57
Lecture I: The Time- dependent Schrodinger Equation A. Mathematical and Physical Introduction B. Four methods of solution 1. Separation of variables 2. Parametrized functional form 3. Method of characteristics 4. Numerical methods

Lecture I: The Time-dependent Schrodinger Equation A. Mathematical and Physical Introduction B. Four methods of solution 1. Separation of variables

Embed Size (px)

Citation preview

Page 1: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Lecture I: The Time-dependent Schrodinger Equation A. Mathematical and Physical Introduction B. Four methods of solution

1. Separation of variables 2. Parametrized functional form 3. Method of characteristics 4. Numerical methods

Page 2: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

H is a Hermitian operator

is a complex wavefunction

Normalization

has physical interpretation as a probability density

A is an anti-Hermitian operator on a complex Hilbert space

Inner product on a complex Hilbert space

Math Perspective: Complex wave equation

),(),(

txHt

txi

)(2 2

22

xVxm

VTH

1)()(),(),(*

ttdxtxtx

),(),(

txAzt

txz

11 ,, CzRtRx n 11: CRRz n

*AA

1)(),( tztz

),( tx

),(),(* txtx

Physics Perspective: Time-dependent Schrodinger eq.

Page 3: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Integral representation for

Proof of norm conservation

Math Perspective: Complex wave equation

),(),(

txHt

txi

),(),(

txAzt

txz

Physics Perspective: Time-dependent Schrodinger eq.

)0,(),( / xetx iHt

1)0()0(00)()( // iHtiHt eett

)0()( zetz At

1,,, 0000 zzzezezz AtAttt

Page 4: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Solution of the time-dependent Schrodinger equationMethod 1: Separation of variables

Ansatz:

Time-independent Schrodinger eq has solutions that satisfy boundary conditions

in general only for particular values of

iEtet

Ex

xxVx

m

t

ti

xxVxm

tt

txi

txtx

)0()(

)(

)()(2

)(

)(

)()(2

)()(

)(

)()(),(

2

22

2

22

)()( xExH )0( xas

,nEE

)()( xExH nnn

Page 5: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Solutions of the time-independent Schrodinger equation

particlein a box(discrete)

harmonicoscillator(discrete)

Morse oscillator(discrete +continuous)

IV

Eckart barrier(degenerate continous )

Page 6: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Reconstituting the wavefunction (x,t)

1ΨΨΨ

isTDSEtheofsolutiongeneraltheTherefore,

.ΨΨissosolutionsareΨandΨiflinear,isTDSEtheSince

TDSEtheofsolutionparticularais0Ψ

0

Ψ:ansatzthetoReturning

2

2121

(t)(t)a,(x)eψa(x,t)

)e((x)χψ(x,t)

)eχ((t)χ

(x)ψE(x)Hψ

ψ(x)χ(t)(x,t)

nn

n

tiEnn

tiEnn

tiEn

nnn

n

n

n

Page 7: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Example: Particle in half a box

2

222

8

22 sin

mLn

n

Lxn

Ln

E

/)(),(

)()0,(

tiEn

nn

nn

n

nexatx

xax

Page 8: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables
Page 9: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Solution of the time-dependent Schrodinger equationMethod 2: Parametrized functional form

For

the ansatz:

leads to the diff eqs for the parameters:

tt

t

tt

tt

tt

mxm

m

p

xmp

m

px

mi

m

i

222

2

2

22

2

1

2

2

2

//)()(exp),( 2ttttt ixxipxxtx

222

22

2

1)(),(

2xmxVxV

xmH

Page 10: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Solution of the time-dependent Schrodinger equationMethod 2: Parametrized functional form

For

the ansatz:

leads to the diff eqs for the parameters:

tt

t

tt

tt

tt

mxm

m

p

xmp

m

px

mi

m

i

222

2

2

22

2

1

2

2

2

//)()(exp),( 2ttttt ixxipxxtx

222

22

2

1)(),(

2xmxVxV

xmH

Hamilton’s equations (classical mechanics)

Classical Lagrangian

(Ricatti equattion)

Page 11: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables
Page 12: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Squeezed state

Coherent state

Anti-squeezed state

Page 13: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Ehrenfest’s theorem and wavepacket revivals Ehrenfest’s theorem

Wavepacket revivals

223

3

2

ˆ

ˆˆ

/ˆˆ

ttt

t

t

t

tt

tt

xxx

xV

x

xV

x

xVp

mpx

On intermediate time scales for anharmonic potentials Ehrenfest’stheorem quite generally breaks down. However, on still longer time scales there is, in many cases of interest, an almost complete revival of the wavepacket and a second Ehrenfest epoch. In between these full revivals are an infinite number of fractional revivals that collectively have an interesting mathematical structure.

Page 14: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Ehrenfest’s theorem and wavepacket revivals Ehrenfest’s theorem

Wavepacket revivals

223

3

2

1

/

ttt

t

t

t

tt

tt

xxx

xV

x

xV

x

Vp

mpx

Page 15: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Wigner phase space representation

Page 16: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Wigner phase space representation Harmonic oscillator

Coherent stateSqueezed state Anti-squeezed state

Page 17: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Wigner phase space representation

Particle in half a box

Page 18: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Solution of the time-dependent Schrodinger equationMethod 3: Method of characteristics

Ansatz:

.22

,02

11

),()(),(2

),(

R,,),(exp),(),(

22

2

QA

A

mV

m

SS

ASm

SAm

A

txxVtxm

txi

SAtxSi

txAtx

xxxt

xxxxt

xxt

LHS is the classical HJ equation: phase action RHS is the quantum potential: contains all quantum non-locality

continuity equation

quantum HJ equation

Page 19: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

From the quantum HJ equation to quantum trajectories

Quantum force-- nonlocal

total derivative=“go with the flow”m

Sv x

xv

tdt

d

0 2

2

xxx

t QVdt

dvmQV

m

SS

x

02

2

xxx

t Vdt

dvmV

x

vv

t

vmV

m

SS

x

Classical HJ equation

Classical trajectories

Quantum HJ equation

Quantum trajectories

St Sx

2

2mV

2

2m

Axx

AQ

Page 20: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Reconciling Bohm and Ehrenfest

• The LHS is the classical Hamilton-Jacobi equation for complex S, therefore complex x and p (complex trajectories).

• The RHS is the quantum potential which is now complex.

(x,t)expi

S(x,t)

St Sx

2

2mV i

2mSxx

Complex quantumHamilton-Jacobi equation !

Complex S !

Complex quantum potential

Page 21: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Reconciling Bohm and Ehrenfest

• For Gaussian wavepackets in potentials up to quadratic, the quantum force vanishes!

(x,t)expi

S(x,t)

St Sx

2

2mV i

2mSxx

Complex quantumHamilton-Jacobi equation !

Complex S !

Complex quantum potential

xxx

t Sm

iV

m

SS

x 22

2

dv

dt

Vx

m

i2m

vxx

m

Sv x

Page 22: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Solution of the time-dependent Schrodinger equationMethod 4: Numerical methods

dxpxxpppdxexx

ipp

dxxxppdxexp

ipx

ipx

ˆˆ)()(~

)()(~

/

/

Digression on the momentum representation and Dirac notation

Page 23: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Solution of the time-dependent Schrodinger equationMethod 4: Numerical methods

dxpxxpppdxexx

ipp

dxxxppdxexp

ipx

ipx

ˆˆ)()(~

)()(~

/

/

Digression on the momentum representation and Dirac notation

1,1

dpppdxxx

Page 24: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Solution of the time-dependent Schrodinger equationMethod 4: Numerical methods

)0,(

)0(

)0()0()(

:notationDirac

)0,()0,()0,(),(

)(2

:ionapproximatoperatorSplit

/)(/

21

//

///

////)((/

2

22

2

xeFTeFT

xdpdpdexxppeppx

eexextx

xeexexetx

VTxVxm

H

txiVt

m

pi

iVtiTt

iVtiTtiHt

iVtiTtVTiiHt

Page 25: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Increase accuracy by subdividing time interval:

tVtTN

VtTttVtTN

xeeeeee

xeeexetxtiVtiTtiVtiTtiVtiT

tiHtiHtiHiHt

,,.ofinstead,asgoeserror

)0,(

)0,()0,(),(

2

//////

////

Page 26: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

From the the split operator to classical mechanics: Feynman path integration

)actionclassical""theis(2

,

0pathsall

/),,(2/1

1/

2

//

ttxxiSiHt

iHtiHt

LdtSeti

mxex

xdxxexextx

evolution operator or propagator

ti

ti+1

0

t

x’ x

Page 27: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

From the the split operator to classical mechanics: Feynman path integration

)actionclassical""theis(2

,

0pathsall

/),,(2/1

/

//

ttxxiSiHt

iHtiHt

LdtSeti

mxex

xdxxexextx

evolution operator or propagator

ti

ti+1

0

t

x’ x

Page 28: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

From the the split operator to classical mechanics: Feynman path integration

)actionclassicaltheis(2

2

)Lagrangianclassicaltheis(22

,,0limittheIn

22

1

0pathsall

/),,(2/1

1/

2

/2/1

path1/

2

/2/1/)(

22/1

22

212

//

2

2/1//

/2/

1//

21/

2

2

2

212

1

2

2

ttxxiSiHt

tLiiHt

tiLtxV

xmi

tiVt

t

xxim

tiVipxt

m

pi

ipx

tiVtiTtiH

LdtSeti

mxex

eti

mxex

VTLeti

me

ti

m

xt

xxΔt

eeti

mdpeeee

xdpdpdxexxppeppxxex

i i

Page 29: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables
Page 30: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Lecture II: Concepts for Chemical Simulations A. Wavepacket time-correlation functions

1. Bound potentials Spectroscopy 2. Unbound potentials Chemical reactions

B. Eigenstates as superpositions of wavepackets

C. Manipulating wavepacket motion 1. Franck-Condon principle 2. Control of photochemical reactions

Page 31: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

A.Wavepacket correlation functions for bound potentials

nnn

iEt

n

tiEn

iEt

n

tiEnmn

tiEn

nmm

tiEn

nn

iEtn

nn

EEcdteecdtet

ececcdxtxxt

exctx

dtetEEcE

n

nn

n

2//2/

/2/

,

**

/

/2

2

10

2

1

),()0,(0

)(),(

:Derivation

02

1)(

definition :t wavepackea of Spectrum

Page 32: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

A.Wavepacket correlation functions for bound potentialsParticle in half a box

Page 33: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

A. Wavepacket correlation functions for bound potentialsHarmonic oscillator

Page 34: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

A. Wavepacket correlation functions for bound potentials

1

1

1

33

1

22

2

Page 35: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

A. Wavepacket correlation functions for unbound potentialsEckart barrier

Correlation function and spectrum of incident wavepacket

Page 36: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Correlation function and spectrum of reflected and transmitted wavepackets

Page 37: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Normalizing the spectrum to obtain reflection and transmission coefficients

Page 38: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

B. Eigenfunctions as superpositions of wavepackets

dtetxx tiEn

n

/),()(

eigenfunction wavepacket superposition

Page 39: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

B. Eigenfunctions as superpositions of wavepackets

)()(2)(),(

)(),(

:Derivation

),()(

///

/

/

xEEcdteexcdtetx

exctx

dtetxx

nnntiEtiE

mm

mtiE

tiEn

nn

tiEn

nnn

n

n

eigenfunction wavepacket superposition

Page 40: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

B. Eigenfunctions as superpositions of wavepackets

dtetxx tiEn

n

/),()(

eigenfunction wavepacket superposition

n=1E=1.5

2<n<3E=3.0

n=7E=7.5

Page 41: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

B. Eigenfunctions as superpositions of wavepackets

dtetxx tiEn

n

/),()(

eigenfunction wavepacket superposition

Page 42: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

C. Manipulating Wavepacket Motion Franck-Condon principle

Page 43: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

C. Manipulating Wavepacket Motion Franck-Condon principle

Page 44: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

C. Manipulating Wavepacket Motion Franck-Condon principle—a second time

Page 45: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

C. Manipulating Wavepacket Motion 1. Franck-Condon principle

photodissociation

Page 46: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

C. Manipulating Wavepacket Motion Control of photochemical reactions

Laser selective chemistry: Is it possible?

dissociationisomerization

ring opening

CH

OH

C CH

HH

HC

H

C

C CH

O

H

Page 47: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Wavepacket Dancing:Chemical Selectivity by Shaping Light Pulses

1. Review of Tannor-Rice scheme2. Calculus of Variations Approach3. Iterative Approach and Learning Algorithms

(Tannor, Kosloff and Rice, 1985, 1986)

Page 48: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables
Page 49: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Tannor, Kosloff and Rice (1986)

Page 50: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables
Page 51: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Optimal Pulse Shapes

Page 52: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

)()(lim TTJT

P

J is a functional of : calculus of variations

Page 53: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Formal Mathematical ApproachA. Calculus of Variations (technique for finding the “best shape” (Tannor and Rice, 1985)

1. Objective functional

P is a projection operator for chemical channel 2. Constraint (or penalty)

B. Optimal Control (Peirce, Dahleh and Rabitz, 1988)(Kosloff,Rice,Gaspard,Tersigni and Tannor (1989)

3. Equations of motion are added to “deconstrain” the variables

)(

}{

)(

)2()2(

)2()2(

)()(lim][

)],([)(

nn

n

T

dk

TTJ

tt

P

P

EtdtT

2

0)(

)(

)(

)(

)(

)(

)(* t

t

Ht

tH

t

t

ti

b

a

b

a

b

a

Page 54: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Modified Objective Functional

2

00)()()(Re2

)()(lim][

TT

T

tdtti

H

ttdt

TTJ

P

Page 55: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

Modified Objective Functional

2

00)()()(Re2

)()(lim][

TT

T

tdtti

H

ttdt

TTJ

P

0J

0)(

t

J

0)(

T

J

(i) (ii) (iii)

Page 56: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables

abab

it

)(

),(),( TxTx

Ht

i

P

equations of motion for

equations of motion for optimal field

equations of motion for

)()0,( 0 xx

Ht

i

)(T)0(

)0( )(TIterate!

Tannor, Kosloff, Rice (1985-89)Rabitz et al. (1988)

Optimal Control: Iterative Solution

Page 57: Lecture I: The Time-dependent Schrodinger Equation  A. Mathematical and Physical Introduction  B. Four methods of solution 1. Separation of variables