43
Laser Compton Polarized e e + + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Embed Size (px)

Citation preview

Page 1: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Laser Compton Polarized ee++ Source for ILC

CavityComptonMeeting 26/Jul/2005

Tsunehiko OMORI (KEK)

Page 2: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

ILC: International Linear Collidere+ lineace- lineac DRsDR

Ecm = 500 - 1000 GeV

Polarized Beams play important role Suppress back ground Increase rate of interaction (if both beam pol) Solve Week mixing of final state

start experiment at ~2015

~ 50 km

Page 3: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Two ways to get pol. e+

(1) Helical Undurator

(2) Laser Compton

e- beam E >150 GeV

Undulator L > 150 m

Page 4: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Two ways to get pol. e+

(1) Helical Undurator

(2) Laser Compton

e- beam E >150 GeV

Undulator L > 150 m

Our Proposal

Page 5: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Why Laser Compton ?

ii) Independence Undulator-base e+ : use e- main linac Problem on design, construction, commissioning, maintenance, Laser-base e+ : independent Easier construction, operation, commissioning, maintenance

iii) Low energy operation Undulator-base e+ : need deccelation Laser-base e+ : no problem

i) Positron Polarization.

Page 6: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

ILC Undulator-base e+ Source

150 GeV 250 GeV 250 GeV

Experiments

Page 7: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Today’s talk

2. Concept of Laser Based Polarized e+ Source for ILC

Simulation study & Plan of Experimental R/D

1.Proof-of-Principle demonstration at KEK-ATF

Experiment at KEK, just finished

Page 8: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

1. Experiment at KEK-ATF

120 m

Experiment done by Waseda-TMU-KEK collaborationATF: Accelerator Test Facility for ILC built at KEK

Page 9: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

i) proof-of-principle demonstration

ii) accumulate technical imformation: polarimetry, beam diagnosis, …

Experiment@KEK

Page 10: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)
Page 11: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)
Page 12: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Compton Chamber

Page 13: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)
Page 14: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)
Page 15: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

-rayMeasured Asymmetry

A= -0.93± 0.15 %

A= 1.18± 0.15 %laser pol. = - 79 % laser pol. = + 79 %

M. Fukuda et al., PRL 91(2003)164801

Page 16: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Ne+ = 3 x 104/bunch Asym (expected) = 0.95%Pol(expected) = 77%

Page 17: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)
Page 18: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

polarized e+

Measure e+ polarization : use Bremsstrahlung -ray

Pb conveter

-ray

E = 40 MeV

calculation

Page 19: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

e+ polarization (e+ run )e- spin in Iron

e- spin in Iron

e- spin in Iron

e+ beam spin

e+ beam spin

e+ beam spinnon

A(R)= +0.60 ± 0.25%

A(L)= -1.18 ± 0.27%

A(0)= -0.02 ± 0.25%

T. Omori et al., PRL 96 (2006) 114801

Page 20: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

A = 0.90 ± 0.18 %Pol. = 73 %

e+ run

T. Omori et al., PRL 96 (2006) 114801

Page 21: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

W- target

Separationmagnet

e+

e+

e-

W- target

e+Separationmagnet

polarized

e-

e-

e+ run e- run

We did e- run, also.

Page 22: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

e- polarization (e- run)e- spin in Iron

e- spin in Iron

e- spin in Iron

e- beam spin

e- beam spin

e- beam spinnon

A(L)= -0.97 ± 0.27%

A(0)= -0.23 ± 0.27%

A(R)= +0.78 ± 0.27%

Page 23: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

A = 0.89 ± 0.19 %

e- run

Page 24: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

A = 0.90 ± 0.18 %

e+ run

A = 0.89 ± 0.19 %

e- run

Asymmetry Measurements

T. Omori et al., PRL 96 (2006) 114801

Page 25: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Summary of Experiment1) The experiment was successful. High intensity short pulse polarized e+ beam was firstly produced. Pol. ~ 73 ± 15(sta) ± 19(sys) %

3) We established polarimetry of short pulse & high intensity -rays, positrons, and electrons.

2) We confirmed propagation of the polarization from laser photons -> -rays -> and pair created e+s & e-s.

T. Omori et al., PRL 96 (2006) 114801

Page 26: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Collaborating Institutes:BINP, CERN, DESY, Hiroshima, IHEP, IPN, KEK, Kyoto,

LAL, NIRS, NSC-KIPT, SHI, and Waseda

SakaeArakiYasuoHigashiYousukeHondaMasaoKurikiToshiyukiOkugi TsunehikoOmoriTakashiTaniguchiNobuhiroTerunuma,

JunjiUrakawaXArtruMChevallier, VStrakhovenko, EugeneBulyakPeterGladkikhKlausMeonig, RobertChehabAlessandroVariolaFabianZomerFrankZimmermann, KazuyukiSakaueTachishigeHiroseMasakazuWa

shioNoboruSasaoHirokazuYokoyamaMasafumiFukudaKoichiroHiranoMikioTakanoTohruTakahashiHirokiSatoAkiraTsunemiand JieGao

2. Concept of Compton polarized e+ source

for ILC

Page 27: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Summer 2004ITRP(International Technology Recommendation Panel)technology choice : cold LC (ILC)

cold LC : super conduction RF cavity for accel.

Page 28: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Conceptual Design for warm LCT. Omori et al., NIM A500 (2003) 232-252

Ne+=1.2x1010/bunch

Before Summer 2004

Page 29: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Study Compton applied to a cold LC.

New and Improved design

Full use of slow repetition rate (5Hz)

After Summer 2004

Page 30: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

ILC requirements

Page 31: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

ILC requirements2x1010 e+/bunch (hard)2800 bunches/train (hard)5 Hz (we have time to store e + s)

Strategy

New: Design for cold LC (ILC) make positrons in 100 m sec. Electron storage ring, laser pulse stacking cavity : Re-use !!! positron stacking ring.

Old: Design for warm LC make positrons at once. both electron & laser beams: throw away

Basic Idea: K. Moenig P. Rainer

T. Omori et al., NIM A500 (2003) 232-252

Page 32: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Laser Pulse Stacking CavityInput laser (YAGlaser) Energy 1.2 mJ/bunch 3.077 nsec bunch spacing train length = 50 sec

Cavity Enhancement Factor =500

Laser pulse in cavity 600 mJ/bunch single bunch in a cavity

Fabry-perot Resonator

Page 33: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Schematic View of Whole System

Page 34: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

ILC: International Linear Collidere+ lineace- lineac DRsDR

~ 50 km

Page 35: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Schematic View of Whole System

Page 36: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Schematic View of Whole System

This part is necessary for ILC, This part is necessary for ILC, no matter what eno matter what e++ production production scheme is chosen.scheme is chosen.

Page 37: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

We also haveExperimental R/D Plan

for Comptom Pol. e+ Source

Cavity-Compton

Page 38: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Plan: Exprmntl R/D at KEK

.Put it in ATF ringNov. 2006

Cavity Compton Collab.: Hiroshima-Waseda-LAL-Kyoto-CERN-KEK

Make a fist prototype single cavityLcav = 420 mm

Page 39: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Laser based scheme is good candidate of ILC polarized e+ source.

Summary of ILC source design

We have new Ideamake positrons in 100 m sec. Electron storage ring laser pulse stacking cavitys positron stacking ring (= e+ DRs)1.6x1010 e+/bunch x 2800 bunches @ 5Hzwith polarization ( ~ 60%)

Some values are extrapolation from old design.We need detailed simulation.

We plan to put prototype laser cavity in ATF.

Page 40: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Slides to answer questions

Page 41: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Polarization Measurement

non (Liner)

)Calculate A)Calculate A

)Calculate A

e+ beam pol.(laser pol)

e- spin in iron (magnet pol.)

A(0) : A(0) = 0

A(R) : A(R) ~ + 0.95 %A(L) : A(L) ~ - 0.95 %

R

L

0

expected value (MC)

Page 42: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

Compton Ring (e- storage Ring)

0 10 20 30 40 50 Turns

0 20 40 60 80 100 Turns

CO2 ring YAG ring

N/electron/turn (in all energy of -ray)

2.0

1.6

1.2

0.8

0.4

1.

6

1.

2

0.

8

0.

4Average N/turn (in 23-29 MeV) CO2 : 1.78x1010 /turn YAG : 1.36x1010 /turn (average in 50 turns) (average in 100 turns)

Page 43: Laser Compton Polarized e + e + Source for ILC CavityComptonMeeting 26/Jul/2005 Tsunehiko OMORI (KEK)

e+ stacking in Damping Ring (simulation) 1st bnch on 1st

trn5th bnch on 5th trn

100 bnchs on 18820th trn

10th bnch on 10th trn

before 11th bnch on 941st trn

11th bnch on 942nd trn

15th bnch on 946th trn

20th bnch on 951st trn

before 21st bnch on1882nd trn

100th bnch on 8479th trn

100 bnchs on 9410th trn

~110 sec

~10 msec

~10 msec + 110 sec ~20 msec ~100 msec + 110 sec

~110 msec ~200 msec

T=0

-0.4 0.4Longitudinal Pos. (m)

-0.0

3

0

.03

Ene

rgy/

Ener

gyi-th bunch on j-th DR turn

Time

e+ in a bucket

stacking loss = 18% in total