29
MAE 6430 - Propulsion Systems, II Lecture 3.2: Hybrid Rocket Throttling 1 Hybrid Rocket Motor Solid Rocket Motor Space Shuttle SSME and RSRM Rockets Liquid Rocket Engine

Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

  • Upload
    others

  • View
    6

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

Lecture 3.2: Hybrid Rocket Throttling

1!

Hybrid Rocket Motor

Solid Rocket Motor

Space Shuttle SSME and RSRM Rockets

Liquid Rocket Engine

2.2
Page 2: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

Chemical Rockets!Solid Rockets !Oxidizer and fuel are chemically mixed together at the molecular level to form a solid fuel grain. Once ignited, they cannot be stopped, throttled, or restarted.!

Liquid Rockets !In a bi-propellant liquid rocket, an oxidizer and fuel are mixed in the combustion chamber. Oxidizer is usually maintained at cryogenic temperatures, typically requiring turbo pumps. Mono-propellant liquid rockets use a material which combusts in the presence of a catalyst. Liquid rockets can be throttled, stopped, and restarted.!

Hybrid Rockets !Possess features of both liquid and solid rockets. A hybrid consists of a solid fuel grain made from a polymeric material. The oxidizer is stored in a tank separate from the fuel grain, which is stored in a combustion chamber. Both propellants are inert and only combust when the fuel is converted to gaseous state and mixed with oxidizer in the combustion chamber. Like liquid rockets, hybrid rockets have the potential for throttle and multiple restarts.!

Solid Rocket Motor!

Liquid Rocket Engine!

Hybrid Rocket Motor!

2!

Page 3: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

How about Hybrid Throttling?!

m•ox = AoxCdox

2ρoxTh%100

× pox#$%

&'(− P0

*+,

-./

• Only the Oxidizer rate can be modulated … ! … no direct means to control fuel massflow and burn O/F ratio!

… First lets revisit bi-propellant liquid rocket throttling!

3!

Page 4: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

Hybrid Motor Throttling In theory a rocket engine can be throttled back until the throat is no longer !sonic by reducing propellant flow rate (injector pressure)!

Difficult problem in practice for conventional liquid rockets!•  Essential for pressure drop across injector > 25% of chamber pressure!

!-- Pressure ratio insures propellant flow rates !!are independent of fluctuations in chamber pressure. !

•  Fixed geometry injectors – Injector Feed-Coupling Instability! !Reduction of Propellant flow rates causes injector

!pressure to drop faster than the chamber pressure ! !… until injector pressure becomes so low that

!coupling between chamber and propellant feed system !occurs … causing combustor instability (a.k.a explosion or !more likely flameout)!

•  Typically, liquid rocket engine with fixed injector geometry can be throttled down to 60-70% of nominal thrust without stability problems !

27!4!

Page 5: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

∂P0∂t

= −P0A*

Vcγ RgT0

2γ +1$

%&'

()

γ +1γ −1( )

*

+

,,,

-

.

///+

RgT0Vc

AfuelCd f2ρ f

Th%100

× pf234

567− P0

$%&

'()+ AoxCdox

2ρoxTh%100

× pox234

567− P0

$%&

'()

*

+,,

-

.//

5!

Mechanism for Bi-Prop Pressure Throttling!

• By modulating the injector pressures, we can throttle! the rocket engine … must properly Phase propellant feed pressures .. !

… Injector pressure ratio > 1.25 for combustion stability!

… Inherent Latency in massflow and thrust response!

Page 6: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II! 6!

A Mechanism for Throttling (cont’d)!

60%!Throttle!

Injector pressure!Ratio ---> 1!

Page 7: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

Stability limit at!

Injector pressure ratio ~ 1.25!

Commanded Throttle = Actual Thrust/Max Thrust!

Liquid Bi-Prop engine!

28!

Hybrid Motor Throttling!Typical Chamber Pressure Throttled Thrust Profile!

7!

Injector Feed-Coupling Instability!

Page 8: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

∂P0∂t

= −P0A*

Vcγ RgT0

2γ +1$

%&'

()

γ +1γ −1( )

*

+

,,,

-

.

///+

RgT0Vc

AfuelCd f2ρ f

Th%100

× pf234

567− P0

$%&

'()+ AoxCdox

2ρoxTh%100

× pox234

567− P0

$%&

'()

*

+,,

-

.//

8!

Bi-Prop Injector Area Throttling!

• Can directly throttle by modulating the injector feed area!

• Variable geometry injectors complex to implement in practice!

… practice? … Pintle Injectors !

Page 9: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II! 9!

Deep-Throttle Rocket Engines "(cont’d)!

• Pintle Injectors!

• By moving the pintle shaft! Propellant mass flow is modulated! by changing the effective injector area!

• Injection pressure remains relatively! constant … reducing combustion instability! problem …. Complex jack-screw mechanism!

∂P0∂t

= −P0A*

Vcγ RgT0

2γ +1$

%&'

()

γ +1γ −1( )

*

+

,,,

-

.

///+

RgT0Vc

AfuelCd f2ρ f

Th%100

× pf234

567− P0

$%&

'()+ AoxCdox

2ρoxTh%100

× pox234

567− P0

$%&

'()

*

+,,

-

.//

Page 10: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II! 10!

Deep-Throttle Rocket Engines "(cont’d)!

• Low Cost Pintle Engine (LCPE)!

The key element of the LCPE's design is its !single element coaxial pintle injector, used to !introduce propellants into the combustion chamber.!

• Moveable pintle injector attributes include !deep throttle capability, 10:1 turndown ratio!

TRW has tested more than 50 different pintle injector engines, !using more than 25 different propellant combinations with !complete combustion stability!

Range in size from the 100-pound thrust liquid apogee engine !used on NASA's Chandra X-ray Observatory to the !10,0-pound thrust Delta and LMDE engines.!

(LCPE)

Page 11: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II! 11!

Deep-Throttle Rocket Engines "(cont’d)!

Page 12: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II! 12!

Deep-Throttle Rocket Engines "(cont’d)!

• SSME Throttle Simulation using Pintle Injector (Area Modulation)!

Page 13: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II! 13!

Applications of Deep Throttling (I)!• Lunar Lander … Throttling key element in ability! to perform precision landing … Apollo --> Open loop throttle! under control of mission commander!

• Highest Operational “turndown ratio” Engine!

• Lunar Module descent engine, 10:1 turndown ratio!

• Even with a variable-geometry injector !there were stability Problems!

• Thrust levels between 100% and 65% were never used because mixture ratio was so hard to properly control.!

• Apollo Lunar Module Descent Engine (LMDE)! - The key element of the LMDE's design was its single element coaxial pintle injector, used to introduce propellants into the

!combustion chamber.!

Page 14: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

Applications of Deep Throttling (II) "Throttling for Applications Cruise/Glide Weapons

Potential for throttling and motor restart is also very advantageous for cruise or guided glide munitions.!•  Throttle operation can reduce airframe loads during launch.!

- Thrust levels can be reduced as airframe loads (and aero control effectiveness) increases. !

• The ability to shutdown and restart upon command is very desirable for allowing multiple target access or range extension. !

26!14!

Page 15: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

Pressure–Throttled Hybrid Motor, a less complex alternative to the Pintle engine!

•  Pintle injector rocket engines are complex devices with many movable parts, applicable to both liquid and solid rockets.!

!- Solids do not have restart capability!!- Liquid systems have long term storability issues!

•  Hybrid motors offer lower specific impulse compared to liquid rockets; however, !

!- Hybrids will operate at very low injector pressure ratio without ! combustion instability!

!- Well suited for packaging in “long-skinny” high fineness ratio bodies!!- Hybrid motor throttling currently has modetate-to-low low Technology !

Readiness Level (TRL) < 5 !

30!

Hybrid Motor Throttling!

15!

Page 16: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II! 31!

Hybrid Motor Throttling!

Only the Oxidizer rate can be modulated! Throttling not as “crisp” as with liquid rockets, but still works!

… Oxidizer flux … feedback mechanism effects the fuel burn rate or mixture! ratio of combustion .. “self adjusting” O/F ratio .. Proportional to oxidizer mass flow! to 1/5th power!

16!

MO /F = 21.2766 ! Pr2 /3 !

h"solidfuel

#hflamefuel

$

%

&&&

'

(

)))

0.23

!

!AcportAburn

$

%&

'

()

4 /5

Aburn !µe

L$

%&

'

()1/5 ! !mox( )1/5

Page 17: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

Hybrid Throttling Simulation

100% to 60% throttle!

Fixed area injector!

Rocket Crafters™, All Rights Reserved, 2011 PROPRIETARY & CONFIDENTIAL! 32!17!

Page 18: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

100% to 60% throttle!

Fixed area injector!Motor Mass flow, kg/sec!

Fuel regression rate, cm/sec!

33!

Hybrid Throttling Simulation!

18!

Page 19: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research Topics

•  How low can we go with injector pressure ratio and still achieve adequate combustion?! … can be done with fixed geometry injector and! Ox feed line regulator!

•  Develop feedback laws for “achieved” thrust versus injector input pressure.!

•  Methods for variable geometry injector:!!- Pintle, variable port size, number injector!!- Variable port injector can be coupled with!

- Throttled injector pressure (coarse and fine control)!

•  What is the response fidelity, repeatability?!

36!19!

Page 20: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (2) •  See linked papers of web page, section 3!

• Whitmore, S. A., Peterson, Z. W., and Eilers, S. D., "Closed-Loop Precision Throttling of a Hybrid Rocket Motor," J. Propulsion and Power, Vol. 30, No 2., March 2014, pp. 325-336.!

•  Whitmore, S. A., Peterson, Z. W., and Eilers, S. D., " Deep Throttle of a Nitrous Oxide and Hydroxyl-Terminated Poly- butadiene Hybrid Rocket Motor," J. Propulsion and Power, Vol. 30, No 1., January 2014, pp. 78-86.!

36!20!

Page 21: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (3)

36!21!

Test Apparatus, Piping and Instrumentation (P&ID)!

Motor Layout!

Page 22: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (4)

22!

Control Signal Logic and!Functional Block Diagram!

PID Control Law!

• Design used a “less than Ideal” cheap industrial actuated!ball valve with very narrow response band !

Throttle Valve Response Curve!

Page 23: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (5)

23!

Chamber Pressure Response to % of Maximum Valve Travel (%MVT)!

Still very effective system! response to valve command! Thrust and chamber pressure from typical

Open-loop throttle test

Page 24: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (6)

24!

Closed Loop Throttle Response!

Step and Ramp Command, Thrust Feedback!Ramp and Step Command, Chamber Pressure Feedback!

Page 25: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (5)

36!25!Deep Throttle Test

Injector-Feed Coupling Instability!

Page 26: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (6)

36!26!Deep Throttle Test

Injector-Feed Coupling Instability!

Page 27: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (7)

27!Deep Throttle Test

Injector-Feed Coupling Instability!

Page 28: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II!

USU Throttled Hybrid Research (8)

28!

Deep Throttle Test

Injector-Feed Coupling Instability!

Vapor cavitation through injector!For % MVT < 30%!

Likely cause of feed instability!

Still … !

Page 29: Lecture 3.2: Hybrid Rocket Throttlingmae-nas.eng.usu.edu/MAE_6530_Web/New_Course/Section3/section… · Applications of Deep Throttling (II)" Throttling for Applications Cruise/Glide

MAE 6430 - Propulsion Systems, II! 29

Questions??