Lecture 1 CHE110A 2016

  • Upload
    li-ch

  • View
    214

  • Download
    0

Embed Size (px)

Citation preview

  • 8/18/2019 Lecture 1 CHE110A 2016

    1/33

    Quantum Mechanics inChemistry 

    Chemistry 110A

    Prof. C. William. McCurdy2016 spring quarter

  • 8/18/2019 Lecture 1 CHE110A 2016

    2/33

    Syllabus is Posted on SmartSite •  Text: We will use Donald A. McQuarrie and John D.

    Simon, Physical Chemistry - A Molecular Approach

    (University Science Books, 1997).

    •  There is a solution manual available: Caveat emptor ! It

    contains errors and a few nonsensical explanations.

    • 

    Minimum Prerequisites: Chem. 2C, one year of college

     physics, and Math 16C or Math 21C.  Having taken the

    entire B.S. in Chemistry mathematics curriculum ( 21A-

    D and 22A, 22AL (MatLab), and 22B. ) is better

    •  Grading: The distribution of the points in the course

    will be:Homework 20%Midterms (2) each 20%Final exam 40%

  • 8/18/2019 Lecture 1 CHE110A 2016

    3/33

    Week Date TopicI March 29 Role of quantum mechanics in Chemistry (Chap. 1 is background)

    March 31 Chapter 2 Classical Wave Equation,Superposition of solutions – interference

    II April 5 Chapter 3 The Schrödinger Eq. and quantum interference,

    Particle in a Box, separation of variables April 7 Chapter 4 Principles and Postulates of Quantum Mechanics

    III April 12 Chapter 4 Hermitian operators, matrix elementsUncertainty, Ehrenfest’s theorem, commutators

     April 14 Chapter 5 Harmonic Oscillator + Rigid RotorIV April 19 Chapter 5 Harmonic Oscillator + Rigid Rotor

     April 21 Midquarter Exam on “Principles of Quantum Mech”-- in class  V April 26 Chapter 6 Schrödinger equation for Hydrogen

    atom and separation of angular from radial motion April 28 Chapter 6 cont Degeneracy, and symmetry in the H atom

    VI May 3 Chapter 7 Approximation methods: The variational principleMay 5 Chapter 7 cont.  First order perturbation theory, examples

    VII May 10 Chapter 8 Spin, Stern Gerlach experiment, beginning many-electron atomsMay 12 Slater determinants, Hartree-Fock approximation

    VIII May 17 Chapter 8 cont. Term Symbols, atomic excited states, Hund’s rules

    May 19 Chapter 9 Diatomic Molecules, Born Oppenheimer approxMolecular HamiltoniansIX May 24 Midterm Exam on “Atoms and approximations” – in class  

    May 26 Chapter 9 Molecular orbitals, H2+,X May 31 Chapter 9 Hartree-Fock & molecules, Bonding in first row diatomic

    June 2 Electronic excited states of molecules

    June 8 Final Exam 10:30 am Check date and time in last week of class

    Note Date

    Note Date

    Note Date

  • 8/18/2019 Lecture 1 CHE110A 2016

    4/33

    Studying for this course!  In the Chemistry curriculum this is the first course that

    asks you to integrate what you learned in othercourses:!  General Chemistry! 

    Calculus and Linear Algebra!  Physics

    !  There are math and physics review sections in thetext -- use them if you have forgotten any of the skillsthat are assumed in the text.

    !  Read the text and do the homework problemsearly. This subject is learned by doing -- not bywatching. 

  • 8/18/2019 Lecture 1 CHE110A 2016

    5/33

    Mathematica, MATLAB, Python and theProblem Sets

    •  Mathematica, MATLAB or Python will be required for someproblems after week 1.

    •  It is highly recommended that you use one of them frequentlyto help check your algebra on homework problems.

    • 

    Mathematica, MATLAB and Python examples will be postedto help you improve your skills. 

    •  Mathematica Tutorial by Professor McCurdy will beannounced for an evening in the week of April 4. Needed

    Skills: –  Symbolic integration and differentiation –  Line graphs: f(x), and plotting of surfaces: f(x,y)

     –  Do and If statements, use of arrays

     –  Eigenvalues and eigenvectors of matrices

  • 8/18/2019 Lecture 1 CHE110A 2016

    6/33

    Chapter 1: Why Quantum?

    The Failures of Classical Mechanics•  Blackbody Radiation – This is important,

    and we will look at it now.

    • 

    You saw the others in FreshmanChemistry: –  Photoelectric Effect –  Quantum interference -- wave properties of

    particles –  Hydrogen atom spectrum

    We will just briefly review them today

  • 8/18/2019 Lecture 1 CHE110A 2016

    7/33

    Black Body Radiation•   A cavity at thermal equilibrium at temperature T•  What spectrum of electromagnetic radiation does it

    emit?

    • 

     An idealization of how any object characterized bya temperature glows (emits radiation)

  • 8/18/2019 Lecture 1 CHE110A 2016

    8/33

    Where does the black body law come from?

    Light consists of electromagnetic wavesobeying physics similar to mechanical waves

    Classical modes of oscillation of a string. Each has adifferent frequency, but can have any amount of energy.

  • 8/18/2019 Lecture 1 CHE110A 2016

    9/33

    Where does the black body law come from?

      Modes of light oscillation in a cavity.Light consists of electromagnetic wavesobeying physics similar to mechanical waves

    Light modes have quantized energies with n = 1, 2, 3 … ! -- called “photons”

     E  =  n h" 

  • 8/18/2019 Lecture 1 CHE110A 2016

    10/33

    Where does the black body law come from?

    8!" 2

    c3

     

    "   k  B

    !

    h!  e"h! /k  BT 

    1" e"h! /k  BT 

    Number of modesof frequency v  Average energyof each mode 

    Classical

    Quantum

    Boltzmanndistribution

    Classical Thermodynamics gave the same energy to each modeQuantum Mechanics gives a different mean energy to each mode

    8!" 2

    c3

  • 8/18/2019 Lecture 1 CHE110A 2016

    11/33

    Black Body Radiation Law

    • 

    The “ultraviolet catastrophe” of classical physics•

     

    Spectral radiation density [Energy/Vol/(unit offrequency)] -- Planck distribution law 

    " (# )d # = 8$ kT 

    # 4  d # 

     

    " (# )d # = 8$ hc# 5

    1ehc/# kT 

    %1d # 

    " (# )d # =8$ h

    c3

    # 3

    eh# /kT 

    %1d # 

    Equivalent distribution in terms of frequency:

    Classical mechanical distribution" 

    max=

    hc

    4.96511 kT 

     

     E =  n h" Key concept that leadsto Planck law

  • 8/18/2019 Lecture 1 CHE110A 2016

    12/33

    We see it every day

  • 8/18/2019 Lecture 1 CHE110A 2016

    13/33

    Distributions (like the Planck distribution)

    • 

     A distribution, like the density (a massdistribution), gives the relevant quantity onlywhen integrated over an interval or domain.

     Mass =   ! density   r( )Vol

     !    d 3r

    Energy

    Volume between " 1  and " 2  =

      ! " ( )" 1

    " 2

     !    d " 

  • 8/18/2019 Lecture 1 CHE110A 2016

    14/33

    From first problem set

    c/4 times Planck distribution gives the distributionof Radiated Power

    (Watts/unit area/unit frequency)

    So integrating this distribution over all frequencies

    gives

    ! " (T )d "   = c

    48# hc3

    3

    eh" /k  BT 

    !1d " 

    ! " (T )d " 

    0

    !

     "    = Radiated Power/Area (Watts/m2 )

  • 8/18/2019 Lecture 1 CHE110A 2016

    15/33

    Photoelectric Effect--freshman

    chemistry version 

    •  In chemistry this phenomenon is calledphotoionization and the work function

    is called the “ionization potential”

     E kin=

    mv2

    2= h"  #$ 

    ! is the "work function"

     E kin= h"  # h" 

    0

  • 8/18/2019 Lecture 1 CHE110A 2016

    16/33

    Wave properties of particles

    The De Broglie relationDiffraction of electrons from a crystalline surface 

    " =h

     p

  • 8/18/2019 Lecture 1 CHE110A 2016

    17/33

    Hydrogen Spectrum

    • 

    Line spectra appear for all atoms in absorption andemission.

    •  The freshman chemistry story relates thosefrequencies to transitions between discrete energylevels given by the Bohr formula for hydrogen energy

    levels. 

    h"  = # E = E  f   $ E i

     

    1

    " =

    1

    n1

    2 #

      1

    n2

    2

    % & 

    ( ) 109680cm

    #1

    Bohr formula

  • 8/18/2019 Lecture 1 CHE110A 2016

    18/33

    Freshman chemistry

    figures showing old

     pictures of spectradon’t remotely reflect

    today’s spectroscopy 

    Those were pictures ofspectra taken with 1930s

    technology.

    We know the energy levels

    of atoms to many

    significant figures from both experiment and

    quantum theory

    (From the NIST website) 

  • 8/18/2019 Lecture 1 CHE110A 2016

    19/33

    Hydrogen Atom Transitions and Photoionization 

    13.6 eV ionization energy

    Ejected electron kinetic energy

    1

    " =

    1

    n1

    2 #

      1

    n2

    2

    % & 

    ( ) 109680cm

    #1

     

     E n=  "

     R H 

    n2

  • 8/18/2019 Lecture 1 CHE110A 2016

    20/33

    Correcting a false impression: The hydrogen atom absorbs

    all  frequencies corresponding to energies above 13.6 eV --

     NO discrete lines, as there are for lower frequencies 

    Photoionization

    spectrum (photo

    absorption) plottedversus kinetic

    energy of ejected

    electron

     E kin= h"  #13.6  eV 

    Remember thephotoelectric effect –same equation for ejected

    electron Energy

  • 8/18/2019 Lecture 1 CHE110A 2016

    21/33

    Photoionization of an Atom Gives the

    Binding Energies of the Atomic Orbitals

    For each type of atom we see

    “edges” in the photoionization cross

    section (probability) corresponding

    to the energies of the atomic orbitals

    that are occupied in the atom

    X-ray photoionization -- for example

    at the Advanced Light Source at the

    Lawrence Berkeley Lab or Advanced

    Photon Source at Argonne

    log-logplot 

  • 8/18/2019 Lecture 1 CHE110A 2016

    22/33

  • 8/18/2019 Lecture 1 CHE110A 2016

    23/33

    The history of early 20th centuryscience is NOT why we study QM 

    • 

    Bonding in molecules cannot beunderstood without Quantum Mechanics.

    •  No chemical spectroscopy could be

    interpreted without Quantum Mechanics.

  • 8/18/2019 Lecture 1 CHE110A 2016

    24/33

    IR spectra: vibrational androtational transitions 

    Visible/UV spectra - electronic,

    vibrational, rotational transitions 

    From this spectrum: CO bonddistance in CO2 = 1.16Å,

    16O is aBoson (missing rotational lines) 

    Electronic transition in I2 visiblespectrum 

  • 8/18/2019 Lecture 1 CHE110A 2016

    25/33

    Time-dependent spectroscopy has beeninvented using short pulsed lasers

    Molecular Rotation: tens of picoseconds (10

    -12

     s)!  Molecular Vibration: tens of femtoseconds(10-15 s)

    !  Electronic motion: order of tens to hundreds of

    attoseconds (10-18

     s) 

  • 8/18/2019 Lecture 1 CHE110A 2016

    26/33

    ModernSpectroscopy

    in the time

    domain:“femtosecondchemistry”

  • 8/18/2019 Lecture 1 CHE110A 2016

    27/33

    Femtosecond spectroscopyto follow a reaction

  • 8/18/2019 Lecture 1 CHE110A 2016

    28/33

    Essential Mathematics

    • 

    Simple concepts of complex variables are essential

    • 

    Solutions of Schrödinger are frequently intrinsically

    complex valued functions

    !  Polar representation of a complex number

     z = x+ iy = rei" 

    r

    r =   z =   x2+  y

    2

    cos" =  x /r =  x /   x2+  y

    2

    sin" =  y /r =  y /   x2 +  y2

  • 8/18/2019 Lecture 1 CHE110A 2016

    29/33

    Euler Identity and Complex Conjugation

    !  Euler identity

    !  You’ll use it constantly as the basis of other simple identities

    !  Complex conjugation

    ei" = cos" + i sin" 

     

    ei" +2# i

    = ei" 

     

     z = x + iy

     z*= x " iy

     f ( z)* means change the sign of i and

    complex conjugate  z wherever it appears in  f ( z)

     

    for example :

     f ( z) = 5 z2 + iz+ 2

     f ( z)* = 5   z*( )2

    " iz* + 2

     

    i = ei"  / 2

     

    1

    i

    = e"i#  / 2

    = "i

  • 8/18/2019 Lecture 1 CHE110A 2016

    30/33

    Integrals of Complex Functions of a Real Variable 

    • 

    Same principles as integration of real functions, but keep

    track of the complex quantities.

    !  Simple example that will be used with the wave functions of the

    hydrogen atom

     f (" )* g(" )

    0

    2# 

     $    d " =   e%i" e2i" 0

    2# 

     $    d " =   ei" 0

    2# 

     $    d " =ei

    i0

    2# 

    = %i e2# i % e0( ) = %i  1%1( ) = 0 

     f (" ) = ei" 

    g(" ) = e2i" 

    What is  f (" )*g(" )

    0

    2# 

     $    d "   ?

  • 8/18/2019 Lecture 1 CHE110A 2016

    31/33

    Basic Linear Algebra

    • 

    Dot products of vectors appear with complex conjugation

    in QM

    • 

    A vector is normalized to one if

    •  Two vectors are orthogonal if

    u  =

    u1

    u2

    .

    .

    .

    uN 

    v  =

    v1

    v2...

    vN 

    u · v =

    N X

    i=1

    ui  vi

    u∗

    · v =

    N X

    i=1

    u∗

    i  vi

    u∗

    ·

    u   = 1

    u∗

    · v   = 0

  • 8/18/2019 Lecture 1 CHE110A 2016

    32/33

    Eigenvalues and eigenvectors of matrices

    • 

    A real symmetric (or Hermitian) matrix

    • 

    has N eigenvectors and eigenvalues

    • 

    and the eigenvalues are real numbers 

    •  the eigenvectors are orthogonal

    M =

    M 11   M 12   M 13   · · ·   M 1N 

    M 21   M 22   M 23   · · ·   M 2N 

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    .

    M N 1   M N 2   M N 3   · · ·   M NN 

    Mvn  = λ

    nvn

  • 8/18/2019 Lecture 1 CHE110A 2016

    33/33

    Eigenvalues are the roots of an Nth order polynomial

    • 

    Eigenvalues satisfy the secular equation (seculardeterminant = 0)

    • 

    So they are the zeroes of an Nth order polynomial, e.g.

    for a 2 x 2 they satisfy a quadratic equation

    det[M− λI] =  det

    M 11 − λ   M 12   · · ·   M 1N 

    M 21   M 22 − λ   · · ·   M 2N 

    ..

    .

    ..

    .

    ..

    .

    ..

    .M N 1   M N 2   · · ·   M NN  − λ

    = 0

    det

    M 11 − λ   M 12

    M 21   M 22 − λ

     = 0

    (M 11 − λ)(M 22 − λ)−M 12M 21  = 0