28
Amplifiers : Basics and DC Analysis ESc201 : Introduc=on to Electronics L14 rhegde Dept. of Electrical Engineering IIT Kanpur 1

L14.hegde.unlocked

Embed Size (px)

DESCRIPTION

 

Citation preview

Page 1: L14.hegde.unlocked

Amplifiers  :  Basics  and  DC  Analysis    

ESc201  :    Introduc=on  to  Electronics  L14

rhegde Dept. of Electrical Engineering

IIT Kanpur

1  

Page 2: L14.hegde.unlocked

Objective

1. Learn ideal Transistor characteristics required for Voltage Amplification

2. Learn to build amplifiers using elements which have non-ideal characteristics.

2  

Page 3: L14.hegde.unlocked

Voltage Amplification

V0Vi+ +

- -

V0Vi+ +

- -

I0I1

3-terminal unilateral linear device

1>×=

GVGV io

3  

Page 4: L14.hegde.unlocked

V0Vi+ +

- -

I0I1

V0

+ +

- -

Vi

I1

Ri

I0

gmvi rO

iInput resistance R = i iV / I

0Output conductance: 1

i

oo o

o V=

Ig = / r =V

00

= om

i V

IgV =

Trans conductance

(Ideally large)

(Ideally small)

(Ideally large)

4  

Page 5: L14.hegde.unlocked

Voltage Amplifier

V0

VS RL

RS

gmvi

RS

RL

v0

rORi+vi-

vS

V0

+ +

- -

Vi

I1

Ri

I0

gmvi rO

5  

Page 6: L14.hegde.unlocked

V m oA g r≤ ×

o iLV m o

s o L i S

V RRA g rV r R R R

= = − × ×+ +

gmvi

RS

RL

v0

rORi+vi-

vS

ii S

i S

RV VR R

=+ o m i o LV g V r R= − ×

1m og r× >Necessary Condition for Voltage Amplifications 6  

Page 7: L14.hegde.unlocked

Trans-conductance >> Output Conductance

Transistor

V0Vi+ +

- -

I0I1

om gg >>1>>om rgVoltage Amplification

V0

+ +

- -

Vi

I1

Ri

I0

gmvi rO

00

= om

i V

IgV = 0

i

oo

o V=

IgV

=

7  

Page 8: L14.hegde.unlocked

Transistor Trans-resistor

+ Vo -

IO + VIN -

Current IO is much more sensitive to VIN than VO

•  Can be used for voltage amplification •  Can be used as a switch •  Implement logic •  …

8  

Page 9: L14.hegde.unlocked

V0Vi+ +

- -

I0I1

V0

+ +

- -

Vi

I1

Ri

I0

gmvi rO

o iLV m o

S o L i S

V RRA g rV r R R R

= = − × ×+ +

gmvi

RS

RL

v0

rORi+vi-

vS

9  

Page 10: L14.hegde.unlocked

o iLV m o

s o L i S

V RRA g rV r R R R

= = − × ×+ +

In the ideal case ro is infinite

We would ideally like input resistance Ri to be infinite as well !

V m LA g R= −

gmvi

RS

RL

v0

rORi+vi-

vS

o iV m L

s i S

V RA g RV R R

= = − ×+

10  

Page 11: L14.hegde.unlocked

An ideal 3-terminal device for Voltage Amplification

V0Vi+ +

- -

I0I1

V0

+ +

- -

Vi

I0

gmvi

I0Vi3Vi2Vi1V0

Vi

I0

Ideal Transistor Characteristics 11  

Page 12: L14.hegde.unlocked

Ideal Transistor (IT)

RL

v0

vs

IT

Making a voltage amplifier with an ideal transistor is straightforward

V0

+ +

- -

Vi

I0

gmvi

oV m L

s

vA g Rv

= = −

gmvi RL

v0

vS+vi-

In practice there is no element which has the characteristics of ideal transistor ! 12  

Page 13: L14.hegde.unlocked

I0Vi3Vi2Vi1V0

Vi

I0

Ideal transistor

Device X

Vi3Vi2Vi1V0

I0I0

Vi

13  

Page 14: L14.hegde.unlocked

I0Vi3Vi2Vi1V0

Vi

I0

Ideal transistor

Device X Vi3Vi2Vi1V0

I0I0

Vi

Device Y

Vi3Vi2Vi1

I0

V0Vsat

I0

Vi

How do we use elements such as X, Y etc to make amplifiers? 14  

Page 15: L14.hegde.unlocked

Bipolar Junction Transistor: BJT

C F BI Iβ=

15  

Page 16: L14.hegde.unlocked

16

MOSFET  Metal Oxide Semiconductor Field Effect Transistor

Page 17: L14.hegde.unlocked

Device X

Vi3Vi2Vi1V0

I0I0

Vi

αα

αVVVVgVVI

iim

io>−×=

≤=

for )(for 0

I0Vi3Vi2Vi1V0

Vi

I0

Ideal Characteristics

V0Vi+ +

- -

I0I1X

17  

Page 18: L14.hegde.unlocked

Simple amplifier will not work !

Vi

IO

1V tSinVvKRgVV

sL

α5.0;101.0;1 1

==

Ω== −

RL

v0X+

vi-vs

How do we use device X to make an amplifier?

I0

Vi

Vi3Vi2Vi1V0

I0

0 0O OI V= ⇒ =No Amplification 18  

Page 19: L14.hegde.unlocked

Simple amplifier will not work !

ViVα

IO

RL

v0X+

vi-vs

How do we use device X to make an amplifier?

RL

v0X+

vi-

vs

vB

BV Vα>

IO

VαViVB

o o LV I R= −

tSinVvKRgVV

sL

α5.0;101.0;1 1

==

Ω== −

19  

Page 20: L14.hegde.unlocked

When only a part of device characteristics is suitable for amplification, then we need to push the device into that region by applying suitable bias voltages. This process is called BIASING

RL

v0X+

vi-

vs

vB

ViVα

IO

IO

VαViVB

20  

Page 21: L14.hegde.unlocked

How should one choose the bias voltage VB ?

I0

1.0V 1.2V

2mA

Q-point

Vin

tSinVvs ω5.0=RL

v0X+

vi-

vs

VB

Quiescent point or Bias point

1.2V

21  

Page 22: L14.hegde.unlocked

RL

v0X+

vi-

vs

1.2V

Vin

IO 0.5 ( )sv VSin tω=

I0

1.0V 1.2V

2mA

Q-point

Vin

11 ; 0.01mV V gα−= = Ω

IO

o o LV I R= −

22  αα

αVVVVgVVI

iim

io>−×=

≤=

for )(for 0

Page 23: L14.hegde.unlocked

clipped

Output voltage is distorted !

IO

O O LV I R= −

Need to choose a proper value of biasing Voltage

RL=1kΩ

23  

Page 24: L14.hegde.unlocked

RL

v0X+

vi-

vs

1.8V

IO

IO vs. time

0.5 ( )sv VSin tω=

I0

Vin

Q-point

1.0V 1.8V

8mA

11 ; 0.01mV V gα−= = Ω

VIN vs time

VO vs. time

Unnecessary Power Dissipation

24  

RL=1kΩ

Page 25: L14.hegde.unlocked

IO vs. time

I0

Vin

Q-point

1.0V 1.5V

5mA

11 ; 0.01mV V gα−= = Ω

RL

v0X+

vi-

vs

1.5V

IO

VO vs. time

Optimum Biasing ?

0.5 ( )sv VSin tω=

Vin vs. time

25  

Page 26: L14.hegde.unlocked

X+vi-

vs

1.5V

RL

v0IO

How do we get rid of unwanted dc voltage at the output ?

RL

v0X+

vi-

vs

1.5V

IO

0.5 ( )sv VSin tω=

I0

Vin

Q-point

1.0V 1.5V

5mA

11 ; 0.01mV V gα−= = Ω

RC

26  

Page 27: L14.hegde.unlocked

X+vi-

RLRC

vs

vo

X+vi-

vs

1.5V

v0

RLRC

IO

X+vi-1.5V

RC

IO ac (signal)

Capacitor is chosen large enough so that at the signal frequency 1/jωC ~0.

dc

I0

Vin

Q-point

1.0V 1.5V

5mA

11 ; 0.01mV V gα−= = Ω

27  

Page 28: L14.hegde.unlocked

X+vi-

v0

RLRC

vs

( ) for o m i iI g V V V Vα α= × − >

I0

Vin

Q-point

1.0V 1.5V

5mA

11 ; 0.01mV V gα−= = Ω

RL

v0

vS+vi-

RCgm(vi-Vα)

28