34
1

LECTURE 5 - T-Beams and Doubly Reinforcement

Embed Size (px)

DESCRIPTION

Reinforced Concrete DesignDesign of T-Beams and Double Reinforced beams based on NSCP 2010

Citation preview

  • 1

  • 2

  • Inconstructionofbuildings,concreteisplacedinthebeamsandslabinamonolithicpour.Thismeansthattheslabservesasthetopflangeofthebeams.

    3

  • Ifwearetodesignforpositivemomentanddoublereinforcementlater,wewouldstumbleatdefiningwhatshouldbethewidthlengthtouse.Toidentifythewidthlength,wemaybeconsideringtwopossiblecases.CaseA,wehaverectangularcompressionzone(FigB),andCaseB,theNAshiftsdownthedepthgivingusaTShapedcompressionzone(FigD).Soreally,theproblemcomesindefiningthewidthofthecompressionzone,

    4

  • Girdersareclassifiedasmainbeams.Soyouhavetheslab,supportedbybeams,andthenbeamsaresupportedbygirders.Thesupportedloadoftheslabinthisexampleistransferredtobeaminonedirection(onewayslab,alongtheshortestroute)thentobeams,togirders,andthentocolumns.Thereisalsothethirdtypeofbeam,calledtheedgeorspandrelbeam.

    5

  • Compressivestressesinflangedecreasesasitmovesawayfromthewebduetoshearlag.Itisunderstandablesincethewebsectionisstifferthantheflangesection,thereforethereisstressconcentrationatthejunctionanditreducesasyoumovefarawayfromthatjunctionshearlageffect.

    6

  • Insteadofconsideringavaryingstressdistributionacrossthefullwidthoftheflange,theACICode(8.12.2)callsforasmallerwidthwithanassumeduniformstressdistributionfordesignpurposes.Thegoalistorepresentthesamecompressionforcedevelopedinthefullwidthofthecompressionzoneusingonlytheeffectivewidth,(effectiveflangewidth)

    7

  • 8

  • 9

  • 10

  • Thelastequationcanalsoberewrittenas:

    2

    2

    11

  • Thefirststepactuallygivesyoualreadyanestimateofthevalueoftheeffectivedepth,Notethatthesizeofthebeamstemischosensothat 0.005atthepointofmaximumnegativemomentadcorrespondstosteelreinforcementsattheflangeandattheweb,respectively.1. Solveforusing 2. Computethedesignstrengthdueto(i.e.)3. Calculatetheremainingdesignstrengthneededtoberesistedbytheweb,

    4. Calculate(note:,,andareallprovidedatthispoint)5. Finally,

    12

  • ANS:24kNm

    13

  • 14

  • Case2:a>hfAsf=1,724.637mm2Asw=1,640.5mm2ANS:3,365.136mm2

    15

  • Additionofcompressionreinforcement,reducesthecompressivestressintheconcretecompressivesection(i.e. ).Ineffect,thedepthofthecompressivestressblockisreduced(fromto)Thisscenariowouldthenallowmoretensionreinforcementtobeusedwhilekeepingthebeamundertensioncontrolledregion,againduetothereducedcompressivestressinconcrete.Therefore,increasestheductilityofthebeam.(Onepracticalimplicationisthatbeamsectioncanbereducedwhilemaintainingtensioncontrolledlimit)

    16

  • Notehowever,thatcompressionreinforcementdoesnotincreasethestrengthofthebeamsignificantly.Iftheleverarmiscomparedfromthepreviousslide,thereisindeedlittledifferencebetweenand

    17

  • Thecompressionsteelpreventscreepoftheconcretereducingthedeflection

    18

  • The"compressionzone"failsintensionbeforecompression.Comparethegraphfrom 0to Crosssectionaldimensionsinsomeapplicationsmaybelimitedbyarchitecturalandfunctionalrequirements.

    19

  • Forceequilibrium 0;

    0.85 0.85

    Strainrelationships

    ,

    , 0.005 Momentequilibrium

    2

    20

  • If3aisfalse:compressivereinforcementisnotworkingIf3bisfalse:solvebysubstitutingstrainrelationshipequationtoforceequilibriumequationfor .Thiswillyieldtoquadraticequation.If3cisfalse:substitutestrainrelationshipequationtoforceequilibriumequationfor.

    21

  • ANS:270.87kNm

    22

  • 23

  • 24

  • 25

  • 26

  • 27

  • Notethatincreasingthetensileareainspecifyingactualrebarsizeswouldresultto 0.004(seestraindistributiondiagram).Consequently,thedesignstrengthofthesectionwouldbereducedduetoreduced.Thiscanberesolvedbyincreasingthecalculatedcompressionsteelareawiththesame(ormore)increasedintensileareaused.

    28

  • ANS:As=near1200mm2,As=near400mm2

    29

  • 30

  • 31

  • 32

  • 33

  • 34