l15_seg.pdf

Embed Size (px)

Citation preview

  • 7/30/2019 l15_seg.pdf

    1/80

    MIT OpenCourseWarehttp://ocw.mit.edu

    HST.582J / 6.555J / 16.456J Biomedical Signal and Image ProcessingSpring 2007

    For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

    http://ocw.mit.edu/http://ocw.mit.edu/termshttp://ocw.mit.edu/termshttp://ocw.mit.edu/
  • 7/30/2019 l15_seg.pdf

    2/80

    Introduction to Medical ImageSegmentation

    HST 582

    Harvard-MIT Division of Health Sciences and TechnologyHST.582J: Biomedical Signal and Image Processing, Spring 2007Course Director: Dr. Julie Greenberg

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    3/80

    Outline

    Applications Terminology

    Probability Review Intensity-Based Classification

    Prior models Morphological Operators

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    4/80

    Applications of Segmentation

    Image Guided Surgery Surgical Simulation

    Neuroscience Studies Therapy Evaluation

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    5/80

    Interactive Segmentation

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    MRI image sequence removed due to copyright restrictions.

  • 7/30/2019 l15_seg.pdf

    6/80

    Applications of Segmentation

    Image Guided Surgery

    Surgical Simulation

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    Photo removed due to copyright restrictions.

    Two doctors working with a surgical simulation device.

  • 7/30/2019 l15_seg.pdf

    7/80

    Applications of Segmentation

    Neuroscience Studies

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    8/80

    Statistical Map of Cortical Thinning:

    Aging

    p < 10-6

    Courtesy of Bruce Fischl. Used with permission.

    Thanks to Drs. Randy Buckner and David Salat for supplying this slide.Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    Th M i f C ti l Thi i

  • 7/30/2019 l15_seg.pdf

    9/80

    The Movie of Cortical Thinningwith Aging

    2.52.753.02.02.252.5

    Courtesy of Bruce Fischl. Used with permission.

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    10/80

    Applications of Segmentation

    Therapy Evaluation Multiple Sclerosis

    Examples Later in talk

    Knee Cartilage Repair

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    11/80

    Results: Segmentation ofFemoral & Tibial Cartilage

    MRI Image Model-BasedSegmentation

    Manual Segmentation

    Source: Kapur, Tina. Model based three dimensional medical image segmentation. MIT Ph.D. thesis, 1999.

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    12/80

    Limitations of ManualSegmentation

    slow (up to 60 hours per scan) variable (up to 15% between experts)

    [Warfield + 2000]

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    13/80

    The Automatic SegmentationChallenge

    An automated segmentation method needs toreconcile

    Gray-level appearance of tissue

    Characteristics of imaging modality

    Geometry of anatomy

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    14/80

    Terminology: Segmentation

    Graphics Community: Any process that turns images into models

    Another Frequent Usage (HST 582):

    Labeling images according to tissue type (e.g.White / Gray Matter)

    Another: Dividing imagery into Major Anatomical

    SubdivisionsCite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    15/80

    Hierarchical Approach (Brain)David Kennedy, MGH / Martinos Center

    Segmentinto lobes Parcellate into functional areas

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    N t i D i ti Hi h

  • 7/30/2019 l15_seg.pdf

    16/80

    Neuroanatomic Description Hierarchy:

    WHOLE

    BRAIN/STRUCTURE

    Courtesy of David N. Kennedy, Ph.D. Used with permission.

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    Image removed due tocopyright restrictions.

    Image removed due tocopyright restrictions.

    Image removed due tocopyright restrictions.

    Image removed due tocopyright restrictions.

    Stages of Anatomic Analysis

  • 7/30/2019 l15_seg.pdf

    17/80

    Stages of Anatomic AnalysisOriginal Subcortical Parc. Cortical Parcellation

    General Segmentation. White Matter Parc.Courtesy of David N. Kennedy, Ph.D. Used with permission.

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT O enCourseWare htt ://ocw.mit.edu Massachusetts Institute of Technolo .Downloaded on DD Month YYYY .

  • 7/30/2019 l15_seg.pdf

    18/80

    Probability Review

    Discrete Random Variables (RV) Probability Mass Functions (PMF)

    Continuous Random Variables

    Cumulative Distribution Functions (CDF)

    Probability Density Functions (PDF)

    Conditional Probability

    Bayes Rule

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    19/80

    Discrete Random Variable Characterized by Probability Mass Function

    (PMF)

    (sometimes called Distribution)

    Maps valuesx to their Probabilities P(x)

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    20/80

    Continuous Random Variables

    Define Cumulative Distribution Function(CDF) on RV x

    Non-Decreasing Sometimes calledDistribution Function

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    21/80

    Continuous Random Variables...

    Define Probability Density Function (PDF)

    Easy to show, using FundamentalTheorem of Calculus:

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    22/80

    More on PDFs :p(x)

    Non Negative Integrates to One

    (Value can be Greater than One)

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    23/80

    Conditional Probability

    Define Conditional Probability:

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    24/80

    Bayes Rule (easy to show)

    Frequent Situation: A: State of the World

    B: Measurement

    P(B|A) : Measurement Model

    P(A) : A-Priori Model

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    25/80

  • 7/30/2019 l15_seg.pdf

    26/80

    Segmentation

    Easy Segmentation Tissue/Air (except bone in MR)

    Bone in CT

    Feasible Segmentation

    White Matter/Gray Matter

    M.S. Lesions

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    27/80

    Statistical Classification

    Probabilistic model ofintensity as a function of(tissue) class

    Intensity data

    Prior model

    Classification of

    voxels

    [Duda, Hart 78]

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    28/80

  • 7/30/2019 l15_seg.pdf

    29/80

    Example

    intensity

    p(x|gray matter)p(x|white matter)

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    30/80

  • 7/30/2019 l15_seg.pdf

    31/80

    Example - revisited

    white matterthreshold

    gray matter

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    32/80

    Anatomical Knowledge

    A priori model Before the measurement is considered

    )( jTCP

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    33/80

  • 7/30/2019 l15_seg.pdf

    34/80

    Measurement Model

    Training data Get an expert to label some of the voxels

    Optional: Use a parametric model

    Assume functional form

    Popular choice: Gaussian

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    35/80

  • 7/30/2019 l15_seg.pdf

    36/80

    Choosing and Use training data:

    ML parameter estimation

    MAP tissue classifier with Gaussian measurement

    model: choose tissue class to maximize:

    = i iYN1

    = i iYN22

    )(

    1

    { }NYYY ,...,, 21

    ...

    )(),,(

    )|(jojj

    oj

    TCPxG

    xTCP

    =

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    37/80

  • 7/30/2019 l15_seg.pdf

    38/80

    2D Gaussian: Example

    iso probabilitycontour is

    ellipse

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    39/80

    Multiple Sclerosis Example Dual echo MRI

    1 x 1 x 3 mm

    Registered slice pairs

    Proton density image Good: white/gray

    Bad: gray/csf

    T2-weighted image Good: CSF/ Not so good: white/gray

    Good: MS lesionsCite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    40/80

    Multiple Sclerosis

    Provided by S Warfield

    Courtesy Elsevier, Inc., http://www.sciencedirect.com. Used with permission.

    PDw T2w

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    http://www.sciencedirect.com/http://www.sciencedirect.com/
  • 7/30/2019 l15_seg.pdf

    41/80

    D t il

  • 7/30/2019 l15_seg.pdf

    42/80

    Detail

    MS Lesions are graded phenomenon in

    MRI, and can be anywhere on the curve

    gmwm

    lesionscsf

    healthy

    mild

    severe

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    43/80

    Multiple Sclerosis

    Courtesy Elsevier, Inc.,http://www.sciencedirect.com. Used with permission.

    PDw T2w SegmentationCite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    Images from Dr. Simon Warfield removed

    due to copryight restrictions.

    http://www.sciencedirect.com/http://www.sciencedirect.com/
  • 7/30/2019 l15_seg.pdf

    44/80

    EM-Segmentation

  • 7/30/2019 l15_seg.pdf

    45/80

    Estimate intensity correctionusing residuals based oncurrent posteriors.

    Compute tissue posteriorsusing current intensity

    correction.

    E-Step

    M-Step

    Provided by T Kapur

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    46/80

  • 7/30/2019 l15_seg.pdf

    47/80

  • 7/30/2019 l15_seg.pdf

    48/80

    Prior Models Average Brain

    Structurally-Conditioned Models

    Markov Random Fields (MRF)

    Ising

    Potts

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    49/80

    Average Brain Models Construct a spatial prior model by

    averaging tissue distributions over apopulation [MNI].

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    50/80

    Source: Pohl, Kilian M. "Prior Information for Brain Parcellation." MIT Ph.D. thesis, 2005.

    Provided by Kilian Pohl

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    51/80

  • 7/30/2019 l15_seg.pdf

    52/80

    Modeling Global Geometric

  • 7/30/2019 l15_seg.pdf

    53/80

    Relative Geometry Models

    Motivate Using Knee MRI

    Brain MRI Example

    Modeling Global Geometric

    Relationships between Structures

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    54/80

    Motivation

  • 7/30/2019 l15_seg.pdf

    55/80

    Primary Structures image well

    easy to segment

    Secondary Structures image poorly

    relative to primary

    Tibial Cartilage

    Femoral Cartilage

    Tibia

    Femur

    Source: Kapur, Tina. Model based three dimensional medical image segmentation. MIT Ph.D. thesis, 1999.

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    56/80

  • 7/30/2019 l15_seg.pdf

    57/80

  • 7/30/2019 l15_seg.pdf

    58/80

    Status Have Bone

    Want Cartilage

    Provided by T Kapur

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    59/80

  • 7/30/2019 l15_seg.pdf

    60/80

    Estimate of Cartilage)x|nP( sss ,

  • 7/30/2019 l15_seg.pdf

    61/80

    Cartilage)Fem.x|nP( sss , Cartilage)Tib.x|nP( sss ,

    Source: Kapur, Tina. Model based three dimensional medical image segmentation. MIT Ph.D. thesis, 1999.

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    62/80

  • 7/30/2019 l15_seg.pdf

    63/80

  • 7/30/2019 l15_seg.pdf

    64/80

  • 7/30/2019 l15_seg.pdf

    65/80

    Lesion classification

  • 7/30/2019 l15_seg.pdf

    66/80

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    Images from Dr. Simon Warfield removeddue to copryight restrictions.

  • 7/30/2019 l15_seg.pdf

    67/80

  • 7/30/2019 l15_seg.pdf

    68/80

    Morphological Operations Erosion

    Dilation

    Opening

    Closing

    [Haralick + 1989]

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    69/80

  • 7/30/2019 l15_seg.pdf

    70/80

    Dilation

  • 7/30/2019 l15_seg.pdf

    71/80

    Continuous analogy

    Makes structuresfatter

    1

    zero

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    Erosion

  • 7/30/2019 l15_seg.pdf

    72/80

    Erosion is dual of dilation complement A

    reflect B (negate coordinates)

    dilate

    complement result

    BABA =

    Frequently, B is symmetric and then reflection canbe ignored

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

    Erosion

  • 7/30/2019 l15_seg.pdf

    73/80

    Erosion by simple S.E.s makes structuresthinner

    Analog analogy:

    1 zero

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    74/80

  • 7/30/2019 l15_seg.pdf

    75/80

    Closing Closing = Dilate then Erode

    Can attach objects that have becomefragmented

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    76/80

    Erosion and Dilation Common trick in brain isolation de-

    scalping Erode it

    to disconnect brain from head Dilate it

    But only mark pixels that were originally brain

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    77/80

    Connectivity Define neighbor relation

    There are some inconsistencies that a 6-neighbor relation can fix

    4-neighbor 8-neighbor

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    78/80

    Finding Connected Components N = 1

    Repeat until all pixels are labeled

    Pick an unmarked1pixel

    Label it, and all of its 1 neighbors, N NN + 1

    Cite as: William (Sandy) Wells. Course materials for HST.582J / 6.555J / 16.456J, Biomedical Signaland Image Processing,Spring 2007.MIT OpenCourseWare(http://ocw.mit.edu), Massachusetts Institute of Technology.Downloaded on[DD Month YYYY].

  • 7/30/2019 l15_seg.pdf

    79/80

  • 7/30/2019 l15_seg.pdf

    80/80