13
NPTEL- Probability and Distributions Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 1 MODULE 6 RANDOM VECTOR AND ITS JOINT DISTRIBUTION LECTURE 34 Topics 6.10.2 Transformation of Variables Technique 6.10.2.1 Distribution of Order Statistics 6.10.2.2 Distribution of Normalized Spacingโ€™s of Exponential Distribution For finding the probability distributions of functions of a random vector of absolutely continuous type we have the following theorem. Theorem 10.2.2 Let = 1 , โ€ฆ , be a random vector of absolutely continuous type with a joint p.d.f. โˆ™ and support = โˆˆโ„ : >0 . Let 1 , โ€ฆ , be open subset of โ„ such that โˆฉ = , if โ‰ , and = =1 . Suppose that โ„Ž : โ„ โ†’โ„ , = 1, โ€ฆ , , are Borel functions such that on each , โ„Ž = โ„Ž 1 , โ€ฆ , โ„Ž : โ†’โ„ is one-to-one with inverse transformation โ„Ž โˆ’1 = โ„Ž 1, โˆ’1 , โ€ฆ , โ„Ž , โˆ’1 say, = 1, โ€ฆ , . Further suppose that โ„Ž , โˆ’1 , = 1, โ€ฆ , , = 1, โ€ฆ , , have continuous partial derivatives and the Jacobian determinants = โ„Ž 1, โˆ’1 1 โ‹ฏ โ„Ž 1, โˆ’1 โ„Ž 2, โˆ’1 1 โ‹ฏ โ„Ž 2, โˆ’1 โ‹ฎ โ„Ž , โˆ’1 1 โ‹ฎ โ‹ฏ โ‹ฎ โ„Ž , โˆ’1 โ‰  0, = 1, โ€ฆ , . Define โ„Ž = โ„Ž = โ„Ž 1 , โ€ฆ , โ„Ž โˆˆ โ„ : โˆˆ , = 1, โ€ฆ , and = โ„Ž 1 , โ€ฆ , , = 1, โ€ฆ , . Then the random vector = 1 , โ€ฆ , is of absolutely continuous type with joint p.d.f.

Lecture34

Embed Size (px)

Citation preview

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 1

MODULE 6

RANDOM VECTOR AND ITS JOINT DISTRIBUTION

LECTURE 34

Topics

6.10.2 Transformation of Variables Technique

6.10.2.1 Distribution of Order Statistics

6.10.2.2 Distribution of Normalized Spacingโ€™s of Exponential Distribution

For finding the probability distributions of functions of a random vector of absolutely

continuous type we have the following theorem.

Theorem 10.2.2

Let ๐‘‹ = ๐‘‹1, โ€ฆ , ๐‘‹๐‘ be a random vector of absolutely continuous type with a joint p.d.f.

๐‘“๐‘‹ โˆ™ and support ๐‘†๐‘‹ = ๐‘ฅ โˆˆ โ„๐‘ : ๐‘“๐‘‹ ๐‘ฅ > 0 . Let ๐‘†1, โ€ฆ , ๐‘†๐‘˜ be open subset of โ„๐‘ such

that ๐‘†๐‘– โˆฉ ๐‘†๐‘— = ๐œ™, if ๐‘– โ‰  ๐‘—, and ๐‘†๐‘– = ๐‘†๐‘‹๐‘˜๐‘–=1 . Suppose that โ„Ž๐‘— : โ„๐‘ โ†’ โ„ , ๐‘— = 1, โ€ฆ , ๐‘, are ๐‘

Borel functions such that on each ๐‘†๐‘– , โ„Ž = โ„Ž1 , โ€ฆ , โ„Ž๐‘ : ๐‘†๐‘– โ†’ โ„๐‘ is one-to-one with inverse

transformation โ„Ž๐‘–โˆ’1 ๐‘ก = โ„Ž1,๐‘–

โˆ’1 ๐‘ก , โ€ฆ , โ„Ž๐‘ ,๐‘–โˆ’1 ๐‘ก say , ๐‘– = 1, โ€ฆ , ๐‘˜ . Further suppose that

โ„Ž๐‘— ,๐‘–โˆ’1 ๐‘ก , ๐‘— = 1, โ€ฆ , ๐‘, ๐‘– = 1, โ€ฆ , ๐‘˜, have continuous partial derivatives and the Jacobian

determinants

๐ฝ๐‘– =

๐œ•โ„Ž1,๐‘–โˆ’1 ๐‘ก

๐œ•๐‘ก1โ‹ฏ

๐œ•โ„Ž1,๐‘–โˆ’1 ๐‘ก

๐œ•๐‘ก๐‘

๐œ•โ„Ž2,๐‘–โˆ’1 ๐‘ก

๐œ•๐‘ก1โ‹ฏ

๐œ•โ„Ž2,๐‘–โˆ’1 ๐‘ก

๐œ•๐‘ก๐‘โ‹ฎ

๐œ•โ„Ž๐‘ ,๐‘–โˆ’1 ๐‘ก

๐œ•๐‘ก1

โ‹ฎโ‹ฏ

โ‹ฎ๐œ•โ„Ž๐‘ ,๐‘–

โˆ’1 ๐‘ก

๐œ•๐‘ก๐‘

โ‰  0, ๐‘– = 1, โ€ฆ , ๐‘.

Define โ„Ž ๐‘†๐‘— = โ„Ž ๐‘ฅ = โ„Ž1 ๐‘ฅ , โ€ฆ , โ„Ž๐‘ ๐‘ฅ โˆˆ โ„๐‘ : ๐‘ฅ โˆˆ ๐‘†๐‘— , ๐‘— = 1, โ€ฆ , ๐‘ and ๐‘‡๐‘— =

โ„Ž๐‘— ๐‘‹1, โ€ฆ , ๐‘‹๐‘ , ๐‘— = 1, โ€ฆ , ๐‘ . Then the random vector ๐‘‡ = ๐‘‡1, โ€ฆ , ๐‘‡๐‘ is of absolutely

continuous type with joint p.d.f.

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 2

๐‘“๐‘‡ ๐‘ก = ๐‘“๐‘‹ โ„Ž1,๐‘—โˆ’1 ๐‘ก , โ€ฆ , โ„Ž๐‘ ,๐‘—

โˆ’1 ๐‘ก ๐ฝ๐‘—

๐‘˜

๐‘— =1

๐ผโ„Ž ๐‘ ๐‘— ๐‘ก . โ–„

We shall not provide the proof of the above theorem. The idea of the proof of the above

theorem is similar to that of Theorem 2.2, Module 3. In the proof of the theorem, the joint

distribution function of ๐‘‡ is written in the form of multiple integrals which are simplified

by making change of variables using change of variable Theorem of multivariable

calculus.

The following corollary is immediate from Theorem 10.2.2.

Corollary 10.2.1

Let ๐‘‹ = ๐‘‹1, โ€ฆ , ๐‘‹๐‘ be a random vector of absolutely continuous type with a joint p.d.f.

๐‘“๐‘‹ โˆ™ and support ๐‘†๐‘‹ = ๐‘ฅ โˆˆ โ„๐‘ : ๐‘“๐‘‹ ๐‘ฅ > 0 , an open set in โ„๐‘ . Suppose that โ„Ž๐‘— : โ„๐‘ โ†’

โ„, ๐‘— = 1, โ€ฆ , ๐‘, are ๐‘ Borel functions such that โ„Ž = โ„Ž1, โ€ฆ , โ„Ž๐‘ : ๐‘†๐‘‹ โ†’ โ„๐‘ is one-to-one

with inverse transformation โ„Žโˆ’1 ๐‘ก = (โ„Ž1โˆ’1 ๐‘ก , โ€ฆ , โ„Ž๐‘

โˆ’1 ๐‘ก ) (say). Further suppose that

โ„Ž๐‘–โˆ’1, ๐‘– = 1, โ€ฆ , ๐‘, have continuous partial derivatives and the Jacobian determinant

๐ฝ =

๐œ•โ„Ž1โˆ’1 ๐‘ก

๐œ•๐‘ก1โ‹ฏ

๐œ•โ„Ž1โˆ’1 ๐‘ก

๐œ•๐‘ก๐‘

๐œ•โ„Ž2โˆ’1 ๐‘ก

๐œ•๐‘ก1โ‹ฏ

๐œ•โ„Ž2โˆ’1 ๐‘ก

๐œ•๐‘ก๐‘โ‹ฎ

๐œ•โ„Ž๐‘โˆ’1 ๐‘ก

๐œ•๐‘ก1

โ‹ฏ๐œ•โ„Ž๐‘

โˆ’1 ๐‘ก

๐œ•๐‘ก๐‘

โ‰  0.

Define โ„Ž ๐‘†๐‘‹ = โ„Ž ๐‘ฅ = โ„Ž1 ๐‘ฅ , โ‹ฏ , โ„Ž๐‘ ๐‘ฅ ) โˆˆ โ„๐‘ : ๐‘ฅ โˆˆ ๐‘†๐‘‹ and ๐‘‡๐‘— = โ„Ž๐‘— ๐‘‹1, โ€ฆ , ๐‘‹๐‘ , ๐‘— =

1, โ€ฆ , ๐‘. Then the random vector ๐‘‡ = ๐‘‡1, โ€ฆ , ๐‘‡๐‘ is of absolutely continuous type with

joint p.d.f.

๐‘“๐‘‡ ๐‘ก = ๐‘“๐‘‹ โ„Ž1โˆ’1 ๐‘ก , โ‹ฏ , โ„Ž๐‘

โˆ’1 ๐‘ก ๐ฝ ๐ผโ„Ž ๐‘†๐‘‹ ๐‘ก . โ–„

Remark 10.2.1

Let ๐‘‹ = ๐‘‹1, โ€ฆ , ๐‘‹๐‘ be a random vector of absolutely continuous type with joint p.d.f. ๐‘“๐‘‹

and let ๐‘†๐‘‹ = ๐‘ฅ โˆˆ โ„๐‘ : ๐‘“๐‘‹ ๐‘ฅ > 0 .Suppose that we are interested in finding the joint

probability distribution of random vector ๐‘‡ = ๐‘‡1, โ€ฆ , ๐‘‡๐‘˜ = โ„Ž1 ๐‘‹ , โ€ฆ , โ„Ž๐‘˜ ๐‘‹ ), where

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 3

๐‘˜ โˆˆ 1, โ€ฆ , ๐‘ and โ„Ž๐‘– : โ„๐‘ โ†’ โ„, ๐‘– = 1, โ€ฆ , ๐‘˜, are some Borel functions. For this we shall

define ๐‘ โˆ’ ๐‘˜ additional auxiliary Borel functions โ„Ž๐‘– : โ„๐‘ โ†’ โ„, ๐‘– = ๐‘˜ + 1, โ€ฆ , ๐‘, such that

the transformation โ„Ž = โ„Ž1 , โ€ฆ , โ„Ž๐‘ : ๐‘†๐‘‹ โ†’ โ„๐‘ , satisfies the assumptions of Theorem

10.2.2/Corollary 10.2.1. Then an application of Theorem 10.2.2/Corollary 10.2.1 will

provide the joint p.d.f. ๐‘“๐‘‡ ๐‘ก1, โ€ฆ , ๐‘ก๐‘ of ๐‘‡ = ๐‘‡1, โ€ฆ , ๐‘‡๐‘ from which marginal joint p.d.f.

of ๐‘ˆ = ๐‘‡1, โ€ฆ , ๐‘‡๐‘˜ is obtained by integrating out unwanted variables ๐‘ก๐‘˜+1, โ€ฆ , ๐‘ก๐‘ in

๐‘“๐‘‡ ๐‘ข1, โ€ฆ , ๐‘ข๐‘˜ , ๐‘ก๐‘˜+1, โ€ฆ , ๐‘ก๐‘ .

Example 10.2.8

Let ๐‘‹1 and ๐‘‹2 be independent and identically distributed random variables with common

p.d.f.

๐‘“ ๐‘ฅ =

1

2, if โˆ’ 2 < ๐‘ฅ < โˆ’1

1

6, if 0 < ๐‘ฅ < 3

0, otherwise

.

Find the p.d.f. of ๐‘Œ1 = ๐‘‹1 + ๐‘‹2 .

Solution. The joint p.d.f. of ๐‘‹ = ๐‘‹1, ๐‘‹2 is given by

๐‘“๐‘‹ ๐‘ฅ1, ๐‘ฅ2 = ๐‘“ ๐‘ฅ1 ๐‘“ ๐‘ฅ2

=

1

4, if ๐‘ฅ1, ๐‘ฅ2 โˆˆ โˆ’2, โˆ’1 ร— โˆ’2, โˆ’1

1

12, if ๐‘ฅ1, ๐‘ฅ2 โˆˆ โˆ’2, โˆ’1 ร— 0, 3 โˆช 0, 3 ร— โˆ’2, โˆ’1 .

1

36, if ๐‘ฅ1, ๐‘ฅ2 โˆˆ 0, 3 ร— 0, 3

0, otherwise

Define the auxiliary random variable ๐‘Œ2 = ๐‘‹1 . We have

๐‘†๐‘‹ = ๐‘ฅ = ๐‘ฅ1, ๐‘ฅ2 โˆˆ โ„2: ๐‘“๐‘‹ ๐‘ฅ1, ๐‘ฅ2 > 0

= ๐‘†1 โˆช ๐‘†2 โˆช ๐‘†3 โˆช ๐‘†4,

where ๐‘†1 = โˆ’2, โˆ’1 2, ๐‘†2 = โˆ’2, โˆ’1 ร— 0, 3 , ๐‘†3 = 0, 3 ร— โˆ’2, โˆ’1 and ๐‘†4 =

0, 3 2. Let โ„Ž = โ„Ž1, โ„Ž2 : โ„2 โ†’ โ„2 be defined by

โ„Ž1 ๐‘ฅ1, ๐‘ฅ2 = ๐‘ฅ1 + ๐‘ฅ2 and โ„Ž2 ๐‘ฅ1, ๐‘ฅ2 = ๐‘ฅ1 , ๐‘ฅ = ๐‘ฅ1, ๐‘ฅ2 โˆˆ โ„2 .

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 4

Then ๐‘Œ1 = โ„Ž1 ๐‘‹1, ๐‘‹2 , ๐‘Œ2 = โ„Ž2 ๐‘‹1, ๐‘‹2 , ๐‘†๐‘– โˆฉ ๐‘†๐‘— = ๐œ™, ๐‘– โ‰  ๐‘— and on each ๐‘†๐‘– , ๐‘– = 1, 2, 3, 4,

โ„Ž = โ„Ž1, โ„Ž2 : ๐‘†๐‘– โ†’ โ„2 is one-to-one. Under the notation of Theorem 10.2.2 we have

โ„Ž1,1โˆ’1 ๐‘ก = โˆ’๐‘ก2, โ„Ž2,1

โˆ’1 ๐‘ก = ๐‘ก2 โˆ’ ๐‘ก1, ๐ฝ1 = 0 โˆ’1

โˆ’1 1 = โˆ’1;

โ„Ž1,2โˆ’1 ๐‘ก = โˆ’๐‘ก2, โ„Ž2,2

โˆ’1 ๐‘ก = ๐‘ก1 โˆ’ ๐‘ก2 , ๐ฝ2 = 0 โˆ’11 โˆ’1

= 1;

โ„Ž1,3โˆ’1 ๐‘ก = ๐‘ก2, โ„Ž2,3

โˆ’1 ๐‘ก = ๐‘ก2 โˆ’ ๐‘ก1 , ๐ฝ3 = 0 1

โˆ’1 1 = 1;

โ„Ž1,4โˆ’1 ๐‘ก = ๐‘ก2, โ„Ž2,4

โˆ’1 ๐‘ก = ๐‘ก1 โˆ’ ๐‘ก2 , ๐ฝ4 = 0 11 โˆ’1

= โˆ’1;

โ„Ž ๐‘†1 = ๐‘ก1, ๐‘ก2 โˆˆ โ„2: โˆ’2 < โˆ’๐‘ก2 < โˆ’1 , โˆ’2 < ๐‘ก2 โˆ’ ๐‘ก1 < โˆ’1

= ๐‘ก1, ๐‘ก2 โˆˆ โ„2: ๐‘ก2 + 1 < ๐‘ก1 < ๐‘ก2 + 2, 1 < ๐‘ก2 < 2 ;

โ„Ž ๐‘†2 = ๐‘ก1, ๐‘ก2 โˆˆ โ„2: โˆ’2 < โˆ’๐‘ก2 < โˆ’1, 0 < ๐‘ก1 โˆ’ ๐‘ก2 < 3

= ๐‘ก1, ๐‘ก2 โˆˆ โ„2: ๐‘ก2 < ๐‘ก1 < ๐‘ก2 + 3, 1 < ๐‘ก2 < 2 ;

โ„Ž ๐‘†3 = ๐‘ก1, ๐‘ก2 โˆˆ โ„2: 0 < ๐‘ก2 < 3 , โˆ’2 < ๐‘ก2 โˆ’ ๐‘ก1 < โˆ’1

= ๐‘ก1, ๐‘ก2 โˆˆ โ„2: ๐‘ก2 + 1 < ๐‘ก1 < ๐‘ก2 + 2, 0 < ๐‘ก2 < 3

and

โ„Ž ๐‘†4 = ๐‘ก1, ๐‘ก2 โˆˆ โ„2: 0 < ๐‘ก2 < 3 ,0 < ๐‘ก1 โˆ’ ๐‘ก2 < 3

= ๐‘ก1, ๐‘ก2 โˆˆ โ„2: ๐‘ก2 < ๐‘ก1 < ๐‘ก2 + 3, 0 < ๐‘ก2 < 3 .

Consequently the joint p.d.f. of ๐‘Œ = ๐‘Œ1, ๐‘Œ2 is given by

๐‘“๐‘Œ ๐‘ก1, ๐‘ก2 = ๐‘“๐‘‹ โ„Ž1,๐‘—โˆ’1 ๐‘ก , โ„Ž2,๐‘—

โˆ’1 ๐‘ก ๐ฝ๐‘— ๐ผโ„Ž ๐‘†๐‘— (๐‘ก)

4

๐‘— =1

= ๐‘“๐‘‹ โˆ’๐‘ก2, ๐‘ก2โˆ’๐‘ก1 ๐ผโ„Ž ๐‘†1 ๐‘ก + ๐‘“๐‘‹ โˆ’๐‘ก2, ๐‘ก1โˆ’๐‘ก2 ๐ผโ„Ž ๐‘†2 ๐‘ก

+๐‘“๐‘‹ ๐‘ก2, ๐‘ก2โˆ’๐‘ก1 ๐ผโ„Ž ๐‘†3 (๐‘ก) + ๐‘“๐‘‹ ๐‘ก2, ๐‘ก1โˆ’๐‘ก2 ๐ผโ„Ž ๐‘†4 (๐‘ก)

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 5

=

1

36, if ๐‘ก2 < ๐‘ก1 < ๐‘ก2 + 1, 0 < ๐‘ก2 < 1

1

12+

1

36, if ๐‘ก2 + 1 < ๐‘ก1 < ๐‘ก2 + 2, 0 < ๐‘ก2 < 1

1

36, if ๐‘ก2 + 2 < ๐‘ก1 < ๐‘ก2 + 3, 0 < ๐‘ก2 < 1

1

12+

1

36, if ๐‘ก2 < ๐‘ก1 < ๐‘ก2 + 1, 1 < ๐‘ก2 < 2

1

4+

1

12+

1

12+

1

36, if ๐‘ก2 + 1 < ๐‘ก1 < ๐‘ก2 + 2, 1 < ๐‘ก2 < 2

1

12+

1

36, if ๐‘ก2 + 2 < ๐‘ก1 < ๐‘ก2 + 3, 1 < ๐‘ก2 < 2

1

36, if ๐‘ก2 < ๐‘ก1 < ๐‘ก2 + 1, 2 < ๐‘ก2 < 3

1

12+

1

36, if ๐‘ก2 + 1 < ๐‘ก1 < ๐‘ก2 + 2, 2 < ๐‘ก2 < 3

1

36, if ๐‘ก2 + 2 < ๐‘ก1 < ๐‘ก2 + 3, 2 < ๐‘ก2 < 3

0, otherwise

=

1

36, if 0 < ๐‘ก1 < 2, max 0, ๐‘ก1 โˆ’ 1 < ๐‘ก2 < min 1, ๐‘ก1

or 2 < ๐‘ก1 < 4, max 0, ๐‘ก1 โˆ’ 3 < ๐‘ก2 < min 1, ๐‘ก1 โˆ’ 2

or 2 < ๐‘ก1 < 4, max 2, ๐‘ก1 โˆ’ 1 < ๐‘ก2 < min 3, ๐‘ก1

or 4 < ๐‘ก1 < 6, max 2, ๐‘ก1 โˆ’ 3 < ๐‘ก2 < min 3, ๐‘ก1 โˆ’ 2

1

9, if 1 < ๐‘ก1 < 3, max 0, ๐‘ก1 โˆ’ 2 < ๐‘ก2 < min 1, ๐‘ก1 โˆ’ 1

or 1 < ๐‘ก1 < 3, max 1, ๐‘ก1 โˆ’ 1 < ๐‘ก2 < min 2, ๐‘ก1

or 3 < ๐‘ก1 < 5, max 1, ๐‘ก1 โˆ’ 3 < ๐‘ก2 < min 2, ๐‘ก1 โˆ’ 2

or 3 < ๐‘ก1 < 5, max 2, ๐‘ก1 โˆ’ 2 < ๐‘ก2 < min 3, ๐‘ก1 โˆ’ 1 4

9, if 2 < ๐‘ก1 < 4, max 1, ๐‘ก1 โˆ’ 2 < ๐‘ก2 < min 2, ๐‘ก1 โˆ’ 1

0, otherwise

.

Then the marginal p.d.f. of ๐‘Œ1 is given by

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 6

๐‘“๐‘Œ1 ๐‘ก1 = ๐‘“๐‘Œ

โˆž

โˆ’โˆž

๐‘ก1, ๐‘ก2 ๐‘‘๐‘ก2, ๐‘ก1 โˆˆ โ„.

For ๐‘ก1 โˆˆ 0, 1

๐‘“๐‘Œ1 ๐‘ก1 =

min 1, ๐‘ก1 โˆ’ max 0, ๐‘ก1 โˆ’ 1

36

=๐‘ก1

36;

for ๐‘ก1 โˆˆ 1, 2

๐‘“๐‘Œ1 ๐‘ก1 =

min 1, ๐‘ก1 โˆ’ max 0, ๐‘ก1 โˆ’ 1

36+

min 1, ๐‘ก1 โˆ’ 1 โˆ’ max 0, ๐‘ก1 โˆ’ 2

9

+min 2, ๐‘ก1 โˆ’ max 1, ๐‘ก1 โˆ’ 1

9

=7๐‘ก1 โˆ’ 6

36;

for ๐‘ก1 โˆˆ 2, 3

๐‘“๐‘Œ1 ๐‘ก1 =

min 1, ๐‘ก1 โˆ’ 2 โˆ’ max 0, ๐‘ก1 โˆ’ 3

36+

min 3, ๐‘ก1 โˆ’ max 2, ๐‘ก1 โˆ’ 1

36

+min 1, ๐‘ก1 โˆ’ 1 โˆ’ max 0, ๐‘ก1 โˆ’ 2

9+

min 2, ๐‘ก1 โˆ’ max 1, ๐‘ก1 โˆ’ 1

9

+4 min 2, ๐‘ก1 โˆ’ 1 โˆ’ max 1, ๐‘ก1 โˆ’ 2

9

=5๐‘ก1 โˆ’ 6

18;

for ๐‘ก1 โˆˆ 3, 4

๐‘“๐‘Œ1 ๐‘ก1 =

min 1, ๐‘ก1 โˆ’ 2 โˆ’ max 0, ๐‘ก1 โˆ’ 3

36+

min 3, ๐‘ก1 โˆ’ max 2, ๐‘ก1 โˆ’ 1

36

+min 2, ๐‘ก1 โˆ’ 2 โˆ’ max 1, ๐‘ก1 โˆ’ 3

9+

min 3, ๐‘ก1 โˆ’ 1 โˆ’ max 2, ๐‘ก1 โˆ’ 2

9

+4 min 2, ๐‘ก1 โˆ’ 1 โˆ’ max 1, ๐‘ก1 โˆ’ 2

9

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 7

=24 โˆ’ 5๐‘ก1

18;

for ๐‘ก1 โˆˆ 4, 5

๐‘“๐‘Œ1 ๐‘ก1 =

min 3, ๐‘ก1 โˆ’ 2 โˆ’ max 2, ๐‘ก1 โˆ’ 3

36+

min 2, ๐‘ก1 โˆ’ 2 โˆ’ max 1, ๐‘ก1 โˆ’ 3

9

+min 3, ๐‘ก1 โˆ’ 1 โˆ’ max 2, ๐‘ก1 โˆ’ 2

9

=36 โˆ’ 7๐‘ก1

36;

and, for ๐‘ก1 โˆˆ 5, 6

๐‘“๐‘Œ1 ๐‘ก1 =

min 3, ๐‘ก1 โˆ’ 2 โˆ’ max 2, ๐‘ก1 โˆ’ 3

36

=6 โˆ’ ๐‘ก1

36.

Therefore the p.d.f. of ๐‘Œ1 = ๐‘‹1 + ๐‘‹2 is given by

๐‘“๐‘Œ1(๐‘ก1) =

๐‘ก1

36, if 0 < ๐‘ก1 < 1

7๐‘ก1 โˆ’ 6

36, if 1 < ๐‘ก1 < 2

5๐‘ก1 โˆ’ 6

18, if 2 < ๐‘ก1 < 3

24 โˆ’ 5๐‘ก1

18, if 3 < ๐‘ก1 < 4

36 โˆ’ 7๐‘ก1

36, if 4 < ๐‘ก1 < 5

6 โˆ’ ๐‘ก1

36, if 5 < ๐‘ก1 < 6

0, otherwise

. โ–„

6.10.2.1 Distribution of Order Statistics

Example 10.2.9

Let ๐‘‹1, โ€ฆ , ๐‘‹๐‘› be a random sample of absolutely continuous type random variables having

a common p.d.f. ๐‘“ โˆ™ , the common distribution function ๐น(โ‹…) and a common support

๐‘† = ๐‘ฅ โˆˆ โ„: ๐‘“ ๐‘ฅ > 0 , an open set in โ„. Let ๐‘‹1:๐‘› , โ€ฆ , ๐‘‹๐‘›:๐‘› denote the order statistics of

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 8

๐‘‹1, โ€ฆ , ๐‘‹๐‘› , i.e.,๐‘‹๐‘Ÿ:๐‘› = r-th smallest of ๐‘‹1, โ€ฆ , ๐‘‹๐‘› , ๐‘Ÿ = 1, โ€ฆ , ๐‘›. For notational convenience,

let ๐‘Œ๐‘Ÿ = ๐‘‹๐‘Ÿ:๐‘› , ๐‘Ÿ = 1, โ€ฆ , ๐‘›.

(i) Find an expression for the joint distribution function of ๐‘Œ = ๐‘Œ1, โ€ฆ , ๐‘Œ๐‘› . Hence find

the joint p.d.f. of ๐‘Œ;

(ii) Find the joint p.d.f. of ๐‘Œ directly using Theorem 10.2.2;

(iii) Using (ii), find the marginal p.d.f. of ๐‘Œ๐‘Ÿ , ๐‘Ÿ = 1, โ€ฆ , ๐‘›;

(iv) Using (ii), find the marginal joint p.d.f. of ๐‘Œ๐‘Ÿ , ๐‘Œ๐‘  , where 1 โ‰ค ๐‘Ÿ < ๐‘  โ‰ค ๐‘›.

Proof. The joint p.d.f. of ๐‘‹ = ๐‘‹1, โ€ฆ , ๐‘‹๐‘› is given by

๐‘“๐‘‹ ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› = ๐‘“๐‘‹๐‘–(๐‘ฅ๐‘–)

๐‘›

๐‘–=1

= ๐‘“ ๐‘ฅ๐‘–

๐‘›

๐‘–=1

, ๐‘ฅ = ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› โˆˆ โ„๐‘› .

Let ๐‘†๐‘› = ฮ 1

, โ‹ฏ ,ฮ ๐‘› !

denote the set of all permutations of 1, โ€ฆ , ๐‘› ; here for ๐‘– โˆˆ

1, โ€ฆ , ๐‘›! ,ฮ ๐‘–

= ฮ ๐‘– , 1 , โ€ฆ ,ฮ ๐‘– , ๐‘› is a permutation of 1, โ€ฆ , ๐‘› .

(i) Since ๐‘‹1, โ€ฆ , ๐‘‹๐‘› is a random sample we have

๐‘‹1, โ€ฆ , ๐‘‹๐‘› =๐‘‘

๐‘‹ฮ ๐‘– , 1 , โ€ฆ , ๐‘‹ฮ ๐‘– , ๐‘›

, ๐‘– โˆˆ 1, โ€ฆ , ๐‘›! . (10.2.1)

Also since ๐‘‹ = ๐‘‹1, โ€ฆ , ๐‘‹๐‘› is of absolutely continuous type (as ๐‘‹1, โ€ฆ , ๐‘‹๐‘› are of

absolutely continuous type) we have ๐‘ƒ ๐‘‹๐‘– = ๐‘‹๐‘— , for some ๐‘– โ‰  ๐‘— = 0. Therefore

๐‘ƒ

๐‘› !

๐‘–=1

๐‘‹ฮ ๐‘– , 1 < โ‹ฏ < ๐‘‹ฮ ๐‘– , ๐‘›

= 1.

Then, for ๐‘ฆ = ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘› โˆˆ โ„๐‘› ,

๐น๐‘Œ ๐‘ฆ = ๐‘ƒ ๐‘‹1:๐‘› โ‰ค ๐‘ฆ1, โ€ฆ , ๐‘‹๐‘› :๐‘› โ‰ค ๐‘ฆ๐‘›

= ๐‘ƒ

๐‘› !

๐‘–=1

๐‘‹1:๐‘› โ‰ค ๐‘ฆ1, โ€ฆ , ๐‘‹๐‘› :๐‘› โ‰ค ๐‘ฆ๐‘› , ๐‘‹ฮ ๐‘– , 1 < โ‹ฏ < ๐‘‹ฮ ๐‘– , ๐‘›

= ๐‘ƒ

๐‘› !

๐‘–=1

๐‘‹ฮ ๐‘– , 1 โ‰ค ๐‘ฆ1, โ€ฆ , ๐‘‹ฮ ๐‘– , ๐‘›

โ‰ค ๐‘ฆ๐‘› , ๐‘‹ฮ ๐‘– , 1 < โ‹ฏ < ๐‘‹ฮ ๐‘– , ๐‘›

= ๐‘ƒ

๐‘› !

๐‘–=1

๐‘‹1 โ‰ค ๐‘ฆ1, โ€ฆ , ๐‘‹๐‘› โ‰ค ๐‘ฆ๐‘› , ๐‘‹1 < โ‹ฏ < ๐‘‹๐‘› (using (10.2.1))

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 9

= ๐‘›! ๐‘ƒ ๐‘‹1 โ‰ค ๐‘ฆ1, โ€ฆ , ๐‘‹๐‘› โ‰ค ๐‘ฆ๐‘› , ๐‘‹1 < โ‹ฏ < ๐‘‹๐‘›

= โ‹ฏ

๐‘ฆ1

โˆ’โˆž

๐‘›!

๐‘ฆ๐‘›

โˆ’โˆž

๐‘“ ๐‘ฅ๐‘–

๐‘›

๐‘–=1

๐ผ๐ด ๐‘ฅ ๐‘‘๐‘ฅ๐‘› โ‹ฏ๐‘‘๐‘ฅ1,

where ๐ด = ๐‘ฅ โˆˆ โ„๐‘› : โˆ’โˆž < ๐‘ฅ1 < โ‹ฏ < ๐‘ฅ๐‘› < โˆž .

It follows that ๐‘Œ is of absolutely continuous type with p.d.f.

๐‘“๐‘Œ ๐‘ฆ = ๐‘›! ๐‘“ ๐‘ฆ๐‘–

๐‘›

๐‘–=1

๐ผ๐ด ๐‘ฆ

= ๐‘›! ๐‘“ ๐‘ฆ๐‘–

๐‘›

๐‘–=1

, if โˆ’ โˆž < ๐‘ฆ1 < โ‹ฏ < ๐‘ฆ๐‘› < โˆž

0, otherwise

.

(ii) Since ๐‘‹ is of absolutely continuous type we may, without loss of generality,

take ๐‘†๐‘‹ โŠ† ๐‘ฅ โˆˆ โ„๐‘› : ๐‘ฅ๐‘– โ‰  ๐‘ฅ๐‘— , โˆ€๐‘– โ‰  ๐‘—, ๐‘–, ๐‘— โˆˆ 1, โ€ฆ , ๐‘› . Then ๐‘†๐‘‹ = ๐‘†๐‘–๐‘› !๐‘–=1 ,

where ๐‘†๐‘– = ๐‘ฅ โˆˆ ๐‘†๐‘‹ : ๐‘ฅฮ ๐‘– , 1 < โ‹ฏ < ๐‘ฅฮ ๐‘– , ๐‘›

, ๐‘– = 1, โ€ฆ , ๐‘›! . Define โ„Ž๐‘– : โ„๐‘› โ†’ โ„

by โ„Ž๐‘– ๐‘ฅ = ๐‘–-th smallest of ๐‘ฅ1, โ€ฆ , ๐‘ฅ๐‘› , ๐‘– = 1, โ€ฆ , ๐‘› and โ„Ž = โ„Ž1, โ€ฆ , โ„Ž๐‘› . Then

โ„Ž: ๐‘†๐‘‹ โ†’ โ„๐‘› is not one-to-one (for each ๐‘ฆ โˆˆ โ„Ž ๐‘†๐‘‹ = โ„Ž ๐‘ก : ๐‘ก โˆˆ ๐‘†๐‘‹ , there are

๐‘›! pre-images). However, on each ๐‘†๐‘– , ๐‘– = 1, โ€ฆ , ๐‘›!, โ„Ž: ๐‘†๐‘– โ†’ โ„๐‘› is one-to-one

with inverse transformation โ„Ž๐‘–โˆ’1 ๐‘ฆ = โ„Ž1,๐‘–

โˆ’1 ๐‘ฆ , โ€ฆ , โ„Ž๐‘› ,๐‘–โˆ’1 ๐‘ฆ =

๐‘ฆฮ ๐‘– , 1 โˆ’1 , โ€ฆ , ๐‘ฆฮ ๐‘– , ๐‘›

โˆ’1 , where ฮ ๐‘–

โˆ’1 = ฮ ๐‘– , 1 โˆ’1 , โ€ฆ ,ฮ ๐‘– , ๐‘›

โˆ’1 , ๐‘– = 1, โ€ฆ , ๐‘›! is the inverse

permutation of ฮ ๐‘–. Under the notation of Theorem 10.2.2 each row and each

column of the Jacobian determinant ๐ฝ๐‘– contains one, and only one, non-zero

element which is 1. Therefore ๐ฝ๐‘– = ยฑ 1, ๐‘– = 1, โ€ฆ , ๐‘›! . Also โ„Ž ๐‘†๐‘– =

๐‘ฆ โˆˆ ๐‘†๐‘‹ : โˆ’ โˆž < ๐‘ฆ1 < โ‹ฏ < ๐‘ฆ๐‘› < โˆž = ๐ต, say, ๐‘– = 1, โ€ฆ , ๐‘›. Therefore the joint

p.d.f. of ๐‘Œ is given by

๐‘“๐‘Œ ๐‘ฆ = ๐‘“๐‘‹

๐‘› !

๐‘–=1

๐‘ฆฮ ๐‘– , 1 โˆ’1 , โ€ฆ , ๐‘ฆฮ ๐‘– , ๐‘›

โˆ’1 ๐ฝ๐‘– ๐ผโ„Ž ๐‘†๐‘– ๐‘ฆ

= ๐‘“

๐‘›

๐‘™=1

๐‘ฆฮ ๐‘– , ๐‘™ โˆ’1

๐‘› !

๐‘–=1

๐ผ๐ต ๐‘ฆ .

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 10

Since ฮ ๐‘– , 1 โˆ’1 , โ€ฆ ,ฮ ๐‘– , ๐‘›

โˆ’1 = 1, โ€ฆ , ๐‘› , we have

๐‘“ ๐‘ฆฮ ๐‘– , ๐‘™ โˆ’1

๐‘›

๐‘™=1

= ๐‘“ ๐‘ฆ๐‘™

๐‘›

๐‘™=1

, โˆ€๐‘ฆ โˆˆ ๐ต.

Consequently

๐‘“๐‘Œ ๐‘ฆ = ๐‘“ ๐‘ฆ๐‘™

๐‘›

๐‘™=1

๐‘› !

๐‘–=1

๐ผ๐ต ๐‘ฆ

= ๐‘›! ๐‘“ ๐‘ฆ๐‘™

๐‘›

๐‘™=1

๐ผ๐ต ๐‘ฆ

= ๐‘›! ๐‘“ ๐‘ฆ๐‘™

๐‘›

๐‘™=1

, if โˆ’ โˆž < ๐‘ฆ1 < โ‹ฏ < ๐‘ฆ๐‘› < โˆž

0, otherwise

, ๐‘ฆ โˆˆ ๐‘†๐‘‹ .

(iii) The marginal p.d.f of ๐‘Œ๐‘Ÿ ๐‘Ÿ = 1, โ€ฆ , ๐‘› is given by

๐‘“๐‘Œ๐‘Ÿ ๐‘ฆ = โ‹ฏ

โˆž

โˆ’โˆž

โ‹ฏ

โˆž

โˆ’โˆž

โˆž

โˆ’โˆž

๐‘“๐‘Œ

โˆž

โˆ’โˆž

๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘Ÿโˆ’1๐‘ฆ, ๐‘ฆ๐‘Ÿ+1, โ€ฆ , ๐‘ฆ๐‘› ๐‘‘๐‘ฆ๐‘™

๐‘›

๐‘™=1๐‘™โ‰ ๐‘Ÿ

= โ‹ฏ

๐‘ฆ๐‘›

๐‘ฆ

โˆž

๐‘ฆ

โ‹ฏ

๐‘ฆ๐‘Ÿโˆ’1

โˆ’โˆž

๐‘ฆ

โˆ’โˆž

๐‘ฆ๐‘Ÿ+2

๐‘ฆ

๐‘›!

๐‘ฆ2

โˆ’โˆž

๐‘“ ๐‘ฆ๐‘™

๐‘›

๐‘™=1๐‘™โ‰ ๐‘Ÿ

๐‘“ ๐‘ฆ ๐‘‘๐‘ฆ๐‘™

๐‘›

๐‘™=1๐‘™โ‰ ๐‘Ÿ

=๐‘›!

(๐‘Ÿ โˆ’ 1)! (๐‘› โˆ’ ๐‘Ÿ)! ๐น ๐‘ฆ ๐‘Ÿโˆ’1 1 โˆ’ ๐น ๐‘ฆ ๐‘›โˆ’๐‘Ÿ๐‘“ ๐‘ฆ , โˆ’ โˆž < ๐‘ฆ < โˆž,

since โˆซ ๐‘“ ๐‘ก ๐‘Ž

โˆ’โˆž๐‘‘๐‘ก = ๐น ๐‘Ž and โˆซ ๐‘“ ๐‘ก

โˆž

๐‘๐‘‘๐‘ก = 1 โˆ’ ๐น ๐‘ , ๐‘Ž, ๐‘ โˆˆ โ„.

(iv) As in (iii) we have

๐‘“๐‘Œ๐‘Ÿ ,๐‘Œ๐‘  ๐‘ฅ, ๐‘ฆ = โ‹ฏ

โˆž

โˆ’โˆž

๐‘›!

โˆž

โˆ’โˆž

๐‘“๐‘Œ ๐‘ฆ1, โ€ฆ , ๐‘ฆ๐‘Ÿโˆ’1, ๐‘ฅ, ๐‘ฆ๐‘Ÿ+1, โ€ฆ๐‘ฆ๐‘ โˆ’1, ๐‘ฆ, ๐‘ฆ๐‘ +1, โ€ฆ๐‘ฆ๐‘› ๐‘‘๐‘ฆ๐‘™

๐‘›

๐‘™=1๐‘™โ‰ ๐‘Ÿ ,๐‘ 

= โ‹ฏ

๐‘ฆ๐‘›

๐‘ฆ

โˆž

๐‘ฆ

โ‹ฏ

๐‘ฆ๐‘ โˆ’1

๐‘ฅ

๐‘ฆ

๐‘ฅ

๐‘ฆ๐‘ +2

๐‘ฆ

โ‹ฏ

๐‘ฆ๐‘Ÿโˆ’1

โˆ’โˆž

๐‘ฅ

โˆ’โˆž

๐‘ฆ๐‘Ÿ+2

๐‘ฅ

๐‘›!

๐‘ฆ2

โˆ’โˆž

๐‘“ ๐‘ฆ๐‘™

๐‘›

๐‘™=1๐‘™โ‰ ๐‘Ÿ ,๐‘ 

๐‘“ ๐‘ฅ ๐‘“ ๐‘ฆ ๐‘‘๐‘ฆ๐‘™

๐‘›

๐‘™=1๐‘™โ‰ ๐‘Ÿ ,๐‘ 

, if ๐‘ฅ < ๐‘ฆ

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 11

=๐‘›!

๐‘Ÿ โˆ’ 1 ! ๐‘  โˆ’ ๐‘Ÿ โˆ’ 1 ! ๐‘› โˆ’ ๐‘  ! ๐น ๐‘ฅ ๐‘Ÿโˆ’1 ร—

๐น ๐‘ฆ โˆ’ ๐น ๐‘ฅ ๐‘ โˆ’๐‘Ÿโˆ’1 1 โˆ’ ๐น ๐‘ฆ ๐‘›โˆ’๐‘ ๐‘“ ๐‘ฅ ๐‘“ ๐‘ฆ , if โˆ’ โˆž < ๐‘ฅ < ๐‘ฆ < โˆž.

Clearly ๐‘“๐‘Œ๐‘Ÿ ,๐‘Œ๐‘  ๐‘ฅ, ๐‘ฆ = 0, if ๐‘ฅ โ‰ฅ ๐‘ฆ.

Therefore,

๐‘“๐‘Ÿ ,๐‘  ๐‘ฅ, ๐‘ฆ

=

๐‘›!

๐‘Ÿ โˆ’ 1 ! ๐‘  โˆ’ ๐‘Ÿ โˆ’ 1 ! ๐‘› โˆ’ ๐‘  ! ๐น ๐‘ฅ ๐‘Ÿโˆ’1 ๐น ๐‘ฆ โˆ’ ๐น ๐‘ฅ ๐‘ โˆ’๐‘Ÿโˆ’1 1 โˆ’ ๐น ๐‘ฆ ๐‘›โˆ’๐‘ ๐‘“ ๐‘ฅ ๐‘“ ๐‘ฆ ,

if โˆ’ โˆž < ๐‘ฅ < ๐‘ฆ < โˆž

0, otherwise

.โ–„

6.10.2.2 Distribution of Normalized Spacingโ€™s of Exponential Distribution

Example 10.2.10

Let ๐‘‹1, โ€ฆ , ๐‘‹๐‘› be a random sample from Exp ๐œƒ distribution, where ๐œƒ > 0. Let ๐‘‹1:๐‘› โ‰ค

โ‹ฏ โ‰ค ๐‘‹๐‘›:๐‘› denote the order statistics of ๐‘‹1, โ€ฆ , ๐‘‹๐‘› . Define ๐‘1 = ๐‘› ๐‘‹1:๐‘› , ๐‘๐‘– =

๐‘› โˆ’ ๐‘– + 1 ๐‘‹๐‘–:๐‘› โˆ’ ๐‘‹๐‘–โˆ’1:๐‘› , ๐‘– = 2, โ€ฆ , ๐‘› . Show that ๐‘1, โ€ฆ , ๐‘๐‘› are independent and

identically distributed Exp ๐œƒ random variables.

Solution. The common p.d.f. of random variables ๐‘‹1, โ€ฆ , ๐‘‹๐‘› is

๐‘“ ๐‘ฆ = 1

๐œƒ๐‘’โˆ’

๐‘ฆ

๐œƒ , if ๐‘ฆ > 0

0, otherwise

.

For notational convenience, let ๐‘Œ๐‘Ÿ = ๐‘‹๐‘Ÿโˆถ๐‘› , ๐‘Ÿ = 1, โ€ฆ , ๐‘›. Then, by Example 10.2.9, a joint

p.d.f. of ๐‘Œ = ๐‘Œ1, โ€ฆ , ๐‘Œ๐‘› is

๐‘“๐‘Œ ๐‘ฆ = ๐‘›! ๐‘“ ๐‘ฆ๐‘–

๐‘›

๐‘–=1

, if 0 < ๐‘ฆ1 < ๐‘ฆ2 < โ‹ฏ < ๐‘ฆ๐‘› < โˆž

0, otherwise

= ๐‘›!

๐œƒ๐‘›๐‘’โˆ’

๐‘ฆ๐‘–๐‘›1=1

๐œƒ , if 0 < ๐‘ฆ1 < ๐‘ฆ2 < โ‹ฏ < ๐‘ฆ๐‘› < โˆž

0, otherwise

.

The support of ๐‘“๐‘Œ โ‹… is ๐‘†๐‘Œ = ๐‘ฆ โˆˆ โ„๐‘› : 0 < ๐‘ฆ1 < ๐‘ฆ2 < โ‹ฏ < ๐‘Œ๐‘› < โˆž . Consider the

transformation โ„Ž = โ„Ž1, โ€ฆ , โ„Ž๐‘› : โ„๐‘› โ†’ โ„๐‘› , where โ„Ž1 ๐‘ฆ = ๐‘›๐‘ฆ1, โ„Ž๐‘– ๐‘ฆ = ๐‘› โˆ’ ๐‘– +

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 12

1 ๐‘ฆ๐‘– โˆ’ ๐‘ฆ๐‘–โˆ’1 , ๐‘– = 2, โ€ฆ , ๐‘›. Then ๐‘1 = โ„Ž1 ๐‘Œ and ๐‘๐‘– = โ„Ž๐‘– ๐‘Œ , ๐‘– = 2, โ€ฆ , ๐‘› . Clearly the

transformation โ„Ž: ๐‘†๐‘Œ โ†’ โ„๐‘› is one-to-one with inverse transformation โ„Žโˆ’1 =

โ„Ž1โˆ’1, โ€ฆ , โ„Ž๐‘›

โˆ’1 , where for ๐‘ง โˆˆ โ„Ž ๐‘†๐‘Œ ,

โ„Ž1โˆ’1 ๐‘ง =

๐‘ง1

๐‘›

โ„Ž2โˆ’1 ๐‘ง =

๐‘ง1

๐‘›+

๐‘ง2

๐‘› โˆ’ 1

โ‹ฎ

โ„Ž๐‘–โˆ’1 ๐‘ง =

๐‘ง1

๐‘›+

๐‘ง2

๐‘› โˆ’ 1+ โ‹ฏ +

๐‘ง๐‘–

๐‘› โˆ’ ๐‘– + 1=

๐‘ง๐‘—

๐‘› โˆ’ ๐‘— + 1

๐‘–

๐‘— =1

โ‹ฎ

โ„Ž๐‘›โˆ’1 ๐‘ง =

๐‘ง1

๐‘›+

๐‘ง2

๐‘› โˆ’ 1+ โ‹ฏ +

๐‘ง๐‘›โˆ’1

2+

๐‘ง๐‘›

1=

๐‘ง๐‘—

๐‘› โˆ’ ๐‘— + 1

๐‘›

๐‘— =1

.

The Jacobian determinant of the transformation is

๐ฝ =

๐œ•โ„Ž1โˆ’1

๐œ•๐‘ง1 ๐œ•โ„Ž1

โˆ’1

๐œ•๐‘ง2 โ‹ฏ

๐œ•โ„Ž1โˆ’1

๐œ•๐‘ง๐‘›

๐œ•โ„Ž2โˆ’1

๐œ•๐‘ง1 ๐œ•โ„Ž2

โˆ’1

๐œ•๐‘ง2 โ‹ฏ

๐œ•โ„Ž2โˆ’1

๐œ•๐‘ง๐‘›

โ‹ฎ๐œ•โ„Ž๐‘›

โˆ’1

๐œ•๐‘ง1 ๐œ•โ„Ž๐‘›

โˆ’1

๐œ•๐‘ง2 โ‹ฏ

๐œ•โ„Ž๐‘›โˆ’1

๐œ•๐‘ง๐‘›

=

1

๐‘› 0 0 โ‹ฏ 0

1

๐‘›

1

๐‘› โˆ’ 1 0 โ‹ฏ 0

1

๐‘›

1

๐‘› โˆ’ 1

1

๐‘› โˆ’ 2 โ‹ฏ 0

โ‹ฎ1

๐‘›

1

๐‘› โˆ’ 1

1

๐‘› โˆ’ 2 โ‹ฏ 1

=1

๐‘›! .

Also

NPTEL- Probability and Distributions

Dept. of Mathematics and Statistics Indian Institute of Technology, Kanpur 13

๐‘ง = ๐‘ง1, ๐‘ง2, โ€ฆ , ๐‘ง๐‘› โˆˆ โ„Ž ๐‘†๐‘Œ โ‡” โ„Ž1โˆ’1 ๐‘ง , โ€ฆ , โ„Ž๐‘›

โˆ’1 ๐‘ง โˆˆ ๐‘†๐‘Œ

โ‡” 0 <๐‘ง1

๐‘›<

๐‘ง1

๐‘›+

๐‘ง2

๐‘›< โ‹ฏ <

๐‘ง1

๐‘›+

๐‘ง2

๐‘›+ โ‹ฏ +

๐‘ง๐‘›

๐‘›< โˆž

โ‡” ๐‘ง๐‘– > 0, ๐‘– = 1, โ€ฆ๐‘›.

Therefore โ„Ž ๐‘†๐‘Œ = 0,โˆž ๐‘› and the joint p.d.f. of ๐‘ is given by

๐‘“๐‘ ๐‘ง = ๐‘“๐‘Œ โ„Ž1โˆ’1 ๐‘ง , โ€ฆ , โ„Ž๐‘›

โˆ’1 ๐‘ง ๐ฝ ๐ผโ„Ž ๐‘†๐‘Œ ๐‘ง

= ๐‘›!

๐œƒ๐‘›๐‘’โˆ’

1

๐œƒ โ„Ž๐‘–

โˆ’1 ๐‘ง ๐‘›1=1 ร—

1

๐‘›!ร— ๐ผ 0,โˆž ๐‘› ๐‘ง .

We have, for ๐‘ง โˆˆ 0,โˆž ๐‘› ,

โ„Ž๐‘–โˆ’1 ๐‘ง

๐‘›

๐‘–=1

= ๐‘ง๐‘—

๐‘› โˆ’ ๐‘— + 1

๐‘–

๐‘— =1

๐‘›

๐‘–=1

= ๐‘ง๐‘—

๐‘› โˆ’ ๐‘— + 1

๐‘›

๐‘–=๐‘—

๐‘›

๐‘— =1

= ๐‘ง๐‘—

๐‘›

๐‘— =1

.

Since ๐ผ 0,โˆž ๐‘› ๐‘ง = ๐ผ 0,โˆž ๐‘ง๐‘– ๐‘›๐‘–=1 , we have

๐‘“๐‘ ๐‘ง = 1

๐œƒ๐‘’โˆ’

๐‘ง๐‘–๐œƒ ๐ผ 0,โˆž ๐‘ง๐‘–

๐‘›

๐‘–=1

.

It follows that ๐‘1, โ€ฆ , ๐‘๐‘› are independent and identically distributed Exp(๐œƒ) random

variables. โ–„