70
Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates (GCC) (Ch. 12 of Unit 1 and Ch. 1-5 of Unit 2 and Ch. 1-5 of Unit 3) Quick Review of Lagrange Relations in Lectures 9-11 Using differential chain-rules for coordinate transformations Polar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1 Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2 How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2vMv and F=Ma to get GCC force Lagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2) GCC Cells, base vectors, and metric tensors Polar coordinate examples: Co variant E m vs. Contra variant E m Co variant g mn vs. In variant δ m n vs. Contra variant g mn Lagrange prefers Co variant g mn with Contra variant velocity GCC Lagrangian definition GCC “canonical” momentum p m definition GCC “canonical” force F m definition Coriolis “fictitious” forces (… and weather effects) 1 Tuesday, September 30, 2014

Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lecture 12 Thur. 10.2.2014

Equations of Lagrange and Hamilton mechanicsin Generalized Curvilinear Coordinates (GCC)

(Ch. 12 of Unit 1 and Ch. 1-5 of Unit 2 and Ch. 1-5 of Unit 3)Quick Review of Lagrange Relations in Lectures 9-11

Using differential chain-rules for coordinate transformationsPolar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2v•M•v and F=M•a to get GCC forceLagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

GCC Cells, base vectors, and metric tensors

Polar coordinate examples: Covariant Em vs. Contravariant Em Covariant gmn vs. Invariant δmn vs. Contravariant gmn

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definitionGCC “canonical” momentum pm definitionGCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)1Tuesday, September 30, 2014

Page 2: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Quick Review of Lagrange Relations in Lectures 9-100th and 1st equations of Lagrange and Hamilton

2Tuesday, September 30, 2014

Page 3: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Quick Review of Lagrange Relations in Lectures 9-100th and 1st equations of Lagrange and Hamilton

Starts out with simple demands for explicit-dependence, “loyalty” or “fealty to the colors”

∂L∂pk

≡ 0 ≡ ∂E∂pk

∂H∂vk

≡ 0 ≡ ∂E∂vk

∂L∂Vk

≡ 0 ≡ ∂H∂Vk

Lagrangian and Estrangian have no explicit dependence on momentum p

Hamiltonian and Estrangian have no explicit dependence on velocity v

Lagrangian and Hamiltonian have no explicit dependence on speedinum V

Such non-dependencies hold in spite of “under-the-table” matrix and partial-differential connections

∇vL = ∂L∂v

= ∂∂vviMiv2

=M iv= p

∇ pH = v = ∂H∂p

= ∂∂ppiM−1ip2

=M−1ip = v

(Forget Estrangian for now)

Lagrange’s 1st equation(s) Hamilton’s 1st equation(s)

∂L∂vk

= pk or: ∂L∂v

= p

∂H∂pk

= vk or: ∂H∂p

= v

∂L∂v1

∂L∂v2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=m1 0

0 m2

⎝⎜⎜

⎠⎟⎟

v1

v2

⎝⎜⎜

⎠⎟⎟=

p1

p2

⎝⎜⎜

⎠⎟⎟

∂H∂p1

∂H∂p2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=m1−1 0

0 m2−1

⎜⎜

⎟⎟

p1

p2

⎝⎜⎜

⎠⎟⎟=

v1

v2

⎝⎜⎜

⎠⎟⎟

p. 60 ofLecture 9

3Tuesday, September 30, 2014

Page 4: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

p2=m2v2

p1=m1v1

Hamiltonian plotH(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=p1 /m1

(a)

v v = ∇∇pH=M-1•p

p = ∇∇vL=M•v

p

Lagrangian tangent at velocity vis normal to momentum p

Hamiltonian tangent at momentum pis normal to velocity v

(c) Overlapping plotsv

p

v

p

p

v (d) Less mass

(e)More mass

H=const = E

L=const = E

H=const = E

Unit 1Fig. 12.2 p. 61 of

Lecture 9

4Tuesday, September 30, 2014

Page 5: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

p2=m2v2

p1=m1v1

Hamiltonian plotH(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=p1 /m1

(a)

v v = ∇∇pH=M-1•p

p = ∇∇vL=M•v

p

Lagrangian tangent at velocity vis normal to momentum p

Hamiltonian tangent at momentum pis normal to velocity v

(c) Overlapping plotsv

p

v

p

p

v (d) Less mass

(e)More mass

H=const = E

L=const = E

H=const = E

Unit 1Fig. 12.2

1st equation of Lagrange

1st equation of Hamilton

p. 61 ofLecture 9

5Tuesday, September 30, 2014

Page 6: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Using differential chain-rules for coordinate transformationsPolar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

6Tuesday, September 30, 2014

Page 7: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

df (x, y) = ∂ f∂xdx + ∂ f

∂ydy

dg(x, y) = ∂g∂xdx + ∂g

∂ydy

Using differential chain-rules for coordinate transformationsA pair of 2-variable functions f(x,y) and g(x,y) can define a coordinate system on (x,y)-space for example: polar coordinates r2(x,y)= x2+y2 and θ(x,y)=atan2(y,x) dr(x, y) = ∂r

∂xdx + ∂r

∂ydy

dθ(x, y) = ∂θ∂xdx + ∂θ

∂ydy( Not in text. Recall Lecture 10 p. 57-73)†

7Tuesday, September 30, 2014

Page 8: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

df (x, y) = ∂ f∂xdx + ∂ f

∂ydy

dg(x, y) = ∂g∂xdx + ∂g

∂ydy

Using differential chain-rules for coordinate transformationsA pair of 2-variable functions f(x,y) and g(x,y) can define a coordinate system on (x,y)-space for example: polar coordinates r2(x,y)= x2+y2 and θ(x,y)=atan2(y,x) dr(x, y) = ∂r

∂xdx + ∂r

∂ydy

dθ(x, y) = ∂θ∂xdx + ∂θ

∂ydy

Easy to invert differential chain relations (even if functions are not easily inverted)

dx = ∂x∂ f

df + ∂y∂gdg

dy = ∂y∂ f

df + ∂y∂gdg

dx = ∂x∂rdr + ∂x

∂θdθ

dy = ∂y∂rdr + ∂y

∂θdθ

x = r cosθy = r sinθ

dxdy

⎝⎜

⎠⎟ =

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

drdθ

⎛⎝⎜

⎞⎠⎟= cosθ −r sinθ

sinθ r cosθ⎛

⎝⎜⎞

⎠⎟drdθ

⎛⎝⎜

⎞⎠⎟

( Not in text. Recall Lecture 10 p. 57-73)†

8Tuesday, September 30, 2014

Page 9: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

dx j = ∂x j

∂qmdqm ≡ ∂x j

∂qmdqm dummy-index m-sum

Defining a shorthand { }m=1

N∑

⎝⎜

⎠⎟

df (x, y) = ∂ f∂xdx + ∂ f

∂ydy

dg(x, y) = ∂g∂xdx + ∂g

∂ydy

Using differential chain-rules for coordinate transformationsA pair of 2-variable functions f(x,y) and g(x,y) can define a coordinate system on (x,y)-space for example: polar coordinates r2(x,y)= x2+y2 and θ(x,y)=atan2(y,x) dr(x, y) = ∂r

∂xdx + ∂r

∂ydy

dθ(x, y) = ∂θ∂xdx + ∂θ

∂ydy

Easy to invert differential chain relations (even if functions are not easily inverted)

dx = ∂x∂ f

df + ∂y∂gdg

dy = ∂y∂ f

df + ∂y∂gdg

dx = ∂x∂rdr + ∂x

∂θdθ

dy = ∂y∂rdr + ∂y

∂θdθ

x = r cosθy = r sinθ

dxdy

⎝⎜

⎠⎟ =

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

drdθ

⎛⎝⎜

⎞⎠⎟= cosθ −r sinθ

sinθ r cosθ⎛

⎝⎜⎞

⎠⎟drdθ

⎛⎝⎜

⎞⎠⎟

Notation for differential GCC (Generalized Curvilinear Coordinates {q1, q2, q3,...})

These xj are plain old CC (Cartesian Coordinates {dx1=dx, dx2=dy, dx3=dx, dx4=dt} )

What does “q” stand for?One guess: “Queer”And they do get pretty queer!

( Not in text. Recall Lecture 10 p. 57-73)†

9Tuesday, September 30, 2014

Page 10: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

dx j = ∂x j

∂qmdqm ≡ ∂x j

∂qmdqm dummy-index m-sum

Defining a shorthand { }m=1

N∑

⎝⎜

⎠⎟

df (x, y) = ∂ f∂xdx + ∂ f

∂ydy

dg(x, y) = ∂g∂xdx + ∂g

∂ydy

Using differential chain-rules for coordinate transformationsA pair of 2-variable functions f(x,y) and g(x,y) can define a coordinate system on (x,y)-space for example: polar coordinates r2(x,y)= x2+y2 and θ(x,y)=atan2(y,x) dr(x, y) = ∂r

∂xdx + ∂r

∂ydy

dθ(x, y) = ∂θ∂xdx + ∂θ

∂ydy

Easy to invert differential chain relations (even if functions are not easily inverted)

dx = ∂x∂ f

df + ∂y∂gdg

dy = ∂y∂ f

df + ∂y∂gdg

dx = ∂x∂rdr + ∂x

∂θdθ

dy = ∂y∂rdr + ∂y

∂θdθ

x = r cosθy = r sinθ

dxdy

⎝⎜

⎠⎟ =

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

drdθ

⎛⎝⎜

⎞⎠⎟= cosθ −r sinθ

sinθ r cosθ⎛

⎝⎜⎞

⎠⎟drdθ

⎛⎝⎜

⎞⎠⎟

Notation for differential GCC (Generalized Curvilinear Coordinates {q1, q2, q3,...})

These xj are plain old CC (Cartesian Coordinates {dx1=dx, dx2=dy, dx3=dx, dx4=dt} )

What does “q” stand for?One guess: “Queer”And they do get pretty queer!

Connection lines may help to indicate summation (OK on scratch paper...Difficult in text)

( Not in text. Recall Lecture 10 p. 57-73)†

10Tuesday, September 30, 2014

Page 11: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Using differential chain-rules for coordinate transformationsPolar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

11Tuesday, September 30, 2014

Page 12: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics:Generalized velocity relation follows from GCC chain rule

v j≡ x j≡ dx j

dt υm≡ qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

x j = ∂x j

∂qmqm

12Tuesday, September 30, 2014

Page 13: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics:Generalized velocity relation follows from GCC chain rule

v j≡ x j≡ dx j

dt υm≡ qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

x j = ∂x j

∂qmqm

This is a key “lemma-1” for setting up mechanics: or:

∂ x j

∂ qm= ∂x j

∂qm lemma-1

13Tuesday, September 30, 2014

Page 14: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Jacobian Jmj matrix gives each CCC differential or velocity in terms of GCC or .

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics:Generalized velocity relation follows from GCC chain rule

v j≡ x j≡ dx j

dt υm≡ qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

x j = ∂x j

∂qmqm

dx j x j dqm qm

Jm

j ≡ ∂x j

∂qm= ∂x j

∂ qm matrix component

Defining Jacobian{ } ∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

= cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟

This is a key “lemma-1” for setting up mechanics: or:

∂ x j

∂ qm= ∂x j

∂qm lemma-1

Recall polar coordinatetransformation matrix:

14Tuesday, September 30, 2014

Page 15: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Jacobian Jmj matrix gives each CCC differential or velocity in terms of GCC or .

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics:Generalized velocity relation follows from GCC chain rule

v j≡ x j≡ dx j

dt υm≡ qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

x j = ∂x j

∂qmqm

dx j x j dqm qm

Jm

j ≡ ∂x j

∂qm= ∂x j

∂ qm matrix component

Defining Jacobian{ }Inverse (so-called) Kajobian Kjm matrix is flipped partial derivatives of Jmj.

K j

m ≡ ∂qm

∂x j= ∂ qm

∂x j (inverse to Jacobian)

Defining "Kajobian"{ }

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

= cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟

This is a key “lemma-1” for setting up mechanics: or:

∂ x j

∂ qm= ∂x j

∂qm lemma-1

Recall polar coordinatetransformation matrix:

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

−1

=

∂r∂x

∂r∂y

∂θ∂x

∂θ∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

=

r cosθ r sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

(det J = r)=

cosθ sinθ

− sinθr

cosθr

⎜⎜

⎟⎟

Polar coordinate inversetransformation matrix:

A BC D

⎛⎝⎜

⎞⎠⎟

−1

=

D −B−C A

⎛⎝⎜

⎞⎠⎟

AD − BC

Defining 2x2 matrix inverse:

15Tuesday, September 30, 2014

Page 16: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Jacobian Jmj matrix gives each CCC differential or velocity in terms of GCC or .

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics:Generalized velocity relation follows from GCC chain rule

v j≡ x j≡ dx j

dt υm≡ qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

x j = ∂x j

∂qmqm

dx j x j dqm qm

Jm

j ≡ ∂x j

∂qm= ∂x j

∂ qm matrix component

Defining Jacobian{ }Inverse (so-called) Kajobian Kjm matrix is flipped partial derivatives of Jmj.

K j

m ≡ ∂qm

∂x j= ∂ qm

∂x j (inverse to Jacobian)

Defining "Kajobian"{ }

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

= cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟

This is a key “lemma-1” for setting up mechanics: or:

∂ x j

∂ qm= ∂x j

∂qm lemma-1

Recall polar coordinatetransformation matrix:

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

−1

=

∂r∂x

∂r∂y

∂θ∂x

∂θ∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

=

r cosθ r sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

(det J = r)=

cosθ sinθ

− sinθr

cosθr

⎜⎜

⎟⎟

Polar coordinate inversetransformation matrix:

A BC D

⎛⎝⎜

⎞⎠⎟

−1

=

D −B−C A

⎛⎝⎜

⎞⎠⎟

AD − BC=

DAD − BC

−BAD − BC

−CAD − BC

AAD − BC

⎜⎜⎜⎜

⎟⎟⎟⎟

Defining 2x2 matrix inverse:

16Tuesday, September 30, 2014

Page 17: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Product of matrix Jmj and Kjm is a unit matrix by definition of partial derivatives.

Jacobian Jmj matrix gives each CCC differential or velocity in terms of GCC or .

Same kind of linear relation exists between CC velocity and GCC velocity

Getting the GCC ready for mechanics:Generalized velocity relation follows from GCC chain rule

v j≡ x j≡ dx j

dt υm≡ qm ≡ dqm

dt

dx j = ∂x j

∂qmdqm

x j = ∂x j

∂qmqm

dx j x j dqm qm

Jm

j ≡ ∂x j

∂qm= ∂x j

∂ qm matrix component

Defining Jacobian{ }Inverse (so-called) Kajobian Kjm matrix is flipped partial derivatives of Jmj.

K j

m ≡ ∂qm

∂x j= ∂ qm

∂x j (inverse to Jacobian)

Defining "Kajobian"{ }

K j

m⋅Jnj ≡ ∂qm

∂x j⋅ ∂x j

∂qn= ∂qm

∂qn= δn

m =1 if m = n0 if m ≠ n⎧⎨⎩

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

= cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟

This is a key “lemma-1” for setting up mechanics: or:

∂ x j

∂ qm= ∂x j

∂qm lemma-1

Recall polar coordinatetransformation matrix:

∂x∂r

∂x∂θ

∂y∂r

∂y∂θ

⎜⎜⎜⎜

⎟⎟⎟⎟

−1

=

∂r∂x

∂r∂y

∂θ∂x

∂θ∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

=

r cosθ r sinθ−sinθ cosθ

⎝⎜⎞

⎠⎟

(det J = r)=

cosθ sinθ

− sinθr

cosθr

⎜⎜

⎟⎟

cosθ −r sinθsinθ r cosθ

⎝⎜⎞

⎠⎟cosθ sinθ

− sinθr

cosθr

⎜⎜

⎟⎟

= 1 00 1

⎛⎝⎜

⎞⎠⎟

(always test your J and K matrices!)

17Tuesday, September 30, 2014

Page 18: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Using differential chain-rules for coordinate transformationsPolar coordinate example of Generalized Curvilinear Coordinates (GCC) Getting the GCC ready for mechanics: Generalized velocity and Jacobian Lemma 1Getting the GCC ready for mechanics: Generalized acceleration and Lemma 2

18Tuesday, September 30, 2014

Page 19: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Getting the GCC ready for mechanics (2nd part)Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

x j ≡ d

dtx j = d

dt∂x j

∂qmqm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟qm+ ∂x

j

∂qmqm

First apply to velocity and use product rule:dtd !x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

19Tuesday, September 30, 2014

Page 20: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Apply derivative chain sum to Jacobian.

Getting the GCC ready for mechanics (2nd part)Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

x j ≡ d

dtx j = d

dt∂x j

∂qmqm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟qm+ ∂x

j

∂qmqm

First apply to velocity and use product rule:dtd !x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt

20Tuesday, September 30, 2014

Page 21: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Apply derivative chain sum to Jacobian. Partial derivatives are reversible.

Getting the GCC ready for mechanics (2nd part)Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

x j ≡ d

dtx j = d

dt∂x j

∂qmqm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟qm+ ∂x

j

∂qmqm

First apply to velocity and use product rule:dtd !x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

∂m∂n= ∂n∂m

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qm ∂qn⎛⎝⎜

⎞⎠⎟dqn

dt= ∂∂qm

∂x j

∂qndqn

dt⎛⎝⎜

⎞⎠⎟

( Not in text. Recall Lecture 10 p. 57-73)†

21Tuesday, September 30, 2014

Page 22: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Apply derivative chain sum to Jacobian. Partial derivatives are reversible.

Getting the GCC ready for mechanics (2nd part)Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

x j ≡ d

dtx j = d

dt∂x j

∂qmqm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟qm+ ∂x

j

∂qmqm

First apply to velocity and use product rule:dtd !x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

∂m∂n= ∂n∂m

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qm ∂qn⎛⎝⎜

⎞⎠⎟dqn

dt= ∂∂qm

∂x j

∂qndqn

dt⎛⎝⎜

⎞⎠⎟

= ∂∂qm

x j( )By chain-rule def. of CC velocity:

( Not in text. Recall Lecture 10 p. 57-73)†

22Tuesday, September 30, 2014

Page 23: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Apply derivative chain sum to Jacobian. Partial derivatives are reversible.

Getting the GCC ready for mechanics (2nd part)Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

x j ≡ d

dtx j = d

dt∂x j

∂qmqm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟qm+ ∂x

j

∂qmqm

First apply to velocity and use product rule:dtd !x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

∂m∂n= ∂n∂m

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qm ∂qn⎛⎝⎜

⎞⎠⎟dqn

dt= ∂∂qm

∂x j

∂qndqn

dt⎛⎝⎜

⎞⎠⎟

= ∂∂qm

x j( )

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟=∂x j

∂qmlemma

2

This is the key “lemma-2” for setting up Lagrangian mechanics .

By chain-rule def. of CC velocity:

( Not in text. Recall Lecture 10 p. 57-73)†

23Tuesday, September 30, 2014

Page 24: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Apply derivative chain sum to Jacobian. Partial derivatives are reversible.

Getting the GCC ready for mechanics (2nd part)Generalized acceleration relations are a little more complicated (It’s curved coords, after all!)

x j ≡ d

dtx j = d

dt∂x j

∂qmqm

⎛⎝⎜

⎞⎠⎟= ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟qm+ ∂x

j

∂qmqm

First apply to velocity and use product rule:dtd !x j d

dtu ⋅v( ) = du

dt⋅v + u ⋅ dv

dt

∂m∂n= ∂n∂m

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟= ∂∂qn

∂x j

∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qn ∂qm⎛⎝⎜

⎞⎠⎟dqn

dt= ∂2 x j

∂qm ∂qn⎛⎝⎜

⎞⎠⎟dqn

dt= ∂∂qm

∂x j

∂qndqn

dt⎛⎝⎜

⎞⎠⎟

= ∂∂qm

x j( )

ddt

∂x j

∂qm⎛⎝⎜

⎞⎠⎟=∂x j

∂qm

The “lemma-1” was in the GCC velocityanalysis just before this one for acceleration.

lemma2

lemma1

∂ x j

∂ qm= ∂x j

∂qm

This is the key “lemma-2” for setting up Lagrangian mechanics .

By chain-rule def. of CC velocity:

( Not in text. Recall Lecture 10 p. 57-73)†

24Tuesday, September 30, 2014

Page 25: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2v•M•v and F=M•a to get GCC forceLagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

25Tuesday, September 30, 2014

Page 26: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k x

k

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-IIStart with stuff we know...(sort of)

T = 1

2M jk v jvk = 1

2M jk x

j xk where: Mjk are CC inertia constants

26Tuesday, September 30, 2014

Page 27: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k x

k

dW = f jdx j = f j

∂x j

∂qmdqm⎛

⎝⎜

⎠⎟ = M j k x

k ∂x j

∂qmdqm⎛

⎝⎜

⎠⎟

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Multidimensional CC version of work-energy differential (dW= F•dx). Insert GCC differentials dqm

(It’s time to bring in the queer qm !)

T = 1

2M jk v jvk = 1

2M jk x

j xk where: Mjk are inertia constants that are symmetric:Mjk=Mkj

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-IIStart with stuff we know...(sort of)

27Tuesday, September 30, 2014

Page 28: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k x

k

T = 1

2M jk v jvk = 1

2M jk x

j xk

dW = f jdx j = f j

∂x j

∂qmdqm⎛

⎝⎜

⎠⎟ = M j k x

k ∂x j

∂qmdqm⎛

⎝⎜

⎠⎟

dW = f jdx j = Fmdqm = f j

∂x j

∂qmdqm = M j k x

k ∂x j

∂qmdqm

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Multidimensional CC version of work-energy differential (dW= F•dx). Insert GCC differentials dqm

dqm are independent so dqm-sum is true term-by-term. (Still holds if all dqm are zero but one.)

(It’s time to bring in the queer qm !)

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-IIStart with stuff we know...(sort of)

where: Mjk are inertia constants that are symmetric:Mjk=Mkj

28Tuesday, September 30, 2014

Page 29: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Multidimensional CC version of kinetic energy

f j = M j k ak = M j k x

k

T = 1

2M jk v jvk = 1

2M jk x

j xk

dW = f jdx j = f j

∂x j

∂qmdqm⎛

⎝⎜

⎠⎟ = M j k x

k ∂x j

∂qmdqm⎛

⎝⎜

⎠⎟

dW = f jdx j = Fmdqm = f j

∂x j

∂qmdqm = M j k x

k ∂x j

∂qmdqm

where : Fm = f j

∂x j

∂qm= M j k x

k ∂x j

∂qm

21viMiv

Multidimensional CC version of Newt-II (F=M•a) using Mjk

Multidimensional CC version of work-energy differential (dW= F•dx). Insert GCC differentials dqm

dqm are independent so dqm-sum is true term-by-term. (Still holds if all dqm are zero but one.)

Here generalized GCC force component Fm is defined:

(It’s time to bring in the queer qm !)

where: Mjk are inertia constants

Deriving GCC mechanics from Cartesian Coord. (CC) Newton I-IIStart with stuff we know...(sort of)

29Tuesday, September 30, 2014

Page 30: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2v•M•v and F=M•a to get GCC forceLagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

30Tuesday, September 30, 2014

Page 31: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery beginsObvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k x

k

B = ∂x j

∂qm AB = d

dtAB( )− A B⎡

⎣⎢

⎦⎥

Fm = f j

∂x j

∂qm= M j k x

k ∂x j

∂qm= d

dtM j k x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

!AB( )!!AB !A !B

31Tuesday, September 30, 2014

Page 32: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery beginsObvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k x

k

B = ∂x j

∂qm AB = d

dtAB( )− A B⎡

⎣⎢

⎦⎥

Fm = f j

∂x j

∂qm= M j k x

k ∂x j

∂qm= d

dtM j k x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

!AB( )!!AB !A !B

Cartesian Mjkmust be constant for this to work(Bye, Bye relativistic mechanics or QM!)

32Tuesday, September 30, 2014

Page 33: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery beginsObvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k x

k

B = ∂x j

∂qm AB = d

dtAB( )− A B⎡

⎣⎢

⎦⎥

Fm = f j

∂x j

∂qm= M j k x

k ∂x j

∂qm= d

dtM j k x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

!AB( )!!AB !A !B

Then convert to by Lemma 1 and Lemma 2 on 2nd term. ∂x j ∂x

j

Fm = d

dtM j k x

k ∂ x j

∂ qm

⎝⎜

⎠⎟ − M j k x

k ∂ x j

∂qm

⎝⎜

⎠⎟

Cartesian Mjkmust be constant for this to work(Bye, Bye relativistic mechanics or QM!)

33Tuesday, September 30, 2014

Page 34: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery beginsObvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k x

k

B = ∂x j

∂qm AB = d

dtAB( )− A B⎡

⎣⎢

⎦⎥

Fm = f j

∂x j

∂qm= M j k x

k ∂x j

∂qm= d

dtM j k x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

!AB( )!!AB !A !B

Then convert to by Lemma 1 and Lemma 2 on 2nd term. ∂x j ∂x

j

Mijv

i ∂v j

∂q= Mij

∂∂q

viv j

2⎡

⎣⎢⎢

⎦⎥⎥

Simplify using: Fm = d

dtM j k x

k ∂ x j

∂ qm

⎝⎜

⎠⎟ − M j k x

k ∂ x j

∂qm

⎝⎜

⎠⎟

Fm = ddt

∂ qm

M j k xk x j

2

⎝⎜⎜

⎠⎟⎟− ∂

∂qm

M j k xk x j

2

⎝⎜⎜

⎠⎟⎟

Cartesian Mjkmust be constant for this to work(Bye, Bye relativistic mechanics or QM!)

34Tuesday, September 30, 2014

Page 35: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

The result is Lagrange’s GCC force equation in terms of kinetic energy

Lagrange’s clever end game: First set and with calc. formula:

Now Lagrange GCC trickery beginsObvious stuff...(sort of, if you’ve looked at it for a century!)

A = M j k x

k

B = ∂x j

∂qm AB = d

dtAB( )− A B⎡

⎣⎢

⎦⎥

Fm = f j

∂x j

∂qm= M j k x

k ∂x j

∂qm= d

dtM j k x

k ∂x j

∂qm

⎝⎜

⎠⎟ − M j k x

k ddt

∂x j

∂qm

⎝⎜

⎠⎟

!AB( )!!AB !A !B

Then convert to by Lemma 1 and Lemma 2 on 2nd term. ∂x j ∂x

j

Mijv

i ∂v j

∂q= Mij

∂∂q

viv j

2⎡

⎣⎢⎢

⎦⎥⎥

Simplify using: Fm = d

dtM j k x

k ∂ x j

∂ qm

⎝⎜

⎠⎟ − M j k x

k ∂ x j

∂qm

⎝⎜

⎠⎟

Fm = ddt

∂ qm

M j k xk x j

2

⎝⎜⎜

⎠⎟⎟− ∂

∂qm

M j k xk x j

2

⎝⎜⎜

⎠⎟⎟

Fm = d

dt∂T∂ qm

− ∂T∂qm

T = 1

2M jk x

j xk

or: F = d

dt∂T∂v

− ∂T∂r

35Tuesday, September 30, 2014

Page 36: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

How to say Newton’s “F=ma” in Generalized Curvilinear Coords. Use Cartesian KE quadratic form KE=T=1/2v•M•v and F=M•a to get GCC forceLagrange GCC trickery gives Lagrange force equations Lagrange GCC trickery gives Lagrange potential equations (Lagrange 1 and 2)

36Tuesday, September 30, 2014

Page 37: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

If the force is conservative it’s a gradient In GCC:

But, Lagrange GCC trickery is not yet done...(Still another trick-up-the-sleeve!)

F = −∇U Fm = − ∂U

∂qm

Fm = − ∂U

∂qm= d

dt∂T

∂ qm− ∂T

∂qm

37Tuesday, September 30, 2014

Page 38: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

If the force is conservative it’s a gradient In GCC:

But, Lagrange GCC trickery is not yet done...(Still another trick-up-the-sleeve!)

F = −∇U Fm = − ∂U

∂qm

Becomes Lagrange’s GCC potential equation with a new definition for the Lagrangian: L=T-U.

Fm = − ∂U

∂qm= d

dt∂T

∂ qm− ∂T

∂qm

0 = d

dt∂L∂ qm

− ∂L∂qm L( qm ,qm ) = T ( qm ,qm ) −U (qm )

This trick requires:

∂U∂ qm

≡ 0U(r) has

NO explicit velocity

dependence!

38Tuesday, September 30, 2014

Page 39: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

If the force is conservative it’s a gradient In GCC:

But, Lagrange GCC trickery is not yet done...(Still another trick-up-the-sleeve!)

F = −∇U Fm = − ∂U

∂qm

Becomes Lagrange’s GCC potential equation with a new definition for the Lagrangian: L=T-U.

Fm = − ∂U

∂qm= d

dt∂T

∂ qm− ∂T

∂qm

0 = d

dt∂L∂ qm

− ∂L∂qm L( qm ,qm ) = T ( qm ,qm ) −U (qm )

ddt

∂L

∂ qm= ∂L

∂qm

dpmdt

≡ pm = ∂L∂qm

pm = ∂L

∂ qm

Lagrange’s 1st GCC equation(Defining GCC momentum)

Lagrange’s 2nd GCC equation(Change of GCC momentum)

This trick requires:

∂U∂ qm

≡ 0U(r) has

NO explicit velocity

dependence!

Recall : p =∂v

∂L

39Tuesday, September 30, 2014

Page 40: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

GCC Cells, base vectors, and metric tensors

Polar coordinate examples: Covariant Em vs. Contravariant Em Covariant gmn vs. Invariant δmn vs. Contravariant gmn

40Tuesday, September 30, 2014

Page 41: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

J =

∂x1

∂q1∂x1

∂q2

∂x2

∂q1∂x2

∂q2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

∂x∂r

= cosφ ∂x∂φ

= −r sinφ

∂y∂r

= sinφ ∂y∂φ

= r cosφ

⎜⎜⎜⎜

⎟⎟⎟⎟

↑ E1 ↑ E2 ↑ Er ↑ Eφ

K = J −1 =

∂r∂x

= cosφ ∂r∂y

= sinφ

∂φ∂x

= − sinφr

∂φ∂y

= cosφr

⎜⎜⎜⎜

⎟⎟⎟⎟

← Er = E1

← Eφ = E2

A dual set of quasi-unit vectors show up in Jacobian J and Kajobian K. J-Columns are covariant vectors{ } K-Rows are contravariant vectors { } E1=Er E2=Eφ E1= Er E2= Eφ

E1=Er

E2=Eφ

E1=Er

E2=Eφ

Er

q1=100

q1=101

q2=200

q2=201

dr=E1dq1+E2dq2

E1

E2 dr

(a) Polar coordinate bases (b) Covariant bases {E1E2}

(c) Contravariant bases {E1E2}F=F1E1+F2E2FE2

q1=100

q2=200

E1

dq1=1.0dq2=1.0

(Normal)

(Tangent)

Unit 1Fig. 12.10

Derived from polar definition: x=r cos φ and y=r sin φInverse polar definition: r2=x2+y2 and φ =atan2(y,x)

41Tuesday, September 30, 2014

Page 42: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

J =

∂x1

∂q1∂x1

∂q2

∂x2

∂q1∂x2

∂q2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

∂x∂r

= cosφ ∂x∂φ

= −r sinφ

∂y∂r

= sinφ ∂y∂φ

= r cosφ

⎜⎜⎜⎜

⎟⎟⎟⎟

↑ E1 ↑ E2 ↑ Er ↑ Eφ

K = J −1 =

∂r∂x

= cosφ ∂r∂y

= sinφ

∂φ∂x

= − sinφr

∂φ∂y

= cosφr

⎜⎜⎜⎜

⎟⎟⎟⎟

← Er = E1

← Eφ = E2

A dual set of quasi-unit vectors show up in Jacobian J and Kajobian K. J-Columns are covariant vectors{ } K-Rows are contravariant vectors { } E1=Er E2=Eφ E1= Er E2= Eφ

E1=Er

E2=Eφ

E1=Er

E2=Eφ

Er

q1=100

q1=101

q2=200

q2=201

dr=E1dq1+E2dq2

E1

E2 dr

(a) Polar coordinate bases (b) Covariant bases {E1E2}

(c) Contravariant bases {E1E2}F=F1E1+F2E2FE2

q1=100

q2=200

E1

dq1=1.0dq2=1.0

(Normal)

(Tangent)

Unit 1Fig. 12.10

Derived from polar definition: x=r cos φ and y=r sin φInverse polar definition: r2=x2+y2 and φ =atan2(y,x)

42Tuesday, September 30, 2014

Page 43: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

∂r∂q1

∂r∂q2

∧geometric unit

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

43Tuesday, September 30, 2014

Page 44: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ...since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

44Tuesday, September 30, 2014

Page 45: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ...since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

Em are convenient bases for extensive quantities like distance and velocity.V =V 1E1 +V

2E2 =V1 ∂r∂q1

+V 2 ∂r∂q2

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

45Tuesday, September 30, 2014

Page 46: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

Contravariant {E1E2}match reciprocal cells

F=F1E1+F2E2FE2

q2=200

E1

(Normal)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ...since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

E1 is normal to q1=const. sincegradient of q1is vector sum of all its partial derivatives

= ∂q1

∂r= ∇q1

∂q2

∂r= ∇q2 =

∇q1 =

∂q1

∂x∂q1

∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

Em are convenient bases for extensive quantities like distance and velocity.V =V 1E1 +V

2E2 =V1 ∂r∂q1

+V 2 ∂r∂q2

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

46Tuesday, September 30, 2014

Page 47: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

Contravariant {E1E2}match reciprocal cells

F=F1E1+F2E2FE2

q2=200

E1

(Normal)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ...since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

E1 is normal to q1=const. sincegradient of q1is vector sum of all its partial derivatives

= ∂q1

∂r= ∇q1

∂q2

∂r= ∇q2 =

∇q1 =

∂q1

∂x∂q1

∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

F = F1E1 + F2E

2 = F1∂q1

∂r+ F2

∂q2

∂r= F1∇q

1 + F2∇q2

Em are convenient bases for intensive quantities like force and momentum.

Em are convenient bases for extensive quantities like distance and velocity.V =V 1E1 +V

2E2 =V1 ∂r∂q1

+V 2 ∂r∂q2

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

Em=∂qm

∂r= ∇qm

47Tuesday, September 30, 2014

Page 48: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

q1=100

q1=101

q2=200

q2=201

Δr=E1Δq1+E2Δq2

E1=

=E2 Δr

Covariant bases {E1E2} match cell walls

Δq1=1.0Δq2=1.0

(Tangent)

Contravariant {E1E2}match reciprocal cells

F=F1E1+F2E2FE2

q2=200

E1

(Normal)

∂r∂q1

∂r∂q2

E1 follows tangent to q2=const. ...since only q1 varies in while q2, q3,... remain constant

∂r∂q1

∧geometric unit

E1 is normal to q1=const. sincegradient of q1is vector sum of all its partial derivatives

= ∂q1

∂r= ∇q1

∂q2

∂r= ∇q2 =

∇q1 =

∂q1

∂x∂q1

∂y

⎜⎜⎜⎜

⎟⎟⎟⎟

F = F1E1 + F2E

2 = F1∂q1

∂r+ F2

∂q2

∂r= F1∇q

1 + F2∇q2

Em are convenient bases for intensive quantities like force and momentum.

Em are convenient bases for extensive quantities like distance and velocity.V =V 1E1 +V

2E2 =V1 ∂r∂q1

+V 2 ∂r∂q2

Comparison: Covariant vs. Contravariant

dr = ∂r∂q1

dq1+ ∂r∂q2

dq2=E1dq1+E2dq

2is based on chain rule:

Em=∂r∂qm

En=∂qn

∂r= ∇qn

Co-Contra dot products Em• En are orthonormal:

EmiE

n= ∂r∂qm

i∂qn

∂r=δm

n

48Tuesday, September 30, 2014

Page 49: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

GCC Cells, base vectors, and metric tensors

Polar coordinate examples: Covariant Em vs. Contravariant Em Covariant gmn vs. Invariant δmn vs. Contravariant gmn

49Tuesday, September 30, 2014

Page 50: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Covariant gmn vs. Invariant δmn vs. Contravariant gmn

EmiE

n= ∂r∂qm

i∂qn

∂r=δm

n

EmiEn=

∂r∂qm

i∂r∂qn

≡gmn EmiEn=∂q

m

∂ri∂qn

∂r≡gmn

Covariant metric tensor

gmn

Invariant Kroneker unit tensor

δmn ≡

1 if m = n0 if m ≠ n

⎧⎨⎪

⎩⎪

Contravariantmetric tensor

gmn

50Tuesday, September 30, 2014

Page 51: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Covariant gmn vs. Invariant δmn vs. Contravariant gmn

EmiE

n= ∂r∂qm

i∂qn

∂r=δm

n

EmiEn=

∂r∂qm

i∂r∂qn

≡gmn EmiEn=∂q

m

∂ri∂qn

∂r≡gmn

Covariant metric tensor

gmn

Invariant Kroneker unit tensor

δmn ≡

1 if m = n0 if m ≠ n

⎧⎨⎪

⎩⎪

Contravariantmetric tensor

gmn

Polar coordinate examples (again):

J =

∂x1

∂q1∂x1

∂q2

∂x2

∂q1∂x2

∂q2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

∂x∂r

= cosφ ∂x∂φ

= −r sinφ

∂y∂r

= sinφ ∂y∂φ

= r cosφ

⎜⎜⎜⎜

⎟⎟⎟⎟

↑ E1 ↑ E2 ↑ Er ↑ Eφ

K = J −1 =

∂r∂x

= cosφ ∂r∂y

= sinφ

∂φ∂x

= − sinφr

∂φ∂y

= cosφr

⎜⎜⎜⎜

⎟⎟⎟⎟

← Er = E1

← Eφ = E2

51Tuesday, September 30, 2014

Page 52: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Covariant gmn vs. Invariant δmn vs. Contravariant gmn

EmiE

n= ∂r∂qm

i∂qn

∂r=δm

n

EmiEn=

∂r∂qm

i∂r∂qn

≡gmn EmiEn=∂q

m

∂ri∂qn

∂r≡gmn

Covariant metric tensor

gmn

Invariant Kroneker unit tensor

δmn ≡

1 if m = n0 if m ≠ n

⎧⎨⎪

⎩⎪

Contravariantmetric tensor

gmn

Polar coordinate examples (again):

J =

∂x1

∂q1∂x1

∂q2

∂x2

∂q1∂x2

∂q2

⎜⎜⎜⎜⎜

⎟⎟⎟⎟⎟

=

∂x∂r

= cosφ ∂x∂φ

= −r sinφ

∂y∂r

= sinφ ∂y∂φ

= r cosφ

⎜⎜⎜⎜

⎟⎟⎟⎟

↑ E1 ↑ E2 ↑ Er ↑ Eφ

K = J −1 =

∂r∂x

= cosφ ∂r∂y

= sinφ

∂φ∂x

= − sinφr

∂φ∂y

= cosφr

⎜⎜⎜⎜

⎟⎟⎟⎟

← Er = E1

← Eφ = E2

Covariant gmn Invariant Contravariant gmn

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟

= 1 00 r2

⎝⎜⎞

⎠⎟

grr grφ

gφr gφφ⎛

⎝⎜⎜

⎠⎟⎟= Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜

⎠⎟

= 1 00 1/ r2

⎝⎜⎞

⎠⎟

δ rr δ φ

r

δφr δφ

φ

⎝⎜⎜

⎠⎟⎟=

EriEr EriE

φ

EφiEr EφiE

φ

⎝⎜⎜

⎠⎟⎟

= 1 00 1

⎛⎝⎜

⎞⎠⎟

!mn

52Tuesday, September 30, 2014

Page 53: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definitionGCC “canonical” momentum pm definitionGCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

qm

53Tuesday, September 30, 2014

Page 54: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity Lagrangian L=KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

54Tuesday, September 30, 2014

Page 55: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

55Tuesday, September 30, 2014

Page 56: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

56Tuesday, September 30, 2014

Page 57: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definitionGCC “canonical” momentum pm definitionGCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

qm

57Tuesday, September 30, 2014

Page 58: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

(From preceding page)

58Tuesday, September 30, 2014

Page 59: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ r

= M grr r = M rNothing too surprising;radial momentum pr has theusual linear M·v form

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

59Tuesday, September 30, 2014

Page 60: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ r

= M grr r = M r pφ =

∂L∂ φ

= Mgφφ φ = Mr2 φNothing too surprising;radial momentum pr has theusual linear M·v form

Wow! gφφ gives moment-of-inertiafactor Mr2 automatically for the angular momentum pφ=Mr2ω.

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

60Tuesday, September 30, 2014

Page 61: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definitionGCC “canonical” momentum pm definitionGCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

qm

61Tuesday, September 30, 2014

Page 62: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ r

= M grr r = M r pφ =

∂L∂ φ

= Mgφφ φ = Mr2 φNothing too surprising;radial momentum pr has theusual linear M·v form

Wow! gφφ gives moment-of-inertiafactor Mr2 automatically for the angular momentum pφ=Mr2ω.

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

(From preceding page)

62Tuesday, September 30, 2014

Page 63: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ r

= M grr r = M r pφ =

∂L∂ φ

= Mgφφ φ = Mr2 φNothing too surprising;radial momentum pr has theusual linear M·v form

Wow! gφφ gives moment-of-inertiafactor Mr2 automatically for the angular momentum pφ=Mr2ω.

pr =

∂L∂r

= M2

∂gφφ∂rφ 2 − ∂U

∂r= M r φ 2− ∂U

∂r pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugalforce Mrω2

2nd L-equation involves total time derivative pm for each momentum pm: i

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

63Tuesday, September 30, 2014

Page 64: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ r

= M grr r = M r pφ =

∂L∂ φ

= Mgφφ φ = Mr2 φNothing too surprising;radial momentum pr has theusual linear M·v form

Wow! gφφ gives moment-of-inertiafactor Mr2 automatically for the angular momentum pφ=Mr2ω.

pr =

∂L∂r

= M2

∂gφφ∂rφ 2 − ∂U

∂r= M r φ 2− ∂U

∂r pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugalforce Mrω2

2nd L-equation involves total time derivative pm for each momentum pm: i

pm ≡ dpm

dt= ddtM (gmn q

n ) = M ( gmn qn+ gmnq

n )Find directly from 1st L-equation: pm i

pmEquate it to in 2nd L-equation:

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

64Tuesday, September 30, 2014

Page 65: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity GCC Lagrangian definitionGCC “canonical” momentum pm definitionGCC “canonical” force Fm definition

Coriolis “fictitious” forces (… and weather effects)

qm

65Tuesday, September 30, 2014

Page 66: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ r

= M grr r = M r pφ =

∂L∂ φ

= Mgφφ φ = Mr2 φNothing too surprising;radial momentum pr has theusual linear M·v form

Wow! gφφ gives moment-of-inertiafactor Mr2 automatically for the angular momentum pφ=Mr2ω.

pr =

∂L∂r

= M2

∂gφφ∂rφ 2 − ∂U

∂r= M r φ 2− ∂U

∂r pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugalforce Mrω2

2nd L-equation involves total time derivative pm for each momentum pm: i

pm ≡ dpm

dt= ddtM (gmn q

n ) = M ( gmn qn+ gmnq

n )Find directly from 1st L-equation: pm i

pmEquate it to in 2nd L-equation:

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

(From preceding page)

66Tuesday, September 30, 2014

Page 67: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ r

= M grr r = M r pφ =

∂L∂ φ

= Mgφφ φ = Mr2 φNothing too surprising;radial momentum pr has theusual linear M·v form

Wow! gφφ gives moment-of-inertiafactor Mr2 automatically for the angular momentum pφ=Mr2ω.

pr =

∂L∂r

= M2

∂gφφ∂rφ 2 − ∂U

∂r= M r φ 2− ∂U

∂r pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugalforce Mrω2

pr ≡dprdt

= M r

= M r φ 2− ∂U∂r

Centrifugal (center-fleeing) forceequals total

Centripetal (center-pulling) force

2nd L-equation involves total time derivative pm for each momentum pm: i

pm ≡ dpm

dt= ddtM (gmn q

n ) = M ( gmn qn+ gmnq

n )Find directly from 1st L-equation: pm i

pmEquate it to in 2nd L-equation:

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

67Tuesday, September 30, 2014

Page 68: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lagrange prefers Covariant gmn with Contravariant velocity

Use polar coordinate Covariant gmn metric (1-page back)

grr grφgφr gφφ

⎝⎜⎜

⎠⎟⎟=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎝⎜⎜

⎠⎟⎟= 1 0

0 r2⎛

⎝⎜⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

L( r,φ) =2

1M (grr r2 + gφφ φ

2)−U(r,φ) =21M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow. 1st L-equation is momentum pm definition for each coordinate qm:

pr =

∂L∂ r

= M grr r = M r pφ =

∂L∂ φ

= Mgφφ φ = Mr2 φNothing too surprising;radial momentum pr has theusual linear M·v form

Wow! gφφ gives moment-of-inertiafactor Mr2 automatically for the angular momentum pφ=Mr2ω.

pr =

∂L∂r

= M2

∂gφφ∂rφ 2 − ∂U

∂r= M r φ 2− ∂U

∂r pφ =

∂L∂φ

= 0 − ∂U∂φ

Centrifugalforce Mrω2

pr ≡dprdt

= M r

= M r φ 2− ∂U∂r

pφ ≡dpφdt

= 2Mrr φ +Mr2φ

= 0 − ∂U∂φ

Centrifugal (center-fleeing) forceequals total

Centripetal (center-pulling) force Angular momentum pφ is conserved if potential U has no explicit φ-dependence

2nd L-equation involves total time derivative pm for each momentum pm: i

pm ≡ dpm

dt= ddtM (gmn q

n ) = M ( gmn qn+ gmnq

n )Find directly from 1st L-equation: pm i

pmEquate it to in 2nd L-equation:

Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Torque relates to two distinct parts:Coriolis and angular acceleration

Lagrangian KE-U is supposed to be explicit function of velocity.

L(v) =21Mviv−U = 2

1Mri r−U = 21M (Em q

m)i(En qn)−U = 2

1M (gmn qm qn)−U = L( q)

68Tuesday, September 30, 2014

Page 69: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

(makes φ positive)..

pr ≡dprdt

= M r

= M r φ 2− ∂U∂r

pφ ≡dpφdt

= 2Mrr φ +Mr2φ

= 0 − ∂U∂φ

Centrifugal (center-fleeing) forceequals total

Centripetal (center-pulling) force Angular momentum pφ is conserved if potential U has no explicit φ-dependence

Torque relates to two distinct parts:Coriolis and angular acceleration

Rewriting GCC Lagrange equations :

Conventional forms radial force: angular force or torque:

M r = M r φ 2− ∂U

∂r Mr2φ = −2Mrr φ − ∂U

∂φ

L

Northern hemisphere rotationφ >0

Inward flow to pressure Lowr<0

Coriolis acceleration with φ >0 and r<0φ = -2 r φ /r

L

Field-free (U=0) radial acceleration: angular acceleration: r = r φ

2

φ = −2 r

φr

Effect on Northern

Hemispherelocal weather

Cyclonic flowaround lows

...makes wind turn to the right

(with φ = 0).

69Tuesday, September 30, 2014

Page 70: Lecture 12 Thur. 10.2.2014 Equations of Lagrange and ... · 10/2/2014  · Lecture 12 Thur. 10.2.2014 Equations of Lagrange and Hamilton mechanics in Generalized Curvilinear Coordinates

Lecture 12 ends here Thur. 10.2.2014

70Tuesday, September 30, 2014