84
Lecture 3 Harmonic Analysis Davar Khoshnevisan Department of Mathematics University of Utah http://www.math.utah.edu/˜davar Summer School on L ´ evy Processes: Theory and Applications August 9–12, 2007 Sandbjerg Manor, Denmark D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 1 / 15

Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Lecture 3Harmonic Analysis

Davar Khoshnevisan

Department of MathematicsUniversity of Utah

http://www.math.utah.edu/˜davar

Summer School on Levy Processes: Theory and ApplicationsAugust 9–12, 2007

Sandbjerg Manor, Denmark

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 1 / 15

Page 2: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I If f ∈ L1(Rd), then its Fourier transform is

(F f )(ξ) := f (ξ) :=Z

Rdeiξ·x f (x)dx ∀ξ ∈ Rd .

I The inversion theorem: If f , f ∈ L1(Rd), then a.e.,

f (x) =1

(2π)d

ZRd

e−ix ·ξ f (ξ)dξ.

In particular, f has a uniformly continuous “version.”[A(Rd) := L1(Rd)∩F−1(L1(Rd)) := the Wiener algebra]

I µ(ξ) :=R

Rd exp(ix · ξ)µ(dx) for all finite Borel measures µ on Rd .I Parseval’s identity:

Rf (x)µ(dx) =

Rf (ξ)µ(ξ)dξ.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 2 / 15

Page 3: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I If f ∈ L1(Rd), then its Fourier transform is

(F f )(ξ) := f (ξ) :=Z

Rdeiξ·x f (x)dx ∀ξ ∈ Rd .

I The inversion theorem: If f , f ∈ L1(Rd), then a.e.,

f (x) =1

(2π)d

ZRd

e−ix ·ξ f (ξ)dξ.

In particular, f has a uniformly continuous “version.”[A(Rd) := L1(Rd)∩F−1(L1(Rd)) := the Wiener algebra]

I µ(ξ) :=R

Rd exp(ix · ξ)µ(dx) for all finite Borel measures µ on Rd .I Parseval’s identity:

Rf (x)µ(dx) =

Rf (ξ)µ(ξ)dξ.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 2 / 15

Page 4: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I If f ∈ L1(Rd), then its Fourier transform is

(F f )(ξ) := f (ξ) :=Z

Rdeiξ·x f (x)dx ∀ξ ∈ Rd .

I The inversion theorem: If f , f ∈ L1(Rd), then a.e.,

f (x) =1

(2π)d

ZRd

e−ix ·ξ f (ξ)dξ.

In particular, f has a uniformly continuous “version.”[A(Rd) := L1(Rd)∩F−1(L1(Rd)) := the Wiener algebra]

I µ(ξ) :=R

Rd exp(ix · ξ)µ(dx) for all finite Borel measures µ on Rd .

I Parseval’s identity:R

f (x)µ(dx) =R

f (ξ)µ(ξ)dξ.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 2 / 15

Page 5: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I If f ∈ L1(Rd), then its Fourier transform is

(F f )(ξ) := f (ξ) :=Z

Rdeiξ·x f (x)dx ∀ξ ∈ Rd .

I The inversion theorem: If f , f ∈ L1(Rd), then a.e.,

f (x) =1

(2π)d

ZRd

e−ix ·ξ f (ξ)dξ.

In particular, f has a uniformly continuous “version.”[A(Rd) := L1(Rd)∩F−1(L1(Rd)) := the Wiener algebra]

I µ(ξ) :=R

Rd exp(ix · ξ)µ(dx) for all finite Borel measures µ on Rd .I Parseval’s identity:

Rf (x)µ(dx) =

Rf (ξ)µ(ξ)dξ.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 2 / 15

Page 6: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I Define for all r > 0 and x ∈ Rd ,

φr (x) :=d

∏j=1

1− cos(2rxj)

2πrx2j

.

I φr ∈ L1(Rd)+, and

φr (ξ) =d

∏j=1

(1−

|ξj |2r

)+

[Polya’s kernel]

I ξ ∈ B(0 , r) ⇒ |ξj | ≤ r ⇒ φr (ξ) ≥ 2−d .

I ∴ 1B(0,r)(ξ) ≤ 2d φr (ξ).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 3 / 15

Page 7: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I Define for all r > 0 and x ∈ Rd ,

φr (x) :=d

∏j=1

1− cos(2rxj)

2πrx2j

.

I φr ∈ L1(Rd)+, and

φr (ξ) =d

∏j=1

(1−

|ξj |2r

)+

[Polya’s kernel]

I ξ ∈ B(0 , r) ⇒ |ξj | ≤ r ⇒ φr (ξ) ≥ 2−d .

I ∴ 1B(0,r)(ξ) ≤ 2d φr (ξ).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 3 / 15

Page 8: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I Define for all r > 0 and x ∈ Rd ,

φr (x) :=d

∏j=1

1− cos(2rxj)

2πrx2j

.

I φr ∈ L1(Rd)+, and

φr (ξ) =d

∏j=1

(1−

|ξj |2r

)+

[Polya’s kernel]

I ξ ∈ B(0 , r) ⇒ |ξj | ≤ r ⇒ φr (ξ) ≥ 2−d .

I ∴ 1B(0,r)(ξ) ≤ 2d φr (ξ).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 3 / 15

Page 9: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I Define for all r > 0 and x ∈ Rd ,

φr (x) :=d

∏j=1

1− cos(2rxj)

2πrx2j

.

I φr ∈ L1(Rd)+, and

φr (ξ) =d

∏j=1

(1−

|ξj |2r

)+

[Polya’s kernel]

I ξ ∈ B(0 , r) ⇒ |ξj | ≤ r ⇒ φr (ξ) ≥ 2−d .

I ∴ 1B(0,r)(ξ) ≤ 2d φr (ξ).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 3 / 15

Page 10: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I Define for all r > 0 and x ∈ Rd ,

φr (x) :=d

∏j=1

1− cos(2rxj)

2πrx2j

.

I φr ∈ L1(Rd)+, and

φr (ξ) =d

∏j=1

(1−

|ξj |2r

)+

[Polya’s kernel]

I ξ ∈ B(0 , r) ⇒ |ξj | ≤ r ⇒ φr (ξ) ≥ 2−d .

I ∴ 1B(0,r)(ξ) ≤ 2d φr (ξ).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 3 / 15

Page 11: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I φr (x) := ∏dj=1

1−cos(2rxj )

2πrx2j

.

I 1B(0,r)(ξ) ≤ 2d φr (ξ).

I Therefore,

P{Z ∈ B(0 , r)} ≤ 2d E(φr (Z )

)

= 2dZ

Rdφr (z)µ(dz)

= 2dZ

Rdφr (x)µ(x)dx [Parseval]

= 2dZ

Rdφr (x)E

[eix ·Z

]dx .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 4 / 15

Page 12: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I φr (x) := ∏dj=1

1−cos(2rxj )

2πrx2j

.

I 1B(0,r)(ξ) ≤ 2d φr (ξ).

I Therefore,

P{Z ∈ B(0 , r)} ≤ 2d E(φr (Z )

)

= 2dZ

Rdφr (z)µ(dz)

= 2dZ

Rdφr (x)µ(x)dx [Parseval]

= 2dZ

Rdφr (x)E

[eix ·Z

]dx .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 4 / 15

Page 13: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I φr (x) := ∏dj=1

1−cos(2rxj )

2πrx2j

.

I 1B(0,r)(ξ) ≤ 2d φr (ξ).

I Therefore,

P{Z ∈ B(0 , r)} ≤ 2d E(φr (Z )

)

= 2dZ

Rdφr (z)µ(dz)

= 2dZ

Rdφr (x)µ(x)dx [Parseval]

= 2dZ

Rdφr (x)E

[eix ·Z

]dx .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 4 / 15

Page 14: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I φr (x) := ∏dj=1

1−cos(2rxj )

2πrx2j

.

I 1B(0,r)(ξ) ≤ 2d φr (ξ).

I Therefore,

P{Z ∈ B(0 , r)} ≤ 2d E(φr (Z )

)

= 2dZ

Rdφr (z)µ(dz)

= 2dZ

Rdφr (x)µ(x)dx [Parseval]

= 2dZ

Rdφr (x)E

[eix ·Z

]dx .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 4 / 15

Page 15: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I φr (x) := ∏dj=1

1−cos(2rxj )

2πrx2j

.

I 1B(0,r)(ξ) ≤ 2d φr (ξ).

I Therefore,

P{Z ∈ B(0 , r)} ≤ 2d E(φr (Z )

)= 2d

ZRd

φr (z)µ(dz)

= 2dZ

Rdφr (x)µ(x)dx [Parseval]

= 2dZ

Rdφr (x)E

[eix ·Z

]dx .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 4 / 15

Page 16: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I φr (x) := ∏dj=1

1−cos(2rxj )

2πrx2j

.

I 1B(0,r)(ξ) ≤ 2d φr (ξ).

I Therefore,

P{Z ∈ B(0 , r)} ≤ 2d E(φr (Z )

)= 2d

ZRd

φr (z)µ(dz)

= 2dZ

Rdφr (x)µ(x)dx [Parseval]

= 2dZ

Rdφr (x)E

[eix ·Z

]dx .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 4 / 15

Page 17: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I φr (x) := ∏dj=1

1−cos(2rxj )

2πrx2j

.

I 1B(0,r)(ξ) ≤ 2d φr (ξ).

I Therefore,

P{Z ∈ B(0 , r)} ≤ 2d E(φr (Z )

)= 2d

ZRd

φr (z)µ(dz)

= 2dZ

Rdφr (x)µ(x)dx [Parseval]

= 2dZ

Rdφr (x)E

[eix ·Z

]dx .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 4 / 15

Page 18: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I φr (x) := ∏dj=1

1−cos(2rxj )

2πrx2j

.

I 1B(0,r)(ξ) ≤ 2d φr (ξ).

I Therefore,

P{Z ∈ B(0 , r)} ≤ 2d E(φr (Z )

)= 2d

ZRd

φr (z)µ(dz)

= 2dZ

Rdφr (x)µ(x)dx [Parseval]

= 2dZ

Rdφr (x)E

[eix ·Z

]dx .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 4 / 15

Page 19: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I P{Z ∈ B(0 , ε)} ≤ 2d RRd φε(ξ)E[eiξ·Z ]dξ.

I Therefore,

U(B(0 , ε)) ≤ 2dZ ∞

0

ZRd

φε(ξ)e−tΨ(ξ) dξe−t dt

= 2dZ

Rdφε(ξ)

Z ∞

0e−t{1+Ψ(ξ)} dt dξ

= 2dZ

Rdφε(ξ)Re

(1

1 + Ψ(ξ)

)︸ ︷︷ ︸

κ(ξ)

dξ.

I (1− cosz)/z2 ≤ c1/(1 + z2). Therefore,

U(B(0 , ε)) ≤ c2

ZRd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ := c2W (ε).

[The Cauchy transform; ∃ a converse]

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 5 / 15

Page 20: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I P{Z ∈ B(0 , ε)} ≤ 2d RRd φε(ξ)E[eiξ·Z ]dξ.

I Therefore,

U(B(0 , ε)) ≤ 2dZ ∞

0

ZRd

φε(ξ)e−tΨ(ξ) dξe−t dt

= 2dZ

Rdφε(ξ)

Z ∞

0e−t{1+Ψ(ξ)} dt dξ

= 2dZ

Rdφε(ξ)Re

(1

1 + Ψ(ξ)

)︸ ︷︷ ︸

κ(ξ)

dξ.

I (1− cosz)/z2 ≤ c1/(1 + z2). Therefore,

U(B(0 , ε)) ≤ c2

ZRd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ := c2W (ε).

[The Cauchy transform; ∃ a converse]

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 5 / 15

Page 21: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I P{Z ∈ B(0 , ε)} ≤ 2d RRd φε(ξ)E[eiξ·Z ]dξ.

I Therefore,

U(B(0 , ε)) ≤ 2dZ ∞

0

ZRd

φε(ξ)e−tΨ(ξ) dξe−t dt

= 2dZ

Rdφε(ξ)

Z ∞

0e−t{1+Ψ(ξ)} dt dξ

= 2dZ

Rdφε(ξ)Re

(1

1 + Ψ(ξ)

)︸ ︷︷ ︸

κ(ξ)

dξ.

I (1− cosz)/z2 ≤ c1/(1 + z2). Therefore,

U(B(0 , ε)) ≤ c2

ZRd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ := c2W (ε).

[The Cauchy transform; ∃ a converse]

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 5 / 15

Page 22: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I P{Z ∈ B(0 , ε)} ≤ 2d RRd φε(ξ)E[eiξ·Z ]dξ.

I Therefore,

U(B(0 , ε)) ≤ 2dZ ∞

0

ZRd

φε(ξ)e−tΨ(ξ) dξe−t dt

= 2dZ

Rdφε(ξ)

Z ∞

0e−t{1+Ψ(ξ)} dt dξ

= 2dZ

Rdφε(ξ)Re

(1

1 + Ψ(ξ)

)︸ ︷︷ ︸

κ(ξ)

dξ.

I (1− cosz)/z2 ≤ c1/(1 + z2). Therefore,

U(B(0 , ε)) ≤ c2

ZRd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ := c2W (ε).

[The Cauchy transform; ∃ a converse]

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 5 / 15

Page 23: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I P{Z ∈ B(0 , ε)} ≤ 2d RRd φε(ξ)E[eiξ·Z ]dξ.

I Therefore,

U(B(0 , ε)) ≤ 2dZ ∞

0

ZRd

φε(ξ)e−tΨ(ξ) dξe−t dt

= 2dZ

Rdφε(ξ)

Z ∞

0e−t{1+Ψ(ξ)} dt dξ

= 2dZ

Rdφε(ξ)Re

(1

1 + Ψ(ξ)

)︸ ︷︷ ︸

κ(ξ)

dξ.

I (1− cosz)/z2 ≤ c1/(1 + z2). Therefore,

U(B(0 , ε)) ≤ c2

ZRd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ := c2W (ε).

[The Cauchy transform; ∃ a converse]

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 5 / 15

Page 24: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I P{Z ∈ B(0 , ε)} ≤ 2d RRd φε(ξ)E[eiξ·Z ]dξ.

I Therefore,

U(B(0 , ε)) ≤ 2dZ ∞

0

ZRd

φε(ξ)e−tΨ(ξ) dξe−t dt

= 2dZ

Rdφε(ξ)

Z ∞

0e−t{1+Ψ(ξ)} dt dξ

= 2dZ

Rdφε(ξ)Re

(1

1 + Ψ(ξ)

)︸ ︷︷ ︸

κ(ξ)

dξ.

I (1− cosz)/z2 ≤ c1/(1 + z2). Therefore,

U(B(0 , ε)) ≤ c2

ZRd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ

:= c2W (ε).

[The Cauchy transform; ∃ a converse]

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 5 / 15

Page 25: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I P{Z ∈ B(0 , ε)} ≤ 2d RRd φε(ξ)E[eiξ·Z ]dξ.

I Therefore,

U(B(0 , ε)) ≤ 2dZ ∞

0

ZRd

φε(ξ)e−tΨ(ξ) dξe−t dt

= 2dZ

Rdφε(ξ)

Z ∞

0e−t{1+Ψ(ξ)} dt dξ

= 2dZ

Rdφε(ξ)Re

(1

1 + Ψ(ξ)

)︸ ︷︷ ︸

κ(ξ)

dξ.

I (1− cosz)/z2 ≤ c1/(1 + z2). Therefore,

U(B(0 , ε)) ≤ c2

ZRd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ

:= c2W (ε).

[The Cauchy transform; ∃ a converse]

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 5 / 15

Page 26: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd)

I P{Z ∈ B(0 , ε)} ≤ 2d RRd φε(ξ)E[eiξ·Z ]dξ.

I Therefore,

U(B(0 , ε)) ≤ 2dZ ∞

0

ZRd

φε(ξ)e−tΨ(ξ) dξe−t dt

= 2dZ

Rdφε(ξ)

Z ∞

0e−t{1+Ψ(ξ)} dt dξ

= 2dZ

Rdφε(ξ)Re

(1

1 + Ψ(ξ)

)︸ ︷︷ ︸

κ(ξ)

dξ.

I (1− cosz)/z2 ≤ c1/(1 + z2). Therefore,

U(B(0 , ε)) ≤ c2

ZRd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ := c2W (ε).

[The Cauchy transform; ∃ a converse]D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 5 / 15

Page 27: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I exp(−(k/ε)∑dj=1 |zj |) ≤ exp(−(k/ε)‖z‖)

≤ 1B(0,ε)(z) + e−k .

I [k := ε−δ ⇒]

1B(0,ε)(z) ≥ exp

(− 1

ε1−δ

d

∑j=1|zj |)− exp

(−ε−1+δ

).

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(s)|

)e−s ds− exp

(−ε−1+δ

).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 6 / 15

Page 28: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I exp(−(k/ε)∑dj=1 |zj |) ≤ exp(−(k/ε)‖z‖)

≤ 1B(0,ε)(z) + e−k .

I [k := ε−δ ⇒]

1B(0,ε)(z) ≥ exp

(− 1

ε1−δ

d

∑j=1|zj |)− exp

(−ε−1+δ

).

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(s)|

)e−s ds− exp

(−ε−1+δ

).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 6 / 15

Page 29: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I exp(−(k/ε)∑dj=1 |zj |) ≤ exp(−(k/ε)‖z‖)

≤ 1B(0,ε)(z) + e−k .

I [k := ε−δ ⇒]

1B(0,ε)(z) ≥ exp

(− 1

ε1−δ

d

∑j=1|zj |)− exp

(−ε−1+δ

).

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(s)|

)e−s ds− exp

(−ε−1+δ

).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 6 / 15

Page 30: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I exp(−(k/ε)∑dj=1 |zj |) ≤ exp(−(k/ε)‖z‖)

≤ 1B(0,ε)(z) + e−k .I [k := ε−δ ⇒]

1B(0,ε)(z) ≥ exp

(− 1

ε1−δ

d

∑j=1|zj |)− exp

(−ε−1+δ

).

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(s)|

)e−s ds− exp

(−ε−1+δ

).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 6 / 15

Page 31: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I exp(−(k/ε)∑dj=1 |zj |) ≤ exp(−(k/ε)‖z‖)

≤ 1B(0,ε)(z) + e−k .I [k := ε−δ ⇒]

1B(0,ε)(z) ≥ exp

(− 1

ε1−δ

d

∑j=1|zj |)− exp

(−ε−1+δ

).

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(s)|

)e−s ds− exp

(−ε−1+δ

).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 6 / 15

Page 32: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))

= π−d RRd e−tΨ(λξ)/∏

dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 33: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))

= π−d RRd e−tΨ(λξ)/∏

dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 34: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))

= π−d RRd e−tΨ(λξ)/∏

dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 35: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))

= π−d RRd e−tΨ(λξ)/∏

dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 36: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))

= π−d RRd e−tΨ(λξ)/∏

dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 37: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))= π−d R

Rd e−tΨ(λξ)/∏dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 38: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))= π−d R

Rd e−tΨ(λξ)/∏dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)

I ≥ π−dW (ε1−δ)− exp(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 39: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))= π−d R

Rd e−tΨ(λξ)/∏dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)

I ≥ π−dW (ε1−δ)− exp(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 40: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))= π−d R

Rd e−tΨ(λξ)/∏dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 41: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))= π−d R

Rd e−tΨ(λξ)/∏dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 42: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

The Fourier transform on L1(Rd )

I Let C1, . . . ,Cd denote d independent Cauchy random variables,independent of X , and C := (C1 , . . . ,Cd).

I Eexp(iξ ·C) = exp(−∑dj=1 |ξj |).

I Eexp(iλX (t) ·C) = Eexp(−λ∑dj=1 |Xj(t)|).

I Eexp(iλX (t) ·C) = Eexp(−tΨ(λC))= π−d R

Rd e−tΨ(λξ)/∏dj=1(1 + ξ2

j )dξ.

I U(B(0 , ε)) ≥ ER∞

0 exp(− 1

ε1−δ ∑dj=1 |Xj(t)|

)e−t dt − exp

(−ε−1+δ

)I ≥ π−dW (ε1−δ)− exp

(−ε−1+δ

).

CorollaryindU = limsupε→0

logW (ε)log ε indU = lim infε→0

logW (ε)log ε .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 7 / 15

Page 43: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Fourier-analytic dimension formulas

Theorem (Kh-Xiao, 2007)Almost surely,

dimH X ([0 ,1]) = lim infε→0

logW (ε)

log ε,

dimMX ([0 ,1]) = limsupε→0

logW (ε)

log ε,

where

W (ε) :=Z

Rd

κ(ξ/ε)

∏dj=1(1 + ξ2

j )dξ, κ(z) := Re

(1

1 + Ψ(z)

).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 8 / 15

Page 44: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 45: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].

I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 46: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).

I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 47: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.

I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 48: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 49: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 50: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 51: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 52: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 53: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

ExampleIf X := BM(Rd), then dimH X ([0 ,1]) = dimMX ([0 ,1]) = d ∧ 2 a.s.

I Ψ(ξ) = λ2‖ξ‖2. WLOG λ = 1 [usually 1/2].I Goal: W (ε) = ε(d∧2)+o(1).I κ(z) = Re(1 + ‖z‖2)−1 = (1 + ‖z‖2)−1.I As ε ↘ 0,

W (ε) =Z

Rd

κ(z/ε)

∏dj=1(1 + z2

j )dz

�Z|z|∞≤1

dz(1 + ‖z/ε‖2)

+Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

:= T1 + T2.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 9 / 15

Page 54: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I If |z|∞ > 1, then 1 + ‖z/ε‖2 � ‖z‖2/ε2. Therefore,

T2 =Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

� ε2Z|z|∞>1

dz‖z‖2 ∏

dj=1 z2

j

� ε2.

I Also,

T1 =Z|z|∞≤1

dz(1 + ‖z/ε‖2)

�Z‖z‖≤1

dz(1 + ‖z/ε‖2)

+ Θ(ε2)

�Z 1

0

rd−1 dr1 + (r/ε)2 + Θ(ε2).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 10 / 15

Page 55: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I If |z|∞ > 1, then 1 + ‖z/ε‖2 � ‖z‖2/ε2. Therefore,

T2 =Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

� ε2Z|z|∞>1

dz‖z‖2 ∏

dj=1 z2

j

� ε2.

I Also,

T1 =Z|z|∞≤1

dz(1 + ‖z/ε‖2)

�Z‖z‖≤1

dz(1 + ‖z/ε‖2)

+ Θ(ε2)

�Z 1

0

rd−1 dr1 + (r/ε)2 + Θ(ε2).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 10 / 15

Page 56: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I If |z|∞ > 1, then 1 + ‖z/ε‖2 � ‖z‖2/ε2. Therefore,

T2 =Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

� ε2Z|z|∞>1

dz‖z‖2 ∏

dj=1 z2

j

� ε2.

I Also,

T1 =Z|z|∞≤1

dz(1 + ‖z/ε‖2)

�Z‖z‖≤1

dz(1 + ‖z/ε‖2)

+ Θ(ε2)

�Z 1

0

rd−1 dr1 + (r/ε)2 + Θ(ε2).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 10 / 15

Page 57: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I If |z|∞ > 1, then 1 + ‖z/ε‖2 � ‖z‖2/ε2. Therefore,

T2 =Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

� ε2Z|z|∞>1

dz‖z‖2 ∏

dj=1 z2

j

� ε2.

I Also,

T1 =Z|z|∞≤1

dz(1 + ‖z/ε‖2)

�Z‖z‖≤1

dz(1 + ‖z/ε‖2)

+ Θ(ε2)

�Z 1

0

rd−1 dr1 + (r/ε)2 + Θ(ε2).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 10 / 15

Page 58: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I If |z|∞ > 1, then 1 + ‖z/ε‖2 � ‖z‖2/ε2. Therefore,

T2 =Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

� ε2Z|z|∞>1

dz‖z‖2 ∏

dj=1 z2

j

� ε2.

I Also,

T1 =Z|z|∞≤1

dz(1 + ‖z/ε‖2)

�Z‖z‖≤1

dz(1 + ‖z/ε‖2)

+ Θ(ε2)

�Z 1

0

rd−1 dr1 + (r/ε)2 + Θ(ε2).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 10 / 15

Page 59: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I If |z|∞ > 1, then 1 + ‖z/ε‖2 � ‖z‖2/ε2. Therefore,

T2 =Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

� ε2Z|z|∞>1

dz‖z‖2 ∏

dj=1 z2

j

� ε2.

I Also,

T1 =Z|z|∞≤1

dz(1 + ‖z/ε‖2)

�Z‖z‖≤1

dz(1 + ‖z/ε‖2)

+ Θ(ε2)

�Z 1

0

rd−1 dr1 + (r/ε)2 + Θ(ε2).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 10 / 15

Page 60: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I If |z|∞ > 1, then 1 + ‖z/ε‖2 � ‖z‖2/ε2. Therefore,

T2 =Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

� ε2Z|z|∞>1

dz‖z‖2 ∏

dj=1 z2

j

� ε2.

I Also,

T1 =Z|z|∞≤1

dz(1 + ‖z/ε‖2)

�Z‖z‖≤1

dz(1 + ‖z/ε‖2)

+ Θ(ε2)

�Z 1

0

rd−1 dr1 + (r/ε)2 + Θ(ε2).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 10 / 15

Page 61: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I If |z|∞ > 1, then 1 + ‖z/ε‖2 � ‖z‖2/ε2. Therefore,

T2 =Z|z|∞>1

dz(1 + ‖z/ε‖2)∏

dj=1 z2

j

� ε2Z|z|∞>1

dz‖z‖2 ∏

dj=1 z2

j

� ε2.

I Also,

T1 =Z|z|∞≤1

dz(1 + ‖z/ε‖2)

�Z‖z‖≤1

dz(1 + ‖z/ε‖2)

+ Θ(ε2)

�Z 1

0

rd−1 dr1 + (r/ε)2 + Θ(ε2).

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 10 / 15

Page 62: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I But Z 1

0

rd−1 dr1 + (r/ε)2 �

Z ε

0rd−1 dr + ε2

Z 1

εrd−3 dr .

I Therefore, one can check that

Z 1

0

rd−1 dr1 + (r/ε)2 �

ε2 if d ≥ 3,

ε2 log(1/ε) if d = 2,

ε if d = 1.

I Therefore, T2 = ε(d∧2)+o(1).I Therefore, W (ε) = ε(d∧2)+o(1).I Therefore, dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧ 2) a.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 11 / 15

Page 63: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I But Z 1

0

rd−1 dr1 + (r/ε)2 �

Z ε

0rd−1 dr + ε2

Z 1

εrd−3 dr .

I Therefore, one can check that

Z 1

0

rd−1 dr1 + (r/ε)2 �

ε2 if d ≥ 3,

ε2 log(1/ε) if d = 2,

ε if d = 1.

I Therefore, T2 = ε(d∧2)+o(1).I Therefore, W (ε) = ε(d∧2)+o(1).I Therefore, dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧ 2) a.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 11 / 15

Page 64: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I But Z 1

0

rd−1 dr1 + (r/ε)2 �

Z ε

0rd−1 dr + ε2

Z 1

εrd−3 dr .

I Therefore, one can check that

Z 1

0

rd−1 dr1 + (r/ε)2 �

ε2 if d ≥ 3,

ε2 log(1/ε) if d = 2,

ε if d = 1.

I Therefore, T2 = ε(d∧2)+o(1).

I Therefore, W (ε) = ε(d∧2)+o(1).I Therefore, dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧ 2) a.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 11 / 15

Page 65: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I But Z 1

0

rd−1 dr1 + (r/ε)2 �

Z ε

0rd−1 dr + ε2

Z 1

εrd−3 dr .

I Therefore, one can check that

Z 1

0

rd−1 dr1 + (r/ε)2 �

ε2 if d ≥ 3,

ε2 log(1/ε) if d = 2,

ε if d = 1.

I Therefore, T2 = ε(d∧2)+o(1).I Therefore, W (ε) = ε(d∧2)+o(1).

I Therefore, dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧ 2) a.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 11 / 15

Page 66: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Brownian motion

I But Z 1

0

rd−1 dr1 + (r/ε)2 �

Z ε

0rd−1 dr + ε2

Z 1

εrd−3 dr .

I Therefore, one can check that

Z 1

0

rd−1 dr1 + (r/ε)2 �

ε2 if d ≥ 3,

ε2 log(1/ε) if d = 2,

ε if d = 1.

I Therefore, T2 = ε(d∧2)+o(1).I Therefore, W (ε) = ε(d∧2)+o(1).I Therefore, dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧ 2) a.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 11 / 15

Page 67: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

I X := 1-D nondecreasing Levy process. [Subordinator]

I Eexp(−λX (t)) = exp(−tΦ(λ)) ∀t , λ ≥ 0. [Laplace exponent]I Let C := independent Cauchy:

e−tΦ(λ) = E[e−λX(t)

]

= E[eiλCX(t)

]=

Z ∞

−∞

e−tΨ(zλ)

1 + z2 dz.

I Integrate [e−t dt ]⇒

11 + Φ(λ)

=W (1/λ)

π.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 12 / 15

Page 68: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

I X := 1-D nondecreasing Levy process. [Subordinator]I Eexp(−λX (t)) = exp(−tΦ(λ)) ∀t , λ ≥ 0. [Laplace exponent]

I Let C := independent Cauchy:

e−tΦ(λ) = E[e−λX(t)

]

= E[eiλCX(t)

]=

Z ∞

−∞

e−tΨ(zλ)

1 + z2 dz.

I Integrate [e−t dt ]⇒

11 + Φ(λ)

=W (1/λ)

π.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 12 / 15

Page 69: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

I X := 1-D nondecreasing Levy process. [Subordinator]I Eexp(−λX (t)) = exp(−tΦ(λ)) ∀t , λ ≥ 0. [Laplace exponent]I Let C := independent Cauchy:

e−tΦ(λ) = E[e−λX(t)

]

= E[eiλCX(t)

]=

Z ∞

−∞

e−tΨ(zλ)

1 + z2 dz.

I Integrate [e−t dt ]⇒

11 + Φ(λ)

=W (1/λ)

π.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 12 / 15

Page 70: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

I X := 1-D nondecreasing Levy process. [Subordinator]I Eexp(−λX (t)) = exp(−tΦ(λ)) ∀t , λ ≥ 0. [Laplace exponent]I Let C := independent Cauchy:

e−tΦ(λ) = E[e−λX(t)

]

= E[eiλCX(t)

]=

Z ∞

−∞

e−tΨ(zλ)

1 + z2 dz.

I Integrate [e−t dt ]⇒

11 + Φ(λ)

=W (1/λ)

π.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 12 / 15

Page 71: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

I X := 1-D nondecreasing Levy process. [Subordinator]I Eexp(−λX (t)) = exp(−tΦ(λ)) ∀t , λ ≥ 0. [Laplace exponent]I Let C := independent Cauchy:

e−tΦ(λ) = E[e−λX(t)

]= E

[eiλCX(t)

]

=1π

Z ∞

−∞

e−tΨ(zλ)

1 + z2 dz.

I Integrate [e−t dt ]⇒

11 + Φ(λ)

=W (1/λ)

π.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 12 / 15

Page 72: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

I X := 1-D nondecreasing Levy process. [Subordinator]I Eexp(−λX (t)) = exp(−tΦ(λ)) ∀t , λ ≥ 0. [Laplace exponent]I Let C := independent Cauchy:

e−tΦ(λ) = E[e−λX(t)

]= E

[eiλCX(t)

]=

Z ∞

−∞

e−tΨ(zλ)

1 + z2 dz.

I Integrate [e−t dt ]⇒

11 + Φ(λ)

=W (1/λ)

π.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 12 / 15

Page 73: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

I X := 1-D nondecreasing Levy process. [Subordinator]I Eexp(−λX (t)) = exp(−tΦ(λ)) ∀t , λ ≥ 0. [Laplace exponent]I Let C := independent Cauchy:

e−tΦ(λ) = E[e−λX(t)

]= E

[eiλCX(t)

]=

Z ∞

−∞

e−tΨ(zλ)

1 + z2 dz.

I Integrate [e−t dt ]⇒

11 + Φ(λ)

=W (1/λ)

π.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 12 / 15

Page 74: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

Example (Horowitz, Pruitt–Taylor, Bertoin)X := subordinator with Laplace exponent Φ; a.s.:

dimH X ([0 ,1]) = lim infλ→∞

logΦ(λ)

logλ,

dimMX ([0 ,1]) = limsupλ→∞

logΦ(λ)

logλ.

Fact (Maisonneuve)The zero-set of a rather general Markov process can be identified withthe range of a subordinator; Φ is often fairly explicit.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 13 / 15

Page 75: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Example: Subordinators

Example (Horowitz, Pruitt–Taylor, Bertoin)X := subordinator with Laplace exponent Φ; a.s.:

dimH X ([0 ,1]) = lim infλ→∞

logΦ(λ)

logλ,

dimMX ([0 ,1]) = limsupλ→∞

logΦ(λ)

logλ.

Fact (Maisonneuve)The zero-set of a rather general Markov process can be identified withthe range of a subordinator; Φ is often fairly explicit.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 13 / 15

Page 76: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Problems

1. X := an isotropic stable process, index α ∈ (0 ,2]: Ψ(ξ) = λ2‖ξ‖α.WLOG λ = 1. Prove: dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧α) a.s.

2. A classical fact: Given any Levy process X with characteristicexponent Ψ, |Ψ(ξ)| = O(‖ξ‖2). Let X (t) = B(t) + Y (t), where B :=a nondegenerate BM(Rd), and Y is an independent pure-jumpLevy process. Use the preceding fact, without proof, to deducethat dimH X ([0 ,1]) ≥ dimH Y ([0 ,1]) anddimMX ([0 ,1]) ≥ dimMY ([0 ,1] a.s.

3. Let X and X ′ denote two i.i.d. Levy processes in Rd , and defineY (t) := X (t)−X ′(t) to be the symmetrization of X .

3.1 Prove that Y is a Levy process.3.2 Prove that dimY ([0 ,1]) ≤ dimX ([0 ,1]) a.s., where dim stands for

either dimH or dimM .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 14 / 15

Page 77: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Problems

1. X := an isotropic stable process, index α ∈ (0 ,2]: Ψ(ξ) = λ2‖ξ‖α.WLOG λ = 1. Prove: dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧α) a.s.

2. A classical fact: Given any Levy process X with characteristicexponent Ψ, |Ψ(ξ)| = O(‖ξ‖2). Let X (t) = B(t) + Y (t), where B :=a nondegenerate BM(Rd), and Y is an independent pure-jumpLevy process. Use the preceding fact, without proof, to deducethat dimH X ([0 ,1]) ≥ dimH Y ([0 ,1]) anddimMX ([0 ,1]) ≥ dimMY ([0 ,1] a.s.

3. Let X and X ′ denote two i.i.d. Levy processes in Rd , and defineY (t) := X (t)−X ′(t) to be the symmetrization of X .

3.1 Prove that Y is a Levy process.3.2 Prove that dimY ([0 ,1]) ≤ dimX ([0 ,1]) a.s., where dim stands for

either dimH or dimM .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 14 / 15

Page 78: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Problems

1. X := an isotropic stable process, index α ∈ (0 ,2]: Ψ(ξ) = λ2‖ξ‖α.WLOG λ = 1. Prove: dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧α) a.s.

2. A classical fact: Given any Levy process X with characteristicexponent Ψ, |Ψ(ξ)| = O(‖ξ‖2). Let X (t) = B(t) + Y (t), where B :=a nondegenerate BM(Rd), and Y is an independent pure-jumpLevy process. Use the preceding fact, without proof, to deducethat dimH X ([0 ,1]) ≥ dimH Y ([0 ,1]) anddimMX ([0 ,1]) ≥ dimMY ([0 ,1] a.s.

3. Let X and X ′ denote two i.i.d. Levy processes in Rd , and defineY (t) := X (t)−X ′(t) to be the symmetrization of X .

3.1 Prove that Y is a Levy process.3.2 Prove that dimY ([0 ,1]) ≤ dimX ([0 ,1]) a.s., where dim stands for

either dimH or dimM .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 14 / 15

Page 79: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Problems

1. X := an isotropic stable process, index α ∈ (0 ,2]: Ψ(ξ) = λ2‖ξ‖α.WLOG λ = 1. Prove: dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧α) a.s.

2. A classical fact: Given any Levy process X with characteristicexponent Ψ, |Ψ(ξ)| = O(‖ξ‖2). Let X (t) = B(t) + Y (t), where B :=a nondegenerate BM(Rd), and Y is an independent pure-jumpLevy process. Use the preceding fact, without proof, to deducethat dimH X ([0 ,1]) ≥ dimH Y ([0 ,1]) anddimMX ([0 ,1]) ≥ dimMY ([0 ,1] a.s.

3. Let X and X ′ denote two i.i.d. Levy processes in Rd , and defineY (t) := X (t)−X ′(t) to be the symmetrization of X .3.1 Prove that Y is a Levy process.

3.2 Prove that dimY ([0 ,1]) ≤ dimX ([0 ,1]) a.s., where dim stands foreither dimH or dimM .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 14 / 15

Page 80: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

Problems

1. X := an isotropic stable process, index α ∈ (0 ,2]: Ψ(ξ) = λ2‖ξ‖α.WLOG λ = 1. Prove: dimH X ([0 ,1]) = dimMX ([0 ,1]) = (d ∧α) a.s.

2. A classical fact: Given any Levy process X with characteristicexponent Ψ, |Ψ(ξ)| = O(‖ξ‖2). Let X (t) = B(t) + Y (t), where B :=a nondegenerate BM(Rd), and Y is an independent pure-jumpLevy process. Use the preceding fact, without proof, to deducethat dimH X ([0 ,1]) ≥ dimH Y ([0 ,1]) anddimMX ([0 ,1]) ≥ dimMY ([0 ,1] a.s.

3. Let X and X ′ denote two i.i.d. Levy processes in Rd , and defineY (t) := X (t)−X ′(t) to be the symmetrization of X .3.1 Prove that Y is a Levy process.3.2 Prove that dimY ([0 ,1]) ≤ dimX ([0 ,1]) a.s., where dim stands for

either dimH or dimM .

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 14 / 15

Page 81: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

More advanced problems

1. Suppose B is a one-dimensional Brownian motion, and Y is anindependent one-dimensional symmetric stable process withindex α ∈ (0 ,2).

1.1 Prove that X (t) := (B(t) ,Y (t)) defines a two-dimensional Levyprocess.

1.2 Prove that if α ∈ (1 ,2), then α < dimMX ([0 ,1]) < 2.[Both inequalities are strict.]

2. Suppose X is a Levy process with Ψ(ξ) = ‖ξ‖α+o(1) as ‖ξ‖ →∞.Then, prove that dimMX ([0 ,1]) and dimH X ([0 ,1]) are both d ∧ αa.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 15 / 15

Page 82: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

More advanced problems

1. Suppose B is a one-dimensional Brownian motion, and Y is anindependent one-dimensional symmetric stable process withindex α ∈ (0 ,2).1.1 Prove that X (t) := (B(t) ,Y (t)) defines a two-dimensional Levy

process.

1.2 Prove that if α ∈ (1 ,2), then α < dimMX ([0 ,1]) < 2.[Both inequalities are strict.]

2. Suppose X is a Levy process with Ψ(ξ) = ‖ξ‖α+o(1) as ‖ξ‖ →∞.Then, prove that dimMX ([0 ,1]) and dimH X ([0 ,1]) are both d ∧ αa.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 15 / 15

Page 83: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

More advanced problems

1. Suppose B is a one-dimensional Brownian motion, and Y is anindependent one-dimensional symmetric stable process withindex α ∈ (0 ,2).1.1 Prove that X (t) := (B(t) ,Y (t)) defines a two-dimensional Levy

process.1.2 Prove that if α ∈ (1 ,2), then α < dimMX ([0 ,1]) < 2.

[Both inequalities are strict.]

2. Suppose X is a Levy process with Ψ(ξ) = ‖ξ‖α+o(1) as ‖ξ‖ →∞.Then, prove that dimMX ([0 ,1]) and dimH X ([0 ,1]) are both d ∧ αa.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 15 / 15

Page 84: Lecture 3 - Harmonic Analysis - University of Utahdavar/ps-pdf-files/Denmark07/Lecture3.pdfSummer School on Levy Processes: Theory and Applications´ August 9–12, 2007 Sandbjerg

More advanced problems

1. Suppose B is a one-dimensional Brownian motion, and Y is anindependent one-dimensional symmetric stable process withindex α ∈ (0 ,2).1.1 Prove that X (t) := (B(t) ,Y (t)) defines a two-dimensional Levy

process.1.2 Prove that if α ∈ (1 ,2), then α < dimMX ([0 ,1]) < 2.

[Both inequalities are strict.]

2. Suppose X is a Levy process with Ψ(ξ) = ‖ξ‖α+o(1) as ‖ξ‖ →∞.Then, prove that dimMX ([0 ,1]) and dimH X ([0 ,1]) are both d ∧ αa.s.

D. Khoshnevisan (Salt Lake City, Utah) Lecture 3 Sandbjerg Manor, 2007 15 / 15