-igényben a két

fotoszintézisút képviselői között (R érték, 5.4.D ábra). Három C4-es fűfajunk

szikeseken gyakori (Crypsis aculeata, Heleochloa alopecuroides és H. schoenoides),

míg az évelő C4-es Botriochloa ischaemum, Chrysopogon gryllus és Cleistogenes

serotina meszes talajú gyepek lakója. Cynodon dactylon mutatja a legszélesebb

ökológia potenciált C4-es füveink között; magas sótartalmú talajokon és meszes

élőhelyeken is előfordul, akárcsak bolygatott területeken. (Egyébként C. dactylon a

második legsúlyosabb károkat okozó mezőgazdasági gyom a világon [Holm et al.

1977]).

C4-es fotoszintézisű nem-pázsitfű fajaink

C4-es növényfajok előfordulását eddig a zárvatermők következő 16

családjában mutatták ki: Acanthacaeae, Aizoaceae, Amaranthaceae, Boraginaceae,

Capparaceae, Caryophyllaceae, Chenopodiaceae, Compositae, Cyperaceae,

Euphorbiaceae, Gramineae, Nyctaginaceae, Polygonaceae, Portulacaceae,

Scrophulariaceae és Zygophyllaceae [Downton 1975, Elmore & Paul 1983, Watson &

Dallwitz 1993]. (Korábbi adatok egy-egy C4-es fajról a Convolvulaceae [Downton

1975], Asclepiadaceae és Liliaceae családokban [Raghavendra & Das 1978] tévesnek

bizonyultak [Ziegler et al. 1981]). A magyar flóra C4-es nem-pázsitfű növényfajainak

felkutatása folyamatban van (az Országos Tudományos Kutatási Alap támogatásával,

F6434 pályázat), a jelenlegi ismereteink szerinti listát az 5.2 táblázat tartalmazza.

Page 104: Kalapos T. 1994

103

5.2. táblázat. A magyar flóra C4-es fotoszintézisű, nem-pázsitfű növényfajai jelenlegi ismereteink szerint (a gazdasági- és dísznövények itt nem szerepelnek). Zárójelbe kerültek azok a fajok, melyek fotoszintézis-típusáról nincs még ugyan adat, de taxonómiai helyzetüknél fogva nagyon valószínű a C4-es jelleg (a nemzetség többi faja mind C4-es). Jelölések a fixációs típus azonosításának módjára: C= a fotoszintézis kezdeti termékei C4 savak, D= stabil szénizotóparány /δ13C/ érték, K= Kranz anatómia, L= a fotoszintézis alacsony CO2 kompenzációs pontja, O= a fotoszintetikus aktivitás nem fokozódik alacsony O2 koncentrációnál. Referenciák: (0)= Prof. Huber Ziegler, személyes közlés [1989], (1)= Elmore & Paul [1983], (2)= Raghavendra & Das [1978], (3)= Downton [1975], (4)= Webster et al. [1975], (5)= Winter [1981], (6)= Li [1993]. É= Raunkiaer-féle életforma, TVK= Természetvédelmi érték kategória, Simon [1988] nyomán. Életforma, virágzási idő és nómenklatúra Simon [1992] szerint.

Család / Faj Kritérium (Referencia) É TVK Virágzik Amaranthaceae

(Amaranthus bouchonii) Th TZ A. retroflexus L(1,3),D(0) Th GY Júl.-Szept. A. chlorostachys K(3),D(0) Th GY Júl.-Szept. A. patulus L(3),D(0) Th GY Júl.-Szept. A. blitoides K(1),L(3),D(0) Th GY Júl.-Okt. (A. crispus) Th GY Júl.-Okt. A. albus K(1),L(3),D(0) Th GY Júl.-Szept. A. graecizans K(3),D(0) Th GY Júl.-Szept. A. deflexus K(3) H GY Júl.-Szept. A. lividus K(1,3),D(0) Th G Júl.-Szept.

Chenopodiaceae Atriplex rosea L(1,3) Th GY Júl.-Szept. A. tatarica D(0,3,5),K(3,5) Th GY Jún.-Okt. Camphorosma annua D(0) Th TP Szept. Kochia scoparia D(0,5),K(5),L(1,3) Th GY Aug.-Szept. K. laniflora D(0) Th TP Júl.-Szept. K. prostrata D(0,5),K(5) Ch-N TP Júl.-Szept. Salsola kali D(0),L(1,3) Th GY Júl.-Szept. S. soda D(0) Th TP Júl.-Szept.

Cyperaceae Acorellus pannonicus D(0,6),K(6) Th TP Júl.-Szept. Chlorocyperus longus D(0,6),K,L(6) HH E Máj.-Aug. Dichostylis micheliana D,K(6) Th TP Júl.-Szept.

Euphorbiaceae Euphorbia maculata L(1,3),K(4) Th A Júl.-Szept. E. nutans K(3,4) Th A Júl.-Szept. E. peplus* K,O(1) Th GY Júl.-Nov.

Portulacaceae Portulaca oleracea K,L,C,D(1),L(3) Th GY Júl.-Szept.

Zygophyllaceae Tribulus terrestris K(3),D(0) Th TP Jún.-Szept. * E. peplust C3-asnak találta Batanouny et al. [1991] δ13C értékek alapján. Itt további ellenőrző vizsgálatok szükségesek.

Page 105: Kalapos T. 1994

104

A táblázatból jól látható tehát, hogy a nem-pázsitfű C4-es fajok is zömmel

egyévesek, gyomok vagy adventív növények. Nyáron fejlődnek, magas hőigényükre

enged következtetni kései virágzásuk is. Ujvárosi [1957] gyomnövény életforma

rendszerében ezek a fajok a T4 kategóriába, vagyis a késő nyári egyévesekhez

tartoznak. Feltűnő ugyanakkor Chlorocyperus longus korai (májusi) virágzási adata.

Long [1983] szerint ez a C4-es faj az egyik legjobban alkalmazkodott típusán belül a

mérsékeltövi alacsony hőmérsékletekhez. A hazai természetes fajok (pl. Kochia spp.,

Salsola spp., Tribulus terrestris) erős abiotikus stressz alatt álló élőhelyekre (pl.

homokpuszták, szikesek) jellemzők, hasonlóan a pázsitfűféléknél látottakhoz.

5.3. A C3-as és a C4-es fotoszintézisút koegzisztenciája homokpusztagyepekben

A homokpusztában a főképp edafikus tényezők okozta magas hőmérséklet és

fényintenzitás hatására gyakoriak a C4-es fajok. Természetes gyepalkotókat is

találunk közöttük (pl. Botriochloa ischaemum, Chrysopogon gryllus), melyek

számossága különösen bolygatás, talajleromlás vagy legelés hatására nő meg

[Hargitai 1940]. Sok homoki C4-es faj ugyanakkor gyomnövény (pl. Cenchrus

incertus, Cynodon dactylon, Kochia laniflora, Salsola kali) [Ujvárosi 1957]. A

csupasz homokbuckákon megjelenő első hajtásos növények között is találunk C4-es

fajokat (pl. Tragus racemosus, Tribulus terrestris), így azok jelentősek lehetnek a

homokkötésben is [Borbás 1886]. A homokpusztagyepben is jellemző a két

fotoszintézisút fenológiájának eltolódása; az évelő C4-esek hajtása legkorábban

májusban, az egyéveseké júniusban jelenik meg, szemben a C3-asok március-áprilisi

indulásával. Nyáron, mikor mindkét típus megtalálható a gyepben, asszimilációs

aktivitásuk napi ritmusa is eltérő (v.ö. 3.3.1-4. fejezetek). Ezek a sajátságok inkább

forrásfelosztásra, mint kompetícióra utalnak az együttélő homokpusztagyepi C3-as és

C4-es fajok között.

Page 106: Kalapos T. 1994

105

6. ÖSSZEFOGLALÁS

1) Termőhelyi ökofiziológiai vizsgálatok

A szemiarid klíma és a homoktalaj kedvezőtlen vízgazdálkodása nyomán az

időszakos szárazság a növényzet fejlődését korlátozó legfőbb tényező az alföldi évelő

homokpusztagyepben (Festucetum vaginatae danubiale). A populációk

fennmaradásában jelentős szerephez jutnak itt az élettani folyamatok szintjén

jelentkező alkalmazkodások. E környezeti terheléssel szemben számos növényi

viselkedés figyelhető meg, ami ugyanakkor a korlátozott nedvesség-forrás térben

vagy időben való felosztását eredményezi az együttélő fajok között.

- Több, főleg rövid életű egyéves növény (pl. Lithospermum arvense, Viola

kitaibeliana) egyedfejlődését a tavaszi csapadékos periódusra időzíti (szárazság

időbeni elkerülése), megjelenésük inkább mezofiton jellegű.

- A szárazság idején is aktív xerofitonok (szárazságtűrők, ám a kiszáradást kivédők)

különböző módon tarthatják fenn élettani folyamataikat a kritikus időszak

során. A felszínközelben gyorsan kiszáradó, de mélyebben tartósan nedves

homoktalajon a gyökérzet mélysége és a hajtás asszimilációs tevékenységének

intenzitása között szoros a kapcsolatot találtam.

- A fajok fotoszintetikus kapacitásában (termőhelyen észlelt legmagasabb

aktivitásában) jelentősek a különbségek. A C4-es növények jóval meghaladják a

C3-asokat, melyek közül a vizsgált kétszikűek (Alkanna tinctoria és Potentilla

arenaria) magasabb értéket mutatnak mint a szklerofill fűneműek (Festuca

vaginata és Carex liparicarpos, míg Koeleria glauca kevésbé tér el). Ez

utóbbiaknál a levél jelentős részét fotoszintetikusan inaktív struktúra (pl.

szklerenchima) tölti ki. Ezek a különbségek mutatják, hogy azonos fotoszintézis

típuson belül a pillanatnyi asszimilációs teljesítmény fokozása és a kedvezőtlen

körülmények közötti tartós aktivitás fenntartása a levél szintjén jelentkező két

ellentétes követelmény, az egyik csak a másik rovására fokozható.

Page 107: Kalapos T. 1994

106

- A szklerofill fűneműek (különösen Festuca vaginata) általában alacsony intenzitású

vízforgalmuk segítségével képesek stabil vízállapotuk fenntartására, ám Carex

liparicarposnál a sekély gyökérzet miatt sokszor a "víztakarékos" viselkedés

ellenére is magas szöveti vízhiány jelentkezik, míg Koeleria glauca viszonylag

élénk vízforgalmú. A vizsgált kétszikűek transzspirációs aktivitása magas, ami

Potentilla arenarianál jelentős szöveti vízhiány kialakulásához vezet, míg

Alkanna tinctorianál a mély gyökérzet vízfelvétele biztosítja a hajtás tartósan

magas víztartalmát.

- A labilis vízállapotú Potentilla arenarianál a fotoszintézis viszonylag magas szöveti

vízhiány-toleranciáját figyeltem meg; a levél víztartalmának 40%-át elveszítve

is képes fotoszintetikus kapacitásának mintegy 38%-ával működni. Eltérően a

vizsgált C3-as növényektől, a C4-es Tragus racemosusnál a mérsékelt (kb. 20%-

os) levél-vízhiány csupán kissé csökkenti a fotoszintézist, amiben feltehetően

jelentős szerepe van a levél jellegzetes anatómiai szerkezetének.

- A vizsgált fajok jelentősen különböznek a levél egyidejű vízhiánya és vízpotenciálja

(a víztartalom energiaállapota) közötti összefüggés meredekségében, aminek a

növényi vízfelvételben lehet funkcionális jelentősége. A tavaszi növények és a

mélyen gyökerező xerofiton Alkanna tinctoria levelében a vízpotenciál csak

lassan csökken a levél vízhiányával. A keletkező csekély növényi vízpotenciál

("nedvesség-szívóerő") gradiens valószínűleg elégséges a talaj (térben vagy

időben) rendelkezésre álló, könnyen hozzáférhető vízkészletének felvételéhez.

A sekély vagy közepesen mély gyökérzetű évelők - főleg szklerofill fűneműek -

levelében a vízpotenciál gyorsan esik a levél víztartalmának csökkenésével. A

növényben így kialakuló meredek vízpotenciál gradiens feltehetően elősegíti a

hatékonyabb vízfelvételt a száradó talajból. A két vizállapotjellemző

kapcsolatában jelentős szerepe van a levél szerkezetének, elsősorban a szöveti

rugalmasságot meghatározó "keménylevelűség" mértékének. E tekintetben

jelentős a fajok közötti eltérés, az évelő fajoknál - különösen a szklerofill

fűneműeknél - határozott az évszakos változás (emelkedés) tavaszról nyárra.

Page 108: Kalapos T. 1994

107

- Termőhelyi körülmények között a levél gázcseréjének (nettó fotoszintézisének és

transzspirációjának) ütemét légköri és talajtulajdonságok együttesen határozzák

meg. Magas talajnedvesség-tartalomnál a fotoszintézis napi menete szorosan

követi a fényintenzitás napi változását (elsősorban fénylimitáció áll fenn), míg

száraz talajnál ez az összefüggés jóval gyengéb (nedvességkorlátozás). A talaj

csökkenő nedvességtartalmával hasonló légköri viszonyok mellett is változik a

növényi gázcsere napi lefutása a következő módon: "egycsúcsú" menet déli

csúcsteljesítménnyel -> "kétcsúcsú" görbe délelőtti és délutáni maximummal ill.

déli visszaeséssel -> "egycsúcsú" menet kora délelőtti mérsékelt maximummal

és monoton csökkenéssel a nap folyamán (derült napokon értelmezve mind).

Általában egy ilyen irányú évszakos változás követhető a humid tavaszról az

aszályos nyárra, bár a csapadékjárástól függően rövid időszakokra ettől eltérő

viselkedés is jelentkezhet. A nettó fotoszintézis és a sztómás vízpáravezetés

közötti szoros korreláció arra utal, hogy ezekért a változásokért a

gázcserenyílások szabályozó működése a felelős.

- A homokpusztagyepben együtt élő, de gyökérzetükkel eltérő mélységre hatoló fajok

a nedvességforrás térbeli felosztását mutatják. Az egyes talajrétegek különböző

nedvességtartalma miatt a vízforgalom intenzitása is rendkívül széles skálán

mozog. Míg Festuca vaginata levele víztartalmának megfelelő vízmennyiség

csupán 7-11-szeresét párologtatja el egy nap alatt, addig az élénk vízforgalmú

kétszikűeknél (Alkanna tinctorianál és Potentilla arenarianál) ez elérheti a 19-

35-szörös értéket azonos körülmények között.

2.) Talajszárazodás hatásának vizsgálata klímakamrás kísérletben

Klímakamrás kísérletben vizsgáltam a talajszárazodásnak a levél

gázcseréjére és a növényegyed növekedésére gyakorolt hatását három egyéves

pázsitfűnél; a homokpusztagyepi Bromus tectorum /C3/ és Tragus racemosus /C4/

fajoknál, valamint egy szárazság-rezisztens búzafajtánál (Triticum aestivum cv.

Katya-A-1 /C3/). A következő eredményeket kaptam:

Page 109: Kalapos T. 1994

108

- A nagyfokú talajszárazság jelentősen mérsékelte mind a levél gázcseréjét mind az

egyed növekedési ütemét. Ugyanakkor több növényi válaszreakciót is sikerült

megfigyelni, ami a terhelés kedvezőtlen hatását enyhíteni igyekszik.

- A talaj szárazodásával a levél fotoszintézise és transzspirációja egyaránt

mérséklődött, mégpedig oly módon, hogy egyidejűleg emelkedett a pillanatnyi

fotoszintetikus vízhasznosítási hatékonyság (WUE, vagyis az egységnyi

elpárologtatott vízmennyiségre jutó nettó fotoszintézis). A változás elsősorban a

gázcserenyílások megfelelő szabályozó tevékenységének tulajdonítható.

- Triticum aestivumnál sikerült megfigyelni, hogy a talaj fokozatos szárazodásával a

gázcserenyílások működése - és így a levél asszimilációja is - szorosabb

kapcsolatot mutatott a talaj vízállapotával mint a levél vízpotenciáljával. Ez egy

közvetlen (valószínűleg kémiai jelzésen alapuló) kommunikációs kapcsolat

létezésére utal a gyökér és a hajtás között, aminek jelentős szerepe lehet a gyors

növényi stressz-reakcióban.

- A súlyos talajszárazság a következtében a nettó fotoszintézis üteme drasztikusan

csökkent mindkét fotoszintézis típusnál (C3 ill. C4).

- A szárazságterhelés nyomán a növényegyed növekedési ütemének csökkenésével a

biomassza egyeden belüli eloszlása (allokáció) is változott. A gyökérzet

részaránya növekedett, míg a levélzeté csökkent. A vízfelvevő és a vízleadó

növényi részek arányának ilyen változása a víz hatékonyabb hasznosítását

eredményezi az növényegyed szintjén is. Triticum aestivumnál a biomassza

allokáció változása hamarabb jelentkezett mint a növény növekedési ütemének

mérséklődése.

- A három vizsgált pázsitfűfaj közül a C4-es Tragus növekedési üteme (RGR) csak

kissé emelkedett a C3-as Bromusé és Triticumé fölé, levelének magasabb

fotoszintézise ellenére. Ennek egyik lehetséges nagyarázata az, hogy Tragus

jellegzetes klonális növekedése miatt az egyed biomasszájának jelentős része

(közel 50%-a) a fotoszintézishez csak kis mértékben hozzájáruló szárakban

található. Ez a növekedési forma viszont valószínűleg a stressz-kivédésben

Page 110: Kalapos T. 1994

109

játszik fontos szerepet a növény természetes élőhelyén (homokpuszta).

Feltűnően alacsony (mindössze 10%) ugyanakkor a gyökérzet részesedése az

egyed biomasszájából.

3.) Az eltérő (C3 és C4) fotoszintézisutak ökológiai tulajdonságainak összehasonlítása

A C4-es fotoszintézisút a növényvilág több csoportjában párhuzamosan

kialakult, evolúciósan újkeletű adaptációs mechanizmus. Leginkább a magas

fényintezitású, meleg és legtöbbször időszakosan száraz élőhelyek növényei között

gyakori. A magyar flóra ezirányú vizsgálata a következőket mutatta:

- A makroklíma hazánk területén a C3-as növények számára kedvező, így ezek

dominálnak a flórában. Ugyanakkor edafikus tényezők és az emberi bolygatás

hatására számos élőhelyen - különösen az Alföld pusztai növényzetében -

jelentős a C4-esek jelenléte is.

- A hazai pázsitfűfajok (Poaceae) 14.4%-a (25 faj) C4-es növény, ezek zömmel

egyévesek, sokuk adventív gyomnövény. Az őshonos fajok inkább évelők,

száraz gyepek vagy szikesek lakói, azaz stressz-toleránsok. Kompetítor C4-es

fajunk nincs, ami feltehetően az anyagcsereút magas fény- és hőmérsékleti

igényére vezethető vissza. (C3-asok korán záródó lombsátra alatt hátrányban

vannak.) A két fotoszintézisút fenológiája is eltérő; a C4-es fajok zömmel

nyáron fejlődnek, a C4-es füvek mintegy két hónappal később virágoznak mint

a C3-asok. Ez valószínűleg a C4-es fotoszintézis magasabb hőmérsékleti

igényével magyarázható. Az ökológiai indikátorértékek összevetése alapján a

C4-es fajok termőhelyi hőigénye magasabb, a nedvesség- és talajkémhatás-

igényben nincs lényeges különbség, míg a C4-esek magasabb nitrogén-igénye

valószínűleg a gyomnövények magas részesedésével magyarázható.

- A magyar flóra nem-pázsitfű fajainál a C4-es taxonok feltárása folyamatban van,

egyenlőre összesen 26 fajról bizonyosak ismereteink az Amaranthaceae,

Chenopodiaceae, Cyperaceae, Euphorbiaceae, Portulacaceae és Zygophyllaceae

Page 111: Kalapos T. 1994

110

családokból. Ezek - a C4-es füvekhez hasonlóan - gyomnövények vagy stressz-

toleránsok, jellegzetesen nyári elemei a flórának.

- A homokpusztai növényzetben jelentős a C4-es fotoszintézisű fajok szerepe,

különösen bolygatás hatására nő abundanciájuk. Szénasszimilációjuk jelentősen

eltér a velük együtt előforduló C3-as növényekétől; fotoszintetikus kapacitásuk

és vízhasznosítási hatékonyságuk magasabb, aktivitásuk ritmusa napi és

évszakos időléptékben is különböző. Hatékonyabb vízhasznosításuk révén a C4-

es növények tartósan képesek fenntartani magasab fotoszintetikus aktivitásukat

szárazság idején mint a C3-asok, ez azonban nem jelenti egyben a szélsőségesen

magas szöveti vízhiány jobb elviselését is.

Page 112: Kalapos T. 1994

111

7. IRODALOMJEGYZÉK Allen, E.B. 1982: Water and nutrient competition between Salsola kali and two native

grass species (Agropyron smithii and Bouteloua gracilis). Ecology 63: 732-741.

Almádi L. 1982: Vízháztartási vizsgálatok I. Botanikai Közlemények 69: 85-93. Almádi L. 1984: Vízháztartási vizsgálatok II. Botanikai Közlemények 71: 33-50. Almádi L. 1985: Vízháztartási vizsgálatok III. Botanikai Közlemények 72: 43-62. Almádi L., Kovács-Láng E., Mészáros-Draskovits R. & Kalapos T. 1986: The

relationship between the transpiration and photosynthesis of xerophytic grasses. Abstracta Botanica 10: 1-16.

Altbäcker, V., Kertész, M. & Nyéki, O. 1991: The possible role of rabbit (Oryctolagus cuniculus) grazing in maintaining the structure of Bugac Juniper Forest. Abstracts of the 34th Symposium of IAVS, 26-30 August, 1991, Eger, Hungary. p. 55.

Anonymous 1985-89: Instruction manuals for the LCA-2 battery portable carbon dioxide analyser, type PLC-2 Parkinson leaf chamber, air supply unit with mass flow meter (ASUM) and data processor (DL-2) for the LCA-2 leaf chamber analyser. Analytical Development Co., Hoddesdon, UK.

Anonymous 1986: Instruction manual for the HR-33T dew point microvoltmeter and C52-SF sample chamber. Wescor Inc., Logan, Utah.

Anonymous 1988: Instruction manual for the LI-3000A portable area meter and the LI-3050A transparent belt conveyer. LI-COR Inc., Lincoln, Nebraska, USA.

Babos, I. 1955: A nyárfások homokbuckán előforduló megjelenési formái. Erdészeti Kutatások 4: 31-87.

Barnes, P.W., Tieszen, L.L. & Ode, D.J. 1983: Distribution, production, and diversity of C3- and C4-dominated communities in a mixed prairie. Canadian Journal of Botany 61: 741-751.

Batanouny, K.H., Stichler, W. & Ziegler H. 1988: Photosynthetic pathways, distribution, and ecological characteristics of grass species in Egypt. Oecologia (Berl.) 75: 539-548.

Batanouny, K.H., Stichler, W. & Ziegler H. 1991: Photosynthetic pathways and ecological distribution of Euphorbia species in Egypt. Oecologia (Berl.) 87: 565-569.

Bazzaz, F.A., Garbutt, K., Reekie, E.G. & Williams, W.E. 1989: Using growth analysis to interpret competition between a C3 and C4 annual under ambient and elevated CO2. Oecologia (Berl.) 79: 223-235.

Billings, W.D. 1985: The historical development of physiological plant ecology. In: Chabot, B.F. & Mooney, H.A. (eds.): Physiological ecology of North American plant communities. Chapman & Hall, New York. pp. 1-15.

Blackman, V.H. 1919: The compound interest law and plant growth. Annals of Botany 33: 353-360. cit. in Billings 1985.

Blackman, P.G. & Davies, W.J. 1985: Root to shoot communication in maize plants of the effects of soil drying. Journal of Experimental Botany 36: 39-48.

Boutton, T.W., Harrison, A.T. & Smith, B.N. 1980: Distribution of biomass of species differing in photosynthetic pathway along an altitudinal transect in southeastern Wyoming grassland. Oecologia (Berl.) 45:287-298.

Page 113: Kalapos T. 1994

112

Borbás V. 1886: A magyar homokpuszták növényvilága meg a homokkötés. Budapest Boros Á. 1952: A Duna-Tisza Köze növényföldrajza. Földrajzi Értesítő 1: 39-54. Bowman, W.D. & Roberts, S.W. 1985: Seasonal changes in tissue elasticity in

chaparral shrubs. Physiologia Plantarum 65: 233-236. Bradford, K.J. & Hsiao, T.C. 1982: Physiological responses to moderate water stress.

In: Lange et al. 1982. pp. 263-324. Brown, R.H. & Hattersley, P.W. 1989: Leaf anatomy of C3-C4 species as related to

evolution of C4 photosynthesis. Plant Physiology 91: 1543-1550. Brown, R.W. & Van Haveren, B.P. (eds.) 1972: Psychrometry in water relations

research. Utah State University, Logan. Caldwell, M.M., White, R.S., Moore, R.T. & Camp, L.B. 1977: Carbon balance,

productivity, and water use of cold-winter desert shrub communities dominated by C3 and C4 species. Oecologia (Berl.) 29: 275-300.

Catsky, I. 1965: Leaf disk method for determining water saturation deficit. In: Eckardt 1965, pp. 353-360.

Cerling, T.E. 1992: Development of grasslands and savannas in East Africa during the Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology 97: 241-247.

Cerling, T.E., Wang, Y. & Quade, J. 1993: Expansion of C4 ecosystems as an indicator of global ecological change in the late Miocene. Nature 361: 344-345.

Chabot, B.F. & Bunce, J.A. 1979: Drought stress effects on leaf carbon balance. In: Solbrig at al. 1979, pp. 338-355.

Chaves, M.M. 1991: Effects of water deficits on carbon assimilation. Journal of Experimental Botany 42: 1-16.

Chazdon, R.L. 1978: Ecological aspects of the distribution of C4 grasses in selected habitats of Costa Rica. Biotropica 10: 265-269.

Chiariello, N.R., Mooney, H.A. & Williams, K. 1989: Growth, carbon allocation and cost of plant tissues. In: Pearcy et al. 1989. pp 327-365.

Christie, E.K. & Detling, J.K. 1982: Analysis of interference between C3 and C4 grasses in relation to temperature and soil nitrogen supply. Ecology 63: 1277-1284.

Collins, R.P. & Jones, M.B. 1985. The influence of climatic factors on the distribution of C4 species in Europe. Vegetatio 64: 121-129.

Coombs, J., Hall, D.O., Long, S.P. & Scurlock, J.M.O. 1985: Techniques in bioproductivity and photosynthesis. 2nd ed. Pergamon Press, Oxford.

Cowling, R.M. 1983: The occurrence of C3 and C4 grasses in fynbos and allied shrublands in the South Eastern Cape, South Africa. Oecologia (Berl.) 58: 121-127.

Diemer, M., Körner, Ch. & Prock, S. 1992: Leaf life spans in wild perennial herbaceous plants: a survey and attempts at a functional interpretation. Oecologia (Berl.) 89: 10-16.

Doliner, L.H. & Jolliffe, P.A. 1979: Ecological evidence concerning the adaptive significance of the C4 dicarboxylic acid pathway of photosynthesis. Oecologia (Berl.) 38: 23-34.

Downton, W.J.S. 1975: The occurrence of C4 photosynthesis among plants. Photosynthetica 9: 96-105.

Page 114: Kalapos T. 1994

113

Eckardt, F.E. (ed.) 1965: Methodolgy of plant eco-physiology. Proceedings of the Montpellier Symposium. Arid Zone Research XXV. Unesco, Paris.

Edwards, G. & Walker, D. 1983: C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Blackwell Sci. Publ., Oxford London.

Ehleringer, J.R. 1978: Implications of quantum yield differences on the distribution of C3 and C4 grasses. Oecologia (Berl.) 31: 255-267.

Ehleringer, J.R. & Monson, R.K. 1993: Evolutionary and ecological aspects of photosynthetic pathway variation. Annual Review of Ecology and Systematics 24: 411-439.

Ehleringer, J.R., Mooney, H.A. & Berry, J.A. 1979: Photosynthesis and microclimate of Camissonia claviformis, a desert winter annual. Ecology 60: 280-286.

Ehleringer, J.R., Sage, R.F., Flanagan, L.B. & Pearcy, R.W. 1991: Climate change and evolution of C4 photosynthesis. Trends in Ecology & Evolution 6: 95-99.

Ellenberg, H. 1974: Indicator values of vascular plants in Central Europe. Scripta Geobotanica 9: 1-97.

Ellis, R.P., Vogel, J.C. & Fulls, A. 1980: Photosynthetic pathways and the geographical distribution of grasses in South West Africa/Namibia. South African Journal of Science 76: 307-314.

Elmore, C.D. & Paul R.N. 1983: Composite list of C4 weeds. Weed Science 31: 686-692.

Fekete, G. 1992: The holistic view of succession reconsidered. Coenoses 7: 21-29. Fekete G., Précsényi I., Molnár E. & Nosek J. 1979: Szerkezet és működés egy

természetes növénytársulásban. Eredmények, problémák és perspektívák a Tece-homokpusztagyep kutatásában. MTA Biol. Oszt. Közl. 22: 311-322.

Fekete, G. & Tuba, Z. 1982: Photosynthetic activity in the stages of sandy succession. Acta Bot. Acad. Sci. Hung. 28: 291-296.

Fekete G., Tuba Z. & Précsényi I. 1980: Niche studies on some plant species of a grassland community, VII. Quantity and seasonality of photosynthetic pigments. Spring. Acta Bot. Acad. Sci. Hung. 26: 289-297.

Fernengel A. 1989: Termoelemes vízpotenciál- és hőmérsékletvizsgálatok nyílt homokpusztagyep talajában. Egyetemi szakdolgozat, ELTE, Budapest.

Field, C.B., Ball, T.J. & Berry, J.A. 1989: Photosynthesis: principles and field techniques. In: Pearcy et al. 1989, pp. 209-253.

Gebauer, G., Schubert, B., Schumacher, M.I., Rehder, H. & Ziegler, H. 1987: Biomass production and nitrogen content of C3- and C4-grasses in pure and mixed culture with different nitrogen supply. Oecologia (Berl.) 71: 613-617.

Gifford, R.M. 1974: A comparison of potential photosynthesis, productivity and yield of plant species with differing photosynthetic carbon metabolism. Australian Journal of Plant Physiology 1: 107-117.

Gollan, T., Passioura, J.B. & Munns R. 1986: Soil water status affects stomatal conductance of fully turgid wheat and sunflower leaves. Australian Journal of Plant Physiology 13: 459-464.

Gould, F.W. & Shaw, R.B. 1983. Grass systematics. 2nd ed., Texas A & M University Press, College Station.

Grime, J.P. 1979. Plant strategies and vegetation processes. John Wiley, Chichester. Haberlandt, G. 1909: Physiologische Pflanzenanatomie. Verlag von Wilhelm

Engelman, Leipzig.

Page 115: Kalapos T. 1994

114

Hargitai Z. 1940: Nagykőrös növényvilága. II. A homoki növényszövetkezetek. Botanikai Közlemények 37: 205-240.

Hartley, W. & Slater, C. 1960: Studies on the origin, evolution, and distribution of the Gramineae. III. The tribes of the subfamily Eragrostoideae. Australian Journal of Botany 8: 256-276.

Hattersley, P.W. 1983: The distribution of C3 and C4 grasses in Australia in relation to climate. Oecologia (Berl.) 57: 113-128.

Hattersley, P.W. 1992: C4 photosynthetic pathway variation in grasses (Poaceae): its significance for arid and semiarid lands. In: Chapman, G.P. (ed.): Desertified grasslands: their biology and management. Academic Press, London.

H-Nagy, A. 1975: A C4 tipusú fotoszintézis regulációjáról. Kandidátusi értekezés, Budapest.

H-Nagy, A. & Horánszky, A. 1980: Productivity and photosynthetic flexibility in some species of a grassland community. Acta Bot. Acad. Sci. Hung. 26: 389-395.

Hofstra, J.J. & Stienstra, A.W. 1977: Growth and photosynthesis of closely related C3 and C4 grasses, as influenced by light intensity and water supply. Acta Botanica Neerlandica 26: 63-72.

Holm, L.G., Plucknett, D.L., Pancho, J.V. & Herberger, J.P. 1977: The World's worst weeds. Distribution and biology. Univ. Press of Hawaii, Honolulu.

Horánszky, A. & H-Nagy, A. 1977: Study of assimilation types in species of sand steppe community. Acta. Bot. Acad. Sci. Hung. 23: 91-95.

Hortobágyi T. & Simon T. (szerk.) 1981: Növényföldrajz, társulástan és ökológia. Tankönyvkiadó, Budapest.

Hsiao, T.C., Acevodo, E., Fereres, E. & Henderson, D.W. 1976: Water stress, growth and osmotic adjustment. Philosophical Transactions of the Royal Society London, Series B 273: 479-500.

Huber, W. & Sankhla, N. 1976: C4 pathway and regulation of the balance between C4 and C3 metabolism. In: Lange et al. 1976, pp. 335-363.

Hunt, R. 1982: Plant growth curves. The functional approach to plant growth analysis. E. Arnold Publishers, London. pp. 14-120.

Jakucs P. 1981: Magyarország legfontosabb növénytársulásai. In. Hortobágyi & Simon 1981. pp. 225-263.

Jarvis, P.G. & Jarvis, M.S. 1963: The water relations of tree seedlings. IV. Some aspects of the tissue water relations and drought resistance. Physiologia Plantarum 16: 501-516.

Jensen, C.R. & Henson, L.E. 1990: Leaf water relations characteristics of Lupinus angustifolius and L. cosentinii. Oecologia (Berl.) 82: 114-121.

Jones, H.G. 1992: Plants and microclimate. A quantitative approach to environmental plant physiology. 2nd ed. Cambridge Univ. Press.

Juhász-Nagy, P. 1986: Egy operatív ökológia hiánya, szükséglete és feladatai. Akadémiai Kiadó, Budapest.

Kakas J. (szerk.) 1967: Klima Atlas von Ungarn. Band II. Tabellen. Akadémiai Kiadó, Budapest.

Kalapos, T. 1989: Drought adaptive plant strategies in a semiarid sandy grassland. Abstracta Botanica 13: 1-15.

Page 116: Kalapos T. 1994

115

Kalapos, T. 1991: C3 and C4 grasses in the vegetation of Hungary: environmental requirements, phenology and role in the vegetation. Abstracta Botanica 15: 83-88.

Kalapos, T. 1994: Leaf water potential - leaf water deficit relationship for ten species of a semiarid grassland community. Plant and Soil 160: 105-112.

Kalapos, T., van den Boogaard, R. & Lambers, H. 1994: Effect of soil drying on leaf gas exchange and growth of two C3 and one C4 annual grass species. Physiologia Plantarum (submitted).

Kassam, A.H. & Elston, J.F. 1976: Changes with age in the status of water and tissue characteristics in individual leaves of Vicia faba L. Annals of Botany 40: 669-679.

Kemp, P.R. & Williams III, G.J. 1980: A physiological basis for niche separation between Agropyron smithii (C3) and Bouteloua gracilis (C4). Ecology 61: 846-858.

Kerner, A. 1863: Das Pflanzenleben der Donauländer. Innsbruck. Kertész M. 1988: A talajnedvesség és a növényzet mintázatának vizsgálata nyílt

homokpusztagyepben. Egyetemi doktori értekezés. ELTE, Budapest. Kertész, M. 1991: Soil moisture regime of sandy desert styeppe. In: Simon & Kefeli

1991, pp. 149-156. Kertész, M., Szabó, J. & Altbäcker, V. 1993: The Bugac Rabbit Project. Part I.

Description of the tudy site and vegetation map. Abstracta Botanica 17: 187-196.

Kluge, M. 1976: Crassulacean acid matabolism (CAM): CO2 and water economy. In: Lange et al. 1976, pp. 313-322.

Knipling, E.B. 1967: Effect of leaf aging on water deficit - water potential relationships of dogwood leaves growing in two environments. Physiologia Plantarum 20: 65-72.

Koide, R.T., Robichaux, R.H., Morse, S.R. & Smith C.M. 1989: Plant water status, hydraulic resistance and capacitance. In: Pearcy et al. 1989, pp. 161-183.

Konings, H. 1989: Physiological and morphological differences between plants with a high NAR and a high LAR as related to environmental conditions. In: Lambers et al. 1989, pp. 101-123.

Kovács-Láng, E. 1974: Examination of dynamics of organic matter in a perennial open sandy steppe-medow (Festucetum vaginatae danubiale) at the Csévharaszt IBP sample area (Hungary). Acta Bot. Acad. Sci. Hung. 20: 309-326.

Kovács-Láng, E. 1975: Distribution and dynamics of phosphorus, nitrogen and potassium in perennial open sandy steppe-meadow (Festucetum vaginatae danubiale). Acta Bot. Acad. Sci. Hung. 21: 77-90.

Kovács-Láng, E. 1991: Dinamika zapaszov rasztyityelnovo vesesztva. Asszociacija Festucetum vaginatae. (Phytomass dynamics in the Festucetum vaginatae community). In: Simon & Kefeli 1991, pp 42-49.

Kovács-Láng, E. & Kalapos, T. 1992: Ecophysiological background of grass production under dry conditions in Hungary. Proceedings of the XIVth General Meeting of the European Grassland Federation, Lahti, Finland 1992, pp. 132-134.

Kovács-Láng, E. & Mészáros-Draskovits, R. 1985: Temporal changes in CO2 fixation in xerotherm grasses of dry steppe habitat. Ekológia Travneho Porastu II. Proceedings pp. 135-145. Banská Bystrica.

Page 117: Kalapos T. 1994

116

Kovács-Láng, E. & Szabó, M. 1971: Changes of soil humidity and its correlation to pytomass production in sandy meadow associations. Annal. Univ. Sci. Budapest. Sect. Biol. 13: 115-126.

Kovács-Láng, E. & Szabó, M. 1973: The effect of environmental factors on the phytomass production of sandy meadows. Annal. Univ. Sci. Budapest. Sect. Biol. 15: 83-91.

Kovács-Láng, E., Bystritzkaya, R., Mészáros-Draskovits, R. & Snakin, V.V. 1989: Comparative study of the phytomass production of Middle- and East-European steppes. Acta Bot. Acad. Sci. Hung. 35: 77-97.

Kovács-Láng, E., Kalapos, T. & Mészáros-Draskovits, R. 1989: Comparison of photosynthesis and transpiration in four species of a semiarid grassland community. Ekológia Travneho Porastu III. Proceedings pp. 67-76. Banská Bystrica.

Kvet, J. & Rychnovská, M. 1965: Contribution to the ecology of the steppe vegetation of the Tihany peninsula. II. Water retention capacity of some characteristic grass and forb species. Annal. Biol. Tihany 32: 275-288.

Kramer, P.J. 1983: Water relations of plants. Academic Press New York. Kubiske, M.E. & Abrams, M.D. 1991: Rehydration effects on pressure-volume

relationships in four temperate woody species: variability with site, time of season and drought conditions. Oecologia (Berl.) 85: 537-542.

Lambers, H. & Poorter, H. 1992: Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Advances in Ecological Research 23: 187-261.

Lambers H., Cambridge M.L., Konings, H. & Pons, T.L. (eds.) 1989: Causes and consequences of variation in growth rate and productivity. SPB Academic Publishing, The Hague.

Lange, O.L., Kappen, L. & Schulze, E.-D. (eds.) 1976: Water and plant life: problems and modern approaches. Ecological Studies 19. Springer, Berlin.

Lange, O.L., Nobel, P.S., Osmond, C.B. & Ziegler, H. (eds.) 1982: Encyclopedia of plant physiology, New series, vol. 12B. Physiological Plant Ecology II. Water relations and carbon assimilation. Springer-Verlag, Berlin.

Láng F. & Vágújfalvi D. 1993: A növényi anyagcsere élettana I. Fotoszintézis, porfirinek, aminósav-anyagcsere. Egyetemi Jegyzet, ELTE, Budapest.

Larcher, W. 1975: Physiological plant ecology. Springer-Verlag, Berlin. Levitt, J. 1980: Responses of plants to environmental stresses. 2nd ed. Academic

Press, New York. Li, M.R. 1993: Distribution of C3 and C4 species of Cyperus in Europe.

Photosynthetica 28: 119-126. Long, S.P. 1983: C4 photosynthesis at low temperatures. Plant, Cell and Environment

6: 345-563. Lo Gullo, M.A. & Salleo, S. 1988: Different strategies of drought resistance in three

Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytologist 108: 267-276.

Ludlow, M.M. 1976: Ecophysiology of C4 grasses. In: Lange et al. 1976, pp. 364-386.

Magyar P. 1933: A homokfásítás és növényszociológiai alapjai. Erdészeti Kísérletek 35: 139-198.

Page 118: Kalapos T. 1994

117

Magyar P. 1935: Párolgásmérések az Alföldön ligetes homoki erdőkben. Erdészeti Kísérletek 37: 76-108.

Magyar P. 1936: Növényökológiai vizsgálatok az alföldi homokon. Erdészeti Kísérletek 38: 115-233.

Magyar P. 1960: Alföldfásítás I-II. Akadémiai Kiadó, Budapest. Maróti, I., Tuba, Z. & Csík, M. 1984: Changes of chloroplast ultrastructure and

carbohydrate level in Festuca, Achillea and Sedum during drought and after recovery. Journal of Plant Physiology 116: 1-10.

Marshall, B. & Woodward, F.I. 1985: Instrumentation for environmental physiology. Cambridge Univ. Press, Cambridge.

Maxwell, J.O. & Redmann, R.E. 1978: Leaf water potential, component potentials and relative water content in a xeric grass Agropyron dasystachyum (Hook.) Scribn. Oecologia (Berl.) 35: 277-284.

Mázsa K. 1984: A zúzmóprodukció néhány ökofiziológiai kérdése évelő nyílt homoki gyepek példáján. Egyetemi doktori értekezés, ELTE, Budapest.

McGraw, J.B. & Wulff, R.D. 1983: The study of plant growth: a link between the physiological ecology and population biology of plants. Journal of Theoretical Biology: 103: 21-28.

Millar, A.A., Duysen, M.E. & Wilkinson G.E. 1968: Internal water balance of barley under soil moisture stress. Plant Physiology 43: 968-972.

Monson, R.K. 1989: On the evolutionary pathways resulting in C4 photosynthesis and crassulacean acid metabolism (CAM). Advances in Ecological Research 19: 57-110.

Monson, R.K., Edwards, G.E. & Ku, M.S.B. 1984: C3-C4 intermediate photosynthesis in plants. BioScience 34: 563-574.

Monson, R.K., Littlejohn, R.O. & Williams III, G.J. 1983: Photosynthetic adaptation to temperature in four species from the Colorado shortgrass steppe: a physiological model for coexistence. Oecologia (Berl.) 58: 43-51.

Monson, R.K. & Moore, B.D. 1989: On the significance of C3-C4 intermediate photosynthesis to the evolution of C4 photosynthesis. Plant, Cell & Environment 12: 689-699.

Monson, R.K. & Smith, S.D. 1982: Seasonal water potential components of Sonoran Desert plants. Ecology 63: 113-123.

Mooney, H.A. 1991: Plant physiological ecology - determinants of progress. Functional Ecology 5: 127-135.

Mooney, H.A. & Gulmon, S.L. 1979: Environmental and evolutionary constraints on the photosynthetic characteristics of higher plants. In: Solbrig et al. 1979, pp. 316-337.

Moore, P.D. 1982: Evolution of photosynthetic pathways in flowering plants. Nature 295: 647-648.

Muller, R.N. 1991: Growing season water relations of Rhododendron maximum L. and Kalmia latifolia L. Bulletin of Torrey Botanical Club 118: 123-127.

Mulroy, T.W. & Rundel, P.W. 1977: Annual plants: adaptations to desert environments. BioScience 27: 109-114.

Németh L. 1994: Három löszpusztagyepi pázsitfűfaj fotoszintézisének és vízforgalmának termőhelyi vizsgálata. Egyetemi Szakdolgozat, ELTE, Budapest.

Page 119: Kalapos T. 1994

118

Nobel, P.S. 1983: Biophysical plant physiology and ecology. W.H. Freeman, San Francisco.

Noitsakis, B. & Tsiouvaras, C. 1990: Seasonal changes in components of leaf water potential and leaf area growth rate in kermes oak. Acta Oecologica 11: 419-427.

Nyakas A. 1990: A magyar flóra pázsitfüveinek levélanatómiai jellemzői I. A C4-es anatómia variációi a gyompázsitfű fajoknál. Botanikai Közlemények 77: 109-117.

Nyakas A. 1992: Hazai pázsitfűfélék összehasonlító levélanatómiája. Kandidátusi értekezés, Debrecen.

Ode, D.J., Tieszen, L.L. & Lerman, J.C. 1980: The seasonal contribution of C3 and C4 plant species to primary production in a mixed prairie. Ecology 61: 1304-1311.

Orians, G.H. & Solbrig, O.T. 1977: A cost-income model of leaves and roots with special reference to arid and semiarid areas. American Naturalist 111: 677--690.

Osmond, C.B., Björkman, O. & Anderson, D.J. 1980: Physiological processes in plant ecology. Towards a synthesis with Atriplex. Ecological Studies 36. Springer-Verlag, Berlin.

Osmond, C.B., Winter, K. & Ziegler, H. 1982: Functional significance of different pathways of CO2 fixation in photosynthesis. In: Lange et al. 1982, pp. 480-547.

Öztrük, M., Rehder, H. & Ziegler, H. 1981: Biomass production of C3- and C4-plant species in pure and mixed culture with different water supply. Oecologia (Berl.) 50: 73-81.

Passioura, J.B. 1982: Water in the soil-plant-atmosphere continuum. In: Lange et al. 1982, pp. 5-33.

Passioura, J.B. 1988: Response to Dr P.J. Kramer's article, 'Changing concepts regarding plant water relations', Volume 11, Number 7, pp. 565-568. Plant, Cell & Environment 11: 569-571.

Pearcy, R.W. & Ehleringer, J. 1984: Comparative ecophysiology of C3 and C4 plants. Plant, Cell & Environment 7: 1-13.

Pearcy, R.W., Ehleringer, J., Mooney, H.A. & Rundel, P.W. (eds.) 1989: Plant physiological ecology. Field methods and instrumentation. Chapman & Hall, London.

Pearcy, R.W., Tumosa, N. & Williams, K. 1981: Relationship between growth, photosynthesis and competitive interactions for a C3 and a C4 plant. Oecologia (Berl.) 48: 371-376.

Péczely Gy. 1967: Éghajlat. Duna-Tisza közi Hátság. In: Pécsi 1967. pp. 222-225. Pécsi M. (szerk.) 1967: Magyarország tájföldrajza. 1. A dunai Alföd. Akadémiai

Kiadó, Budapest. Poole, D.K. & Miller, P.C. 1975: Water relations of selected species of chaparral and

coastal sage communities. Ecology 56: 1118-1128. Poorter, H. 1989: Interspecific variation in relative growth rate: on ecological causes

and physiological cosequences. In: Lambers et al. 1989, pp. 45-68. Précsényi, I., Czimber, Gy., Csala, G., Szőcs, Z. Molnár, E. & Melkó, E. 1976:

Studies on the growth analysis of maize hybrids. Acta Bot. Hung. 23:361-366.

Page 120: Kalapos T. 1994

119

Quick, W.P., Chaves, M.M., Wendler, R., David, M., Rodrigues, M.L., Passaharinho, J.A., Pereira, J.S., Adcock, M.D., Leegood, R.C. & Stitt, M. 1992: The effect of water stress on photosynthetic carbon metabolism in four species grown under field conditions. Plant, Cell & Environment 15: 25-35.

Raghavendra, A.S. & Das, V.S.R. 1978: The occurrence of C4-photosynthesis: a supplementary list of C4 plants reported during late 1974 - mid 1977. Photosynthetica 12: 200-208.

Richter, H. 1978: Water relations of single drying leaves: evaluation with a dewpoint hygrometer. Journal of Experimental Botany 29: 277-280.

Roush, M.L. & Radosevich, S.R. 1985: Relationships between growth and competitiveness of four annual weeds. J. of Applied Ecology 22: 896-905.

Rundel, P.W. 1980: The ecological distribution of C4 and C3 grasses in the Hawaiian Islands. Oecologia (Berl.) 45: 354-359.

Rundel, P.W. & Jarrell, W.M. 1989: Water in the environment. In: Pearcy et al. 1989, pp. 29-56.

Rychnovská, M., Kvet, J., Gloser, J. & Jakrlová, J. 1972: Plant water relations in three zones of grassland. Acta Sci. Nat. Acad. Sci. Bohemoslovacae (Brno) Tomus VI. nova series 5: 1-38.

Sage, R.F. & Pearcy, R.W. 1987a: The nitrogen use efficiency of C3 and C4 species. I. Leaf nitrogen, growth, and biomass partitioning in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology 84: 954-958.

Sage, R.F. & Pearcy, R.W. 1987b: The nitrogen use efficiency of C3 and C4 species. II. Leaf nitrogen effects on the gas exchange characteristics of Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiology 84: 959-963.

Savage, M.J., Wiebe, H.H. & Cass, A. 1984: Effect of cuticular abrasion on thermocouple psychrometric in situ measurement of leaf water potential. Journal of Experimental Botany 35: 36-42.

Saxena, K.G. & Ramakrishnan, P.S. 1983: Growth and allocation strategies of some perennial weeds of slash and burn agriculture (Jhum) in northeastern India. Canadian Journal of Botany 61: 1300-1306.

Scholander, P.F., Hammel, H.T., Bradstreeet, E.D. & Hemmingsen, E.A. 1965: Sap pressure in vascular plants. Science 148: 339-346.

Schulze, E-D. 1982: Plant life forms and their carbon, water and nutrient relations. In: Lange et al. 1982. pp. 615-676.

Schulze, E-D. 1986: Carbon dioxide and water vapour exchange in response to drought in the atmosphere and in the soil. Ann. Rev. Plant Physiol. 37: 247-274.

Schulze, E-D., & Hall, A.E. 1982: Stomatal responses, water loss and CO2 assimilation rates of plants in contrasting environments. In: Lange et al. 1982. pp. 181-230.

Schwarz, A.G. & Redmann, R.E. 1989: Photosynthetic properties of C4 grass (Spartina gracilis Trin.) from Northern environment. Photosynthetica 23: 449-459.

Sesták, Z., Catsky, J. & Jarvis, P.G. 1971: Plant photosynthetic production: manual of methods. Junk, The Hague.

Sharp, R.E. & Davies, W.J. 1979: Solute regulation and growth by roots and shoots of water-stressed maize plants. Planta 147: 43-49.

Shomer-Ilan, A., Beer, S. & Waisel, Y. 1979: Biochemical basis of ecological adaptation. In: Gibbs, M. & Latzko, E. (eds.): Encyclopedia of Plant Physiology. New Series. Vol. 6. Springer-Verlag, Berlin.

Page 121: Kalapos T. 1994

120

Simon T. 1984: A Bugaci Bioszféra Rezervátum flórájának természetvédelmi értékelése. Abstracta Botanica 8: 57-72.

Simon T. 1985: Az ELTE Növényrendszertani és Ökológiai Tanszéke komplex ökológiai kutatásai. In: Tóth K. (szerk.): Tudományos kutatások a Kiskunsági Nemzeti Parkban. Hungexpo, Budapest. pp. 140-173.

Simon, T. 1988: Nature conservation ranks of the Hungarian vascular flora. Abstracta Botanica 12: 1-24.

Simon T. 1992: A magyarországi edényes flóra határozója. Harasztok - virágos növények. Tankönyvkiadó, Budapest.

Simon, T. & Batanouny K.H. 1971: Qualitative and quantitative studies on the root system of Festucetum vaginatae. Ann. Univ. Sci. Budapest Sect. Biol. 13: 155-171.

Simon, T. & Kefeli, V.I. (eds.) 1991: Dinamika rasztyityelnovo vesesztva i szovremennüje pocsvennüje processzi v travjanisztih ekoszisztemah. (Dynamics of primary production and soil processes in grassland ecosystems). Acad. Sci. SU. Puschino.

Simon T. & Kovács-Láng E. 1972: Produkcióbiológiai vizsgálatok a Csévharaszti IBP mintaterületen. MTA Biol. Oszt. Közl. 15: 61-69.

Slatyer, R.O. 1967: Plant-water relationships. Academic Press, New York. Slatyer, R.O. 1971: Relationship between plant growth and leaf photosynthesis in C3

and C4 species of Atriplex. In: Hatch, M.D., Osmond, C.B. & Slatyer, R.O. (eds.): Photosynthesis and Photorespiration. John Wiley & Sons, New York. pp. 76-81.

Slavík, B. 1974: Methods of studying plant water relations. Springer-Verlag, Berlin. Smith, S.D. & Nobel, P.S. 1986: Deserts. In: Baker, N.R. & Long, S.P. (eds.):

Photosynthesis in contrasting environments. Elsevier, Amsterdam. pp. 13-62. Snaydon, R.W. 1991: The productivity of C3 and C4 plants: a reassessment.

Functional Ecology 5: 321-330. Sokal, R.R. & Rohlf, F.J. 1981: Biometry. 2nd ed. Freeman & Co. New York. Solbrig, O.T., Jain, S. Johnson, G.B. & Raven, P.H. (eds.) 1979: Topics in Plant

Population Biology. Columbia Univ. Press, New York. Soó R. 1931: A magyar puszta fejlődéstörténetének problémája. Földrajzi

Közlemények 59: 1-115. Soó R. 1960: Az Alföld erdői. In: Magyar 1960, pp. 419-478. Soó R. 1973: A magyar flóra és vegetáció rendszertani növényföldrajzi kézikönyve.

Synopsis Systematico- Geobotanica Florae Vegetationisque Hungariae. Tomus V. Akadémiai Kiadó, Budapest.

Soó R. és Kárpáti Z.: 1968. A magyar Flóra. Harasztok - Virágos növények. Tankönyvkiadó, Budapest.

Stefanovits P. 1981: Talajtan. 2. kiadás. Mezőgazdasági Kiadó, Budapest. Stocker, O. 1928: Jegyzetek a magyar pusztai növények levegőnyilásainak nyáron

való mozgásáról. Erdészeti Kísérletek 30: 370-372. Stocker, O. 1929: Vizsgálatok különböző termőhelyen nőtt növények vízhiányának

nagyságáról. Erdészeti Kísérletek 31: 63-76. Stowe, L.G.& Teeri, J.A. 1978: The geographic distribution of C4 species of the

dicotyledonae in relation to climate. American Naturalist 112: 609-623.

Page 122: Kalapos T. 1994

121

Sváb J. 1981: Biometriai módszerek a kutatásban. 3. kiadás. Mezőgazdasági Kiadó, Budapest.

Szabó, M. & Keszei, E. 1985: Some properties of rainfall and throughfall water in undisturbed Juniper and Poplar forests in Bugac. Acta Bot. Hung. 31: 35-44.

Szabó, M., Hahn, I., Gergely, A. & Altbäcker, V. 1991: The effect of grazing on the pattern of sandy grassland. Abstracts of the 34th Symposium of IAVS, 26-30 August, 1991, Eger, Hungary. p. 114.

Szodfridt I. 1969: Borókás-nyárasok Bugac környékén. Bot. Közlem. 56: 159-165. Szodfridt I. & Faragó, S. 1968: A talajvíz és vegetáció kapcsolata a Duna-Tisza Köze

homokterületén. Botanikai Közlemények 55: 69-75. Szőke Z. & Draskovits R. 1991: Pusztai növények leveleinek strukturális és

funkcionális vizsgálata. Botanikai Közlemények 78: 218. Szücs L. 1967: Talajok. Duna-Tisza közi Hátság. In: Pécsi 1967. pp. 241-243. Taiz, L. & Zeiger, E. 1991: Plant Physiology. The Benjamin/Cummings Publishing

Company, Inc. Redwood City, California. Tardieu, F. & Davies, W.J. 1993: Integration of hydraulic and chemical signalling in

the control of stomatal conductance and water status of droughted plants. Plant, Cell & Environment 16: 341-349.

Teeri, J.A. & Stowe, L.G. 1976: Climatic patterns and the distribution of C4 grasses in North America. Oecologia (Berl.) 23: 1-12.

Tenhunen, J.D., Pearcy, R.W. & Lange, O.L. 1987: Diurnal variations in leaf conductance and gas exchange in natural environments. In: Zeiger, E., Farquhar, G.D. & Cowan, I.R. (eds.) Stomatal function. Stanford University Press.

Thomasson, J.R., Nelson, M.E. & Zakrzewski, R.J. 1986: A fossil grass (Gramineae: Chloridoideae) from the Miocene with Kranz anatomy. Science 233: 876-878.

Tieszen, L.L., Senyimba, M.M., Imbamba, S.K. & Troughton, J.H. 1979: The distribution of C3 and C4 grasses and carbon isotope discrimination along an altitudinal and moisture gradient in Kenya. Oecologia (Berl.) 37: 337-350.

Tilman, D. 1988: Plant strategies and the structure of plant communities. Princeton University Press, Princeton, New Jersey.

Tuba Z. 1984a: Homokpusztagyep-fajok fotoszintézis-ökológiája. Kandidátusi értekezés, Vácrátót.

Tuba, Z. 1984b: Rearrengement of photosynthetic pignment composition in C4, C3 and CAM species during drought and recovery. Journal of Plant Physiology 115: 331-338.

Tuba, Z. 1984c: Changes of carotenoids in various drought adapted species during subsequent dry and wet periods. Acta Bot. Acad. Sci. Hung. 30: 217-228.

Tuba Z. & Fekete G. 1986: Ökofiziológia és ökológia. Alapvetések, valamint példák a faji-populációs és társulásszintű megközelítésre. Botanikai Közlemények 73: 197-203.

Tuba, Z., Nagy, Z., Szente, K., Csintalan, Zs., Koch, J. & Uzvölgyi, J. 1991: Ecophysiological approach of loess grassland degradation. Abstracts of the 34th Symposium of IAVS, 26-30 August, 1991, Eger, Hungary. p. 24.

Turner, N.C. & Jones, M.M. 1980: Turgor maintenance by osmotic adjustment: a review and evaluation. In: Turner, N.C. & Kramer, P.J. (eds.): Adaptation of plants to water and high temperature stress. John Wiley & Sons, New York, pp 87-104.

Page 123: Kalapos T. 1994

122

Tyree, M.T. & Hammel H.T. 1972: The measurement of turgor pressure and the water relations of plants by the pressure bomb technique. Journal of Experimental Botany 23: 267-282.

Tyree, M.T. & Richter, H. 1982: Alternate methods of analysing water potential isotherms: some cautions and clarifications. II. Curvilinearity in water potential isotherms. Canadian Journal of Botany 60: 911-916.

Ujvárosi M. 1957: Gyomnövények, gyomirtás. Mezőgazdasági Kiadó, Budapest. Veenendaal, E.M. 1991: Adaptive strategies of grasses in a semi-arid savanna in

Botswana. PhD Thesis, Amsterdam Vrij Universiteit. Verseghy, K. & Kovács-Láng, E. 1971: Investigations on production of grassland

communities of sandy soil in the IBP area near Csévharaszt (Hungary). I. Production of lichens. Acta Biol. Acad. Sci. Hung. 22: 393-411.

Virágh K. 1980a: A növekedésanalízis mint ökológiai módszer. I. Elméleti alapok. Botanikai Közlemények 67: 67-77.

Virágh K. 1980b: A növekedésanalízis mint ökológiai módszer. II. Alkalmazási területek. Botanikai Közlemények 67: 207-218.

Virágh K. 1981: A növekedésanalízis mint ökológiai módszer. III. Irodalmi áttekintés. Botanikai Közlemények 68: 41-49.

Vogel, J.C., Fuls, A. & Danin, A. 1986: Geographical and environmental distribution of C3 and C4 grasses in the Sinai, Negev and Judean deserts. Oecologia (Berl.) 70: 258-265.

Vogel, J.C., Fuls, A. & Ellis, R.P. 1978: The geographical distribution of Kranz grasses in South Africa. South African Journal of Science 74: 209-215.

von Caemmerer, S., Farquhar, G.D. 1981: Some relationship between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153: 376-387.

Wan, C., Sosebee, R.E. & McMichel, B.L. 1993: Drought induced changes in water relations in broom snakeweed (Gutierrezia sarothrae) under greenhouse- and field-grown conditions. Environmental & Experimental Botany 33: 323-330.

Watson L. & Dallwitz, M.J. 1992: Grass genera of the World - interactive identification and information rerieval. Research School of Biological Sciences, Canberra.

Watson L. & Dallwitz, M.J. 1993: The families of flowering plants - interactive identification and information rerieval. Research School of Biological Sciences, Canberra.

Webster, G.L., Brown, W.V. & Smith, B.N. 1975: Systematics of photosynthetic carbon fixation pathways in Euphorbia. Taxon 24: 27-33.

Winter, K. 1981: C4 plants of high biomass in arid regions of Asia - Occurrence of C4 photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. Oecologia (Berl.) 48: 100-106.

Winter, K. & Lüttge, U. 1976: Balance between C3 and CAM pathway of photosynthesis. In: Lange et al. 1976, pp. 323-334.

Woledge, J. & Parsons, A.J. 1986: Temperate grasslands. In: Barber, N.R. & Long, S.P. (eds.): Photosynthesis in contrasting environments. Elsevier Sci. Publ. Amsterdam. pp. 173197.

Page 124: Kalapos T. 1994

123

Wong, S.C. & Osmond, C.B. 1991: Elevated atmospheric partial pressure of CO2 and plant growth. III. Interactions between Triticum aestivum (C3) and Echinochloa frumentacea (C4) during growth in mixed culture under different CO2, N nutrition and irradiance treatments, with emphasis on below-ground responses estimated using the δ13C value of root biomass. Australian Journal of Plant Physiology 18: 137-152.

Young, H.J. & Young. T.P. 1983: Local distribution of C3 and C4 grasses in sites of overlap on Mount Kenya. Oecologia (Berl.) 58: 373-377.

Zhang, J. & Davies, W.J. 1990: Changes in the concentration of ABA in xylem sap as a function of changing soil water status can account for changes in leaf conductance and growth. Plant, Cell & Environment 13: 277-285.

Ziegler, H., Batanouny, K.H., Sankhla, N., Vyas, O.P. & Stichler, W. 1981: The photosynthetic pathway types of some desert plants from Saudi Arabia, Egypt, and Iraq. Oecologia (Berl.) 48: 93-99.

Zólyomi B. 1958: Budapest és környékének természetes növénytakarója. In: Pécsi M. (szerk.): Budapest természeti képe. Akadémiai Kiadó, Budapest. pp. 511-642.

Zólyomi, B. & Fekete, G. 1994: The Pannonian loess steppe: differentiation in space and time. Abstracta Botanica 18 (in press).

Zsolt J. 1943: A Szent-endrei Sziget növénytakarója. Index Horti Botanici Univ. Budapest 6: 1-18.

Page 125: Kalapos T. 1994

124

8 . F Ü G G E L É K

Page 126: Kalapos T. 1994

125

Page 127: Kalapos T. 1994

126

Page 128: Kalapos T. 1994

127

Page 129: Kalapos T. 1994

128

Page 130: Kalapos T. 1994

129

Page 131: Kalapos T. 1994

130

Page 132: Kalapos T. 1994

131

Page 133: Kalapos T. 1994

132

Page 134: Kalapos T. 1994

134

Page 135: Kalapos T. 1994

135

Page 136: Kalapos T. 1994

136

Page 137: Kalapos T. 1994

137

Page 138: Kalapos T. 1994

138

Page 139: Kalapos T. 1994

139

Page 140: Kalapos T. 1994

140

Page 141: Kalapos T. 1994

141

Page 142: Kalapos T. 1994

142

Page 143: Kalapos T. 1994

143

Page 144: Kalapos T. 1994

144

Page 145: Kalapos T. 1994

145

Page 146: Kalapos T. 1994

146

Page 147: Kalapos T. 1994

147

Page 148: Kalapos T. 1994

148

Page 149: Kalapos T. 1994

149

Page 150: Kalapos T. 1994

150