84
Level Set Methods in Convex Optimization James V Burke Mathematics, University of Washington Joint work with Aleksandr Aravkin (UW), Michael Friedlander (UBC/Davis), Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute, Toronto Workshop on Nonlinear Optimization Algorithms and Industrial Applications June 2016

Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Level Set Methods in Convex Optimization

James V BurkeMathematics, University of Washington

Joint work withAleksandr Aravkin (UW), Michael Friedlander (UBC/Davis),

Dmitriy Drusvyatskiy (UW) and Scott Roy (UW)

Happy Birthday Andy!

Fields Institute, TorontoWorkshop on Nonlinear Optimization Algorithms and Industrial Applications

June 2016

Page 2: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

MotivationOptimization in Large-Scale Inference• A range of large-scale data science applications can bemodeled using optimization:

- Inverse problems (medical and seismic imaging )- High dimensional inference (compressive sensing, LASSO,quantile regression)

- Machine learning (classification, matrix completion, robustPCA, time series)

• These applications are often solved using side information:- Sparsity or low rank of solution- Constraints (topography, non-negativity)- Regularization (priors, total variation, “dirty” data)

• We need efficient large-scale solvers for nonsmoothprograms.

2/33

Page 3: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Foundations of Nonsmooth Methods for NLP

I. I. EREMIN, The penalty method in convex programming,Soviet Math. Dokl., 8 (1966), pp. 459-462.W. I. ZANGWILL, Nonlinear programming via penalty functions,Management Sci., 13 (1967), pp. 344-358.T. PIETRZYKOWSKI, An exact potential method for constrainedmaxima, SIAM J. Numer. Anal., 6 (1969), pp. 299-304.

A.R. Conn, Constrained optimization using a non-differentiablepenalty function, SIAM Journal on Numerical Analysis, vol. 10(4),pp. 760-784, 1973.T.F. Coleman and A.R. Conn, Second-order conditions for an exactpenalty function, Mathematical Programming A, vol. 19(2), pp.178-185, 1980.R.H. Bartels and A.R. Conn, An Approach to Nonlinear `1 DataFitting, Proceedings of the Third Mexican Workshop on NumericalAnalysis, pp. 48-58, J. P. Hennart (Ed.), Springer-Verlag, 1981.

3/33

Page 4: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Foundations of Nonsmooth Methods for NLP

I. I. EREMIN, The penalty method in convex programming,Soviet Math. Dokl., 8 (1966), pp. 459-462.W. I. ZANGWILL, Nonlinear programming via penalty functions,Management Sci., 13 (1967), pp. 344-358.T. PIETRZYKOWSKI, An exact potential method for constrainedmaxima, SIAM J. Numer. Anal., 6 (1969), pp. 299-304.

A.R. Conn, Constrained optimization using a non-differentiablepenalty function, SIAM Journal on Numerical Analysis, vol. 10(4),pp. 760-784, 1973.

T.F. Coleman and A.R. Conn, Second-order conditions for an exactpenalty function, Mathematical Programming A, vol. 19(2), pp.178-185, 1980.R.H. Bartels and A.R. Conn, An Approach to Nonlinear `1 DataFitting, Proceedings of the Third Mexican Workshop on NumericalAnalysis, pp. 48-58, J. P. Hennart (Ed.), Springer-Verlag, 1981.

3/33

Page 5: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Foundations of Nonsmooth Methods for NLP

I. I. EREMIN, The penalty method in convex programming,Soviet Math. Dokl., 8 (1966), pp. 459-462.W. I. ZANGWILL, Nonlinear programming via penalty functions,Management Sci., 13 (1967), pp. 344-358.T. PIETRZYKOWSKI, An exact potential method for constrainedmaxima, SIAM J. Numer. Anal., 6 (1969), pp. 299-304.

A.R. Conn, Constrained optimization using a non-differentiablepenalty function, SIAM Journal on Numerical Analysis, vol. 10(4),pp. 760-784, 1973.T.F. Coleman and A.R. Conn, Second-order conditions for an exactpenalty function, Mathematical Programming A, vol. 19(2), pp.178-185, 1980.

R.H. Bartels and A.R. Conn, An Approach to Nonlinear `1 DataFitting, Proceedings of the Third Mexican Workshop on NumericalAnalysis, pp. 48-58, J. P. Hennart (Ed.), Springer-Verlag, 1981.

3/33

Page 6: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Foundations of Nonsmooth Methods for NLP

I. I. EREMIN, The penalty method in convex programming,Soviet Math. Dokl., 8 (1966), pp. 459-462.W. I. ZANGWILL, Nonlinear programming via penalty functions,Management Sci., 13 (1967), pp. 344-358.T. PIETRZYKOWSKI, An exact potential method for constrainedmaxima, SIAM J. Numer. Anal., 6 (1969), pp. 299-304.

A.R. Conn, Constrained optimization using a non-differentiablepenalty function, SIAM Journal on Numerical Analysis, vol. 10(4),pp. 760-784, 1973.T.F. Coleman and A.R. Conn, Second-order conditions for an exactpenalty function, Mathematical Programming A, vol. 19(2), pp.178-185, 1980.R.H. Bartels and A.R. Conn, An Approach to Nonlinear `1 DataFitting, Proceedings of the Third Mexican Workshop on NumericalAnalysis, pp. 48-58, J. P. Hennart (Ed.), Springer-Verlag, 1981.

3/33

Page 7: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Prototypical Problem

Sparse Data Fitting:

Find sparse x with Ax ≈ b

There are numerous applications;• system identification• image segmentation• compressed sensing• grouped sparsity for remote sensor location• ...

4/33

Page 8: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Prototypical ProblemSparse Data Fitting:

Find sparse x with Ax ≈ b

Convex approaches: ‖x‖1 as a sparsity surragate(Candes-Tao-Donaho ’05)

BPDN LASSO Lagrangian (Penalty)

minx

‖x‖1

s.t. 12‖Ax − b‖2

2 ≤ σmin

x12‖Ax − b‖2

2

s.t. ‖x‖1 ≤ τmin

x12‖Ax − b‖2

2 + λ‖x‖1

• BPDN: often most natural and transparent.(physical considerations guide σ)

• Lagrangian: ubiquitous in practice.(“no constraints”)

All three are (essentially) equivalent computationally!

Basis for SPGL1 (van den Berg-Friedlander ’08)

5/33

Page 9: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Prototypical ProblemSparse Data Fitting:

Find sparse x with Ax ≈ b

Convex approaches: ‖x‖1 as a sparsity surragate(Candes-Tao-Donaho ’05)

BPDN LASSO Lagrangian (Penalty)

minx

‖x‖1

s.t. 12‖Ax − b‖2

2 ≤ σmin

x12‖Ax − b‖2

2

s.t. ‖x‖1 ≤ τmin

x12‖Ax − b‖2

2 + λ‖x‖1

• BPDN: often most natural and transparent.(physical considerations guide σ)

• Lagrangian: ubiquitous in practice.(“no constraints”)

All three are (essentially) equivalent computationally!

Basis for SPGL1 (van den Berg-Friedlander ’08)

5/33

Page 10: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Prototypical ProblemSparse Data Fitting:

Find sparse x with Ax ≈ b

Convex approaches: ‖x‖1 as a sparsity surragate(Candes-Tao-Donaho ’05)

BPDN LASSO Lagrangian (Penalty)

minx

‖x‖1

s.t. 12‖Ax − b‖2

2 ≤ σmin

x12‖Ax − b‖2

2

s.t. ‖x‖1 ≤ τmin

x12‖Ax − b‖2

2 + λ‖x‖1

• BPDN: often most natural and transparent.(physical considerations guide σ)

• Lagrangian: ubiquitous in practice.(“no constraints”)

All three are (essentially) equivalent computationally!

Basis for SPGL1 (van den Berg-Friedlander ’08)

5/33

Page 11: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Prototypical ProblemSparse Data Fitting:

Find sparse x with Ax ≈ b

Convex approaches: ‖x‖1 as a sparsity surragate(Candes-Tao-Donaho ’05)

BPDN LASSO Lagrangian (Penalty)

minx

‖x‖1

s.t. 12‖Ax − b‖2

2 ≤ σmin

x12‖Ax − b‖2

2

s.t. ‖x‖1 ≤ τmin

x12‖Ax − b‖2

2 + λ‖x‖1

• BPDN: often most natural and transparent.(physical considerations guide σ)

• Lagrangian: ubiquitous in practice.(“no constraints”)

All three are (essentially) equivalent computationally!

Basis for SPGL1 (van den Berg-Friedlander ’08)

5/33

Page 12: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Prototypical ProblemSparse Data Fitting:

Find sparse x with Ax ≈ b

Convex approaches: ‖x‖1 as a sparsity surragate(Candes-Tao-Donaho ’05)

BPDN LASSO Lagrangian (Penalty)

minx

‖x‖1

s.t. 12‖Ax − b‖2

2 ≤ σmin

x12‖Ax − b‖2

2

s.t. ‖x‖1 ≤ τmin

x12‖Ax − b‖2

2 + λ‖x‖1

• BPDN: often most natural and transparent.(physical considerations guide σ)

• Lagrangian: ubiquitous in practice.(“no constraints”)

All three are (essentially) equivalent computationally!

Basis for SPGL1 (van den Berg-Friedlander ’08)

5/33

Page 13: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Prototypical ProblemSparse Data Fitting:

Find sparse x with Ax ≈ b

Convex approaches: ‖x‖1 as a sparsity surragate(Candes-Tao-Donaho ’05)

BPDN LASSO Lagrangian (Penalty)

minx

‖x‖1

s.t. 12‖Ax − b‖2

2 ≤ σmin

x12‖Ax − b‖2

2

s.t. ‖x‖1 ≤ τmin

x12‖Ax − b‖2

2 + λ‖x‖1

• BPDN: often most natural and transparent.(physical considerations guide σ)

• Lagrangian: ubiquitous in practice.(“no constraints”)

All three are (essentially) equivalent computationally!

Basis for SPGL1 (van den Berg-Friedlander ’08) 5/33

Page 14: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Optimal Value or Level Set Framework

Problem class: Solve

minx∈X

φ(x)

s.t. ρ(Ax − b) ≤ σP(σ)

Strategy: Consider the “flipped” problem

v(τ) := minx∈X

ρ(Ax − b)

s.t. φ(x) ≤ τQ(τ)

Then opt-val(P(σ)) is the minimal root of the equation

v(τ) = σ

6/33

Page 15: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Optimal Value or Level Set Framework

Problem class: Solve

minx∈X

φ(x)

s.t. ρ(Ax − b) ≤ σP(σ)

Strategy: Consider the “flipped” problem

v(τ) := minx∈X

ρ(Ax − b)

s.t. φ(x) ≤ τQ(τ)

Then opt-val(P(σ)) is the minimal root of the equation

v(τ) = σ

6/33

Page 16: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Optimal Value or Level Set Framework

Problem class: Solve

minx∈X

φ(x)

s.t. ρ(Ax − b) ≤ σP(σ)

Strategy: Consider the “flipped” problem

v(τ) := minx∈X

ρ(Ax − b)

s.t. φ(x) ≤ τQ(τ)

Then opt-val(P(σ)) is the minimal root of the equation

v(τ) = σ

6/33

Page 17: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Queen Dido’s Problem

The intuition behind the proposed framework has adistinguished history, appearing even in antiquity. Perhaps theearliest instance is Queen Dido’s problem and the fabled originsof Carthage.

In short, the problem is to find the maximum area that can beenclosed by an arc of fixed length and a given line. Theconverse problem is to find an arc of least length that traps afixed area between a line and the arc. Although these twoproblems reverse the objective and the constraint, the solutionin each case is a semi-circle.

Other historical examples abound (e.g. the isoperimetricinequality). More recently, these observations provide the basisfor the Markowitz Mean-Variance Portfolio Theory.

7/33

Page 18: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Queen Dido’s Problem

The intuition behind the proposed framework has adistinguished history, appearing even in antiquity. Perhaps theearliest instance is Queen Dido’s problem and the fabled originsof Carthage.

In short, the problem is to find the maximum area that can beenclosed by an arc of fixed length and a given line. Theconverse problem is to find an arc of least length that traps afixed area between a line and the arc. Although these twoproblems reverse the objective and the constraint, the solutionin each case is a semi-circle.

Other historical examples abound (e.g. the isoperimetricinequality). More recently, these observations provide the basisfor the Markowitz Mean-Variance Portfolio Theory.

7/33

Page 19: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Role of ConvexityConvex SetsLet C ⊂ Rn . We say that C is convex if

(1− λ)x + λy ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1.

Convex FunctionsLet f : Rn → R̄ := R ∪ {+∞}. We say that f is convex if theset

epi (f ) := { (x, µ) : f (x) ≤ µ }is a convex set.

x x + (1 - )x 2x

21(x , f (x ))1

2(x , f (x ))

λ 1 λ 21

f ((1− λ)x1 + λx2) ≤ (1− λ)f (x1) + λf (x2)

8/33

Page 20: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Role of ConvexityConvex SetsLet C ⊂ Rn . We say that C is convex if

(1− λ)x + λy ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1.Convex FunctionsLet f : Rn → R̄ := R ∪ {+∞}. We say that f is convex if theset

epi (f ) := { (x, µ) : f (x) ≤ µ }is a convex set.

x x + (1 - )x 2x

21(x , f (x ))1

2(x , f (x ))

λ 1 λ 21

f ((1− λ)x1 + λx2) ≤ (1− λ)f (x1) + λf (x2)

8/33

Page 21: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

The Role of ConvexityConvex SetsLet C ⊂ Rn . We say that C is convex if

(1− λ)x + λy ∈ C whenever x, y ∈ C and 0 ≤ λ ≤ 1.Convex FunctionsLet f : Rn → R̄ := R ∪ {+∞}. We say that f is convex if theset

epi (f ) := { (x, µ) : f (x) ≤ µ }is a convex set.

x x + (1 - )x 2x

21(x , f (x ))1

2(x , f (x ))

λ 1 λ 21

f ((1− λ)x1 + λx2) ≤ (1− λ)f (x1) + λf (x2)8/33

Page 22: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Convex FunctionsConvex indicator functionsLet C ⊂ Rn . Then the function

δC (x) :={0 , if x ∈ C ,+∞ , if x /∈ C ,

is a convex function.

AdditionNon-negative linear combinations of convex functions areconvex: fi convex and λi ≥ 0, i = 1, . . . , k

f (x) :=∑k

i=1 λi fi(x).

Infimal ProjectionIf f : Rn × Rm → R̄ is convex, then so is

v(x) := infy f (x, y),since

epi (v) = { (x, µ) : ∃ y ∈ s.t. f (x, y) ≤ µ }.

9/33

Page 23: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Convex FunctionsConvex indicator functionsLet C ⊂ Rn . Then the function

δC (x) :={0 , if x ∈ C ,+∞ , if x /∈ C ,

is a convex function.AdditionNon-negative linear combinations of convex functions areconvex: fi convex and λi ≥ 0, i = 1, . . . , k

f (x) :=∑k

i=1 λi fi(x).

Infimal ProjectionIf f : Rn × Rm → R̄ is convex, then so is

v(x) := infy f (x, y),since

epi (v) = { (x, µ) : ∃ y ∈ s.t. f (x, y) ≤ µ }.

9/33

Page 24: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Convex FunctionsConvex indicator functionsLet C ⊂ Rn . Then the function

δC (x) :={0 , if x ∈ C ,+∞ , if x /∈ C ,

is a convex function.AdditionNon-negative linear combinations of convex functions areconvex: fi convex and λi ≥ 0, i = 1, . . . , k

f (x) :=∑k

i=1 λi fi(x).

Infimal ProjectionIf f : Rn × Rm → R̄ is convex, then so is

v(x) := infy f (x, y),since

epi (v) = { (x, µ) : ∃ y ∈ s.t. f (x, y) ≤ µ }.9/33

Page 25: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Convexity of v

When X , ρ, and φ are convex, the optimal value function v is anon-increasing convex function by infimal projection:

v(τ) := minx∈X

ρ(Ax − b) s.t. φ(x) ≤ τ

= minx

ρ(Ax − b) + δepi (φ)(x, τ) + δX (x)

10/33

Page 26: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Newton and Secant Methods

For f convex and non-increasing, solve f (τ) = 0.

0 20 40 60 80 1000

50

100

150

200

250

300

350

400

The problem is that f is often not differentiable.

Use the convex subdifferential∂f (x) := { z : f (y) ≥ f (x) + zT (y − x) ∀ y ∈ Rn }

11/33

Page 27: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Newton and Secant Methods

For f convex and non-increasing, solve f (τ) = 0.

0 20 40 60 80 1000

50

100

150

200

250

300

350

400

The problem is that f is often not differentiable.

Use the convex subdifferential∂f (x) := { z : f (y) ≥ f (x) + zT (y − x) ∀ y ∈ Rn }

11/33

Page 28: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Newton and Secant Methods

For f convex and non-increasing, solve f (τ) = 0.

0 20 40 60 80 1000

50

100

150

200

250

300

350

400

The problem is that f is often not differentiable.

Use the convex subdifferential∂f (x) := { z : f (y) ≥ f (x) + zT (y − x) ∀ y ∈ Rn }

11/33

Page 29: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Newton and Secant Methods

For f convex and non-increasing, solve f (τ) = 0.

0 20 40 60 80 1000

50

100

150

200

250

300

350

400

The problem is that f is often not differentiable.

Use the convex subdifferential∂f (x) := { z : f (y) ≥ f (x) + zT (y − x) ∀ y ∈ Rn }

11/33

Page 30: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Superlinear ConvergenceLet τ∗ := inf{τ : f (τ) ≤ 0} and assume

g∗ := inf { g : g ∈ ∂f (τ∗) } < 0 (non-degeneracy)

Initialization: τ−1 < τ0 < τ∗

τk+1 :={τk if f (τk) = 0,τk − f (τk)

gk[for gk ∈ ∂f (τk)] otherwise;

(Newton)

and

τk+1 :={τk if f (τk) = 0,τk − τk−τk−1

f (τk)−f (τk−1) f (τk) otherwise.(Secant)

If either sequence terminates finitely at some τk , then τk = τ∗;otherwise,

|τ∗ − τk+1| ≤ (1− g∗γk

)|τ∗ − τk |, k = 1, 2, . . . ,

where γk = gk (Newton) and γk ∈ ∂f (τk−1) (secant). In either case,γk ↑ g∗ and τk ↑ τ∗ globally q-superlinearly.

12/33

Page 31: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Superlinear ConvergenceLet τ∗ := inf{τ : f (τ) ≤ 0} and assume

g∗ := inf { g : g ∈ ∂f (τ∗) } < 0 (non-degeneracy)Initialization: τ−1 < τ0 < τ∗

τk+1 :={τk if f (τk) = 0,τk − f (τk)

gk[for gk ∈ ∂f (τk)] otherwise;

(Newton)

and

τk+1 :={τk if f (τk) = 0,τk − τk−τk−1

f (τk)−f (τk−1) f (τk) otherwise.(Secant)

If either sequence terminates finitely at some τk , then τk = τ∗;otherwise,

|τ∗ − τk+1| ≤ (1− g∗γk

)|τ∗ − τk |, k = 1, 2, . . . ,

where γk = gk (Newton) and γk ∈ ∂f (τk−1) (secant). In either case,γk ↑ g∗ and τk ↑ τ∗ globally q-superlinearly.

12/33

Page 32: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Superlinear ConvergenceLet τ∗ := inf{τ : f (τ) ≤ 0} and assume

g∗ := inf { g : g ∈ ∂f (τ∗) } < 0 (non-degeneracy)Initialization: τ−1 < τ0 < τ∗

τk+1 :={τk if f (τk) = 0,τk − f (τk)

gk[for gk ∈ ∂f (τk)] otherwise;

(Newton)

and

τk+1 :={τk if f (τk) = 0,τk − τk−τk−1

f (τk)−f (τk−1) f (τk) otherwise.(Secant)

If either sequence terminates finitely at some τk , then τk = τ∗;otherwise,

|τ∗ − τk+1| ≤ (1− g∗γk

)|τ∗ − τk |, k = 1, 2, . . . ,

where γk = gk (Newton) and γk ∈ ∂f (τk−1) (secant). In either case,γk ↑ g∗ and τk ↑ τ∗ globally q-superlinearly.

12/33

Page 33: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding

• Problem: Find root of the inexactly known convex function

v(·)− σ.

• Bisection is one approach• nonmonotone iterates (bad for warm starts)• at best linear convergence (with perfect information)

• Solution:• modified secant• approximate Newton methods

13/33

Page 34: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding

• Problem: Find root of the inexactly known convex function

v(·)− σ.

• Bisection is one approach

• nonmonotone iterates (bad for warm starts)• at best linear convergence (with perfect information)

• Solution:• modified secant• approximate Newton methods

13/33

Page 35: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding

• Problem: Find root of the inexactly known convex function

v(·)− σ.

• Bisection is one approach• nonmonotone iterates (bad for warm starts)• at best linear convergence (with perfect information)

• Solution:• modified secant• approximate Newton methods

13/33

Page 36: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding

• Problem: Find root of the inexactly known convex function

v(·)− σ.

• Bisection is one approach• nonmonotone iterates (bad for warm starts)• at best linear convergence (with perfect information)

• Solution:• modified secant• approximate Newton methods

13/33

Page 37: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Secant

14/33

Page 38: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Secant

14/33

Page 39: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Secant

14/33

Page 40: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Secant

14/33

Page 41: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Secant

14/33

Page 42: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Secant

14/33

Page 43: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Newton

14/33

Page 44: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Newton

14/33

Page 45: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Newton

14/33

Page 46: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Newton

14/33

Page 47: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Newton

14/33

Page 48: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Newton

14/33

Page 49: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Convergence

15/33

Page 50: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Convergence

15/33

Page 51: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Convergence

15/33

Page 52: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Inexact Root Finding: Convergence

Key observation: C = C (τ0) is independent of ∂v(τ∗).Nondegeneracy not required. 15/33

Page 53: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Minorants from Duality

16/33

Page 54: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Minorants from Duality

16/33

Page 55: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Minorants from Duality

16/33

Page 56: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Robustness: 1 ≤ u/l ≤ α, where α ∈ [1, 2) and ε = 10−2

10 9 8 7 6 5 4 3 20

20

40

60

80

100

120

140

f1

10 9 8 7 6 5 4 3 20

20

40

60

80

100

120

140

160

f1

10 8 6 4 2 00

20

40

60

80

100

120

f2

(a) k = 13, α = 1.3 (b) k = 770, α = 1.99 (c) k = 18, α = 1.3

10 9 8 7 6 5 4 3 20

20

40

60

80

100

120

140

f1

10 9 8 7 6 5 4 3 20

20

40

60

80

100

120

140

160

f1

10 8 6 4 2 00

20

40

60

80

100

120

f2

(d) k = 9, α = 1.3 (e) k = 15, α = 1.99 (f) k = 10, α = 1.3

Figure : Inexact secant (top) and Newton (bottom) forf1(τ) = (τ − 1)2 − 10 (first two columns) and f2(τ) = τ2 (last column).Below each panel, α is the oracle accuracy, and k is the number ofiterations needed to converge, i.e., to reach fi(τk) ≤ ε = 10−2.

17/33

Page 57: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

When is the Level Set Framework ViableProblem class: Solve

minx∈X

φ(x)

s.t. ρ(Ax − b) ≤ σP(σ)

Strategy: Consider the “flipped” problem

v(τ) := minx∈X

ρ(Ax − b)

s.t. φ(x) ≤ τQ(τ)

Then opt-val(P(σ)) is the minimal root of the equation

v(τ) = σ

Lower bounding slopes: ∂τΦ(y, τ)

18/33

Page 58: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Conjugate Functions and DualityConvex IndicatorFor any convex set C , the convex indicator function for C is

δ (x |C ) :={0, x ∈ C ,+∞, x /∈ C .

Support FunctionalsFor any set C , the support functional for C is

δ∗ (x |C ) := supz∈C〈x, z〉 .

GaugesFor any convex set C , the convex gauge function for C is

γ (x |C ) := inf {t ≥ 0 | x ∈ tC }γ◦(z|C ) := sup {〈z, x〉 | γ (x |C ) ≤ 1}

Fact If 0 ∈ C , then γ (x |C ) = δ∗ (x |C ◦ ), whereC ◦ := {z | 〈z, x〉 ≤ 1 ∀ x ∈ C } .

19/33

Page 59: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Conjugate Functions and DualityConvex IndicatorFor any convex set C , the convex indicator function for C is

δ (x |C ) :={0, x ∈ C ,+∞, x /∈ C .

Support FunctionalsFor any set C , the support functional for C is

δ∗ (x |C ) := supz∈C〈x, z〉 .

GaugesFor any convex set C , the convex gauge function for C is

γ (x |C ) := inf {t ≥ 0 | x ∈ tC }γ◦(z|C ) := sup {〈z, x〉 | γ (x |C ) ≤ 1}

Fact If 0 ∈ C , then γ (x |C ) = δ∗ (x |C ◦ ), whereC ◦ := {z | 〈z, x〉 ≤ 1 ∀ x ∈ C } .

19/33

Page 60: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Conjugate Functions and DualityConvex IndicatorFor any convex set C , the convex indicator function for C is

δ (x |C ) :={0, x ∈ C ,+∞, x /∈ C .

Support FunctionalsFor any set C , the support functional for C is

δ∗ (x |C ) := supz∈C〈x, z〉 .

GaugesFor any convex set C , the convex gauge function for C is

γ (x |C ) := inf {t ≥ 0 | x ∈ tC }

γ◦(z|C ) := sup {〈z, x〉 | γ (x |C ) ≤ 1}

Fact If 0 ∈ C , then γ (x |C ) = δ∗ (x |C ◦ ), whereC ◦ := {z | 〈z, x〉 ≤ 1 ∀ x ∈ C } .

19/33

Page 61: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Conjugate Functions and DualityConvex IndicatorFor any convex set C , the convex indicator function for C is

δ (x |C ) :={0, x ∈ C ,+∞, x /∈ C .

Support FunctionalsFor any set C , the support functional for C is

δ∗ (x |C ) := supz∈C〈x, z〉 .

GaugesFor any convex set C , the convex gauge function for C is

γ (x |C ) := inf {t ≥ 0 | x ∈ tC }γ◦(z|C ) := sup {〈z, x〉 | γ (x |C ) ≤ 1}

Fact If 0 ∈ C , then γ (x |C ) = δ∗ (x |C ◦ ), whereC ◦ := {z | 〈z, x〉 ≤ 1 ∀ x ∈ C } .

19/33

Page 62: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Conjugate Functions and DualityConvex IndicatorFor any convex set C , the convex indicator function for C is

δ (x |C ) :={0, x ∈ C ,+∞, x /∈ C .

Support FunctionalsFor any set C , the support functional for C is

δ∗ (x |C ) := supz∈C〈x, z〉 .

GaugesFor any convex set C , the convex gauge function for C is

γ (x |C ) := inf {t ≥ 0 | x ∈ tC }γ◦(z|C ) := sup {〈z, x〉 | γ (x |C ) ≤ 1}

Fact If 0 ∈ C , then γ (x |C ) = δ∗ (x |C ◦ ), whereC ◦ := {z | 〈z, x〉 ≤ 1 ∀ x ∈ C } .

19/33

Page 63: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Gauge Optimization

Problem Pσ Qτ ∂τ Φ(y, τ)

gaugeoptimization

minx

ϕ(x)s.t. ρ(Ax − b) ≤ σ

minx

ρ(Ax − b)s.t. ϕ(x) ≤ τ

−ϕ◦(ATy)

BPDN minx

‖x‖1

s.t. ‖Ax − b‖2 ≤ σmin

x‖Ax − b‖2

s.t. ‖x‖1 ≤ τ−‖ATy‖∞

sharpelast-net

minx

α‖x‖1 + β‖x‖2

s.t. ‖Ax − b‖2 ≤ σmin

x‖Ax − b‖2

s.t. α‖x‖1 + β‖x‖2 ≤ τ−γαB∞+βB2(ATy)

matrixcompletion

minX

‖X‖∗s.t. ‖AX − b‖2 ≤ σ

minx

‖AX − b‖2

s.t. ‖X‖∗ ≤ τ−σ1(A∗y)

Nonsmooth regularized data-fitting.

20/33

Page 64: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Piecewise Linear-Quadratic Penalties

φ(x) := supu∈U

[〈x, u〉 − 12uT Bu]

U ⊂ Rn is nonempty, closed and convex with 0 ∈ U (not nec. poly.)B ∈ Rn×n is symmetric positive semi-definite.Examples:1. Support functionals: B = 0

2. Gauge functionals: γ (· |U ◦ ) = δ∗ (· |U )

3. Norms: B = closed unit ball, ‖·‖ = γ (· |B)

4. Least-squares: U = Rn , B = I

5. Huber: U = [−ε, ε]n , B = I21/33

Page 65: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

PLQ Densities: Gauss, Laplace, Huber, Vapniky

x

V (x) = 12x2

y

x

V (x) = |x|

Gauss `1

−K K

y

x

V (x) = −Kx− 12K2; x < −K

V (x) = 12x2; −K ≤ x ≤ K

V (x) = Kx− 12K2; K < x

−ε ε

y

x

V (x) = −x− ε; x < −εV (x) = 0; −ε ≤ x ≤ ε

V (x) = x− ε; ε ≤ x

Huber Vapnik 22/33

Page 66: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

∂τΦ(y, τ) for PLQ Penalties φ

φ(x) := supu∈U

[〈x, u〉 − 12uT Bu]

Pσ minφ(x) st ρ(b −Ax) ≤ σ

Qτ min ρ(b −Ax) st φ(x) ≤ τ

−max{γ(AT y |U

),√

yT ABAT y/√2τ}∈ ∂τΦ(y, τ)

23/33

Page 67: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Sparse and Robust Formulation

HBPσ: min ‖x‖1 st ρ(b −Ax) ≤ σ

Problem Specification

x 20-sparse spike train in R512

b measurements in R120

A Measurement matrix satisfying RIPρ Huber functionσ error level set at .015 outliers

ResultsIn the presence of outliers, the robustformulation recovers the spike train,while the standard formulation does not.

0 100 200 300 400 500 6004

3

2

1

0

1

2

3

LS

Truth

HuberSignal Recovery

0 20 40 60 80 100 1202

1.5

1

0.5

0

0.5

1

1.5

2

Huber

Truth

LSResiduals

24/33

Page 68: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Sparse and Robust Formulation

HBPσ: min0≤x

‖x‖1 st ρ(b −Ax) ≤ σ

Problem Specification

x 20-sparse spike train in R512+

b measurements in R120

A Measurement matrix satisfying RIPρ Huber functionσ error level set at .015 outliers

ResultsIn the presence of outliers, the robustformulation recovers the spike train,while the standard formulation does not.

0 100 200 300 400 500 6002

1

0

1

2

3

4

Huber

LS

Truth

Signal Recovery

0 20 40 60 80 100 1202.5

2

1.5

1

0.5

0

0.5

1

1.5

2

Huber

Truth

LSResiduals

25/33

Page 69: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Sensor Network Localization (SNL)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Given a weighted graph G = (V ,E , d) find a realization:

p1, . . . , pn ∈ R2 with dij = ‖pi − pj‖2 for all ij ∈ E .

26/33

Page 70: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Sensor Network Localization (SNL)SDP relaxation (Weinberger et al. ’04, Biswas et al. ’06):

max tr (X)s.t. ‖PEK(X)− d‖22 ≤ σ

Xe = 0, X � 0

where [K(X)]i,j = Xii + Xjj − 2Xij .

Intuition: X = PPT and then tr (X) = 1n + 1

n∑i,j=1‖pi − pj‖2

with pi the ith row of P.Flipped problem:

min ‖PEK(X)− d‖22s.t. trX = τ

Xe = 0 X � 0.

• Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.

27/33

Page 71: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Sensor Network Localization (SNL)SDP relaxation (Weinberger et al. ’04, Biswas et al. ’06):

max tr (X)s.t. ‖PEK(X)− d‖22 ≤ σ

Xe = 0, X � 0

where [K(X)]i,j = Xii + Xjj − 2Xij .

Intuition: X = PPT and then tr (X) = 1n + 1

n∑i,j=1‖pi − pj‖2

with pi the ith row of P.

Flipped problem:min ‖PEK(X)− d‖22s.t. trX = τ

Xe = 0 X � 0.

• Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.

27/33

Page 72: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Sensor Network Localization (SNL)SDP relaxation (Weinberger et al. ’04, Biswas et al. ’06):

max tr (X)s.t. ‖PEK(X)− d‖22 ≤ σ

Xe = 0, X � 0

where [K(X)]i,j = Xii + Xjj − 2Xij .

Intuition: X = PPT and then tr (X) = 1n + 1

n∑i,j=1‖pi − pj‖2

with pi the ith row of P.Flipped problem:

min ‖PEK(X)− d‖22s.t. trX = τ

Xe = 0 X � 0.

• Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.

27/33

Page 73: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Sensor Network Localization (SNL)SDP relaxation (Weinberger et al. ’04, Biswas et al. ’06):

max tr (X)s.t. ‖PEK(X)− d‖22 ≤ σ

Xe = 0, X � 0

where [K(X)]i,j = Xii + Xjj − 2Xij .

Intuition: X = PPT and then tr (X) = 1n + 1

n∑i,j=1‖pi − pj‖2

with pi the ith row of P.Flipped problem:

min ‖PEK(X)− d‖22s.t. trX = τ

Xe = 0 X � 0.

• Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.

27/33

Page 74: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Sensor Network Localization (SNL)SDP relaxation (Weinberger et al. ’04, Biswas et al. ’06):

max tr (X)s.t. ‖PEK(X)− d‖22 ≤ σ

Xe = 0, X � 0

where [K(X)]i,j = Xii + Xjj − 2Xij .

Intuition: X = PPT and then tr (X) = 1n + 1

n∑i,j=1‖pi − pj‖2

with pi the ith row of P.Flipped problem:

min ‖PEK(X)− d‖22s.t. trX = τ

Xe = 0 X � 0.

• Perfectly adapted for the Frank-Wolfe method.

Key point: Slater failing (always the case) is irrelevant.27/33

Page 75: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Approximate Newton

0 5 10 15 200

0.5

1

1.5Pareto curve

Figure : σ = 0.25

0 5 10 15 200

0.2

0.4

0.6

0.8

1

1.2

1.4Pareto curve

Figure : σ = 0

28/33

Page 76: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Approximate Newton

0 5 10 15 200

0.5

1

1.5Pareto curve

Figure : σ = 0.25

0 5 10 15 200

0.2

0.4

0.6

0.8

1

1.2

1.4Pareto curve

Figure : σ = 0

28/33

Page 77: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Max-trace

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6Newton_max

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6Refine positions

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6Newton_min

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6Refine positions

29/33

Page 78: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Max-trace

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6Newton_max

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6Refine positions

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6Newton_min

−0.5 0 0.5

−0.4

−0.2

0

0.2

0.4

0.6Refine positions

29/33

Page 79: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Observations

• Simple strategy for optimizing over complex domains• Rigorous convergence guarantees• Insensitivity to ill-conditioning• Many applications

• Sensor Network Localization(Drusvyatskiy-Krislock-Voronin-Wolkowicz ’15)

• Sparse/Robust Estimation and Kalman Smoothing(Aravkin-B-Pillonetto ’13)

• Large scale SDP and LP (cf. Renegar ’14)• Chromosome reconstruction

(Aravkin-Becker-Drusvyatskiy-Lozano ’15)• Phase retrieval (Aravkin-B-Drusvyatskiy-Friedlander-Roy

’16)• Generalized linear models

(Aravkin-B-Drusvyatskiy-Friedlander-Roy ’16)• . . .

30/33

Page 80: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Thank you!

Andy and Barbara

31/33

Page 81: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Thank you!

Andy

and Barbara

31/33

Page 82: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

Thank you!

Andy and Barbara

31/33

Page 83: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

References

• “Probing the pareto frontier for basis pursuit solutions”van der Berg - FriedlanderSIAM J. Sci. Comput. 31(2008), 890–912.

• “Sparse optimization with least-squares constraints”van der Berg - FriedlanderSIOPT 21(2011), 1201–1229.

• “Variational Properties of Value Functions.”Aravkin - B - FriedlanderSIOPT 23(2013), 1689–1717.

• “Level-set methods for convex optimization”Aravkin - B - Drusvyatskiy - Friedlander - RoyPreprint, 2016

32/33

Page 84: Level Set Methods in Convex Optimizationsites.math.washington.edu/~burke/PDF/level_set_Conn_16.pdf · Dmitriy Drusvyatskiy (UW) and Scott Roy (UW) Happy Birthday Andy! Fields Institute,

General Level Set Theoremψi : X ⊆ Rn → R, i = 1, 2, arbitrary functions and X anarbitrary set.

epi (ψ) := { (x, µ) }ψ(x) ≤ µ

v1(σ) := infx∈X

ψ1(x) + δ ((x, σ) | epi (ψ2)) P1,2(σ)

v2(τ) := infx∈X

ψ2(x) + δ ((x, τ) | epi (ψ1)) P2,1(τ)

S1,2 := {σ ∈ R } ∅ 6= argminP1,2(σ) ⊂ { x ∈ X }ψ2(x) = σ

Then, for every σ ∈ S1,2,(a) v2(v1(σ)) = σ, and(b) argminP1,2(σ) = argminP2,1(v1(σ)) ⊂{ x ∈ X }ψ1(x) = v1(σ).

Moreover, S2,1 = { v1(σ) }σ ∈ S1,2 and{ (σ, v1(σ)) }σ ∈ S1,2 = { (v2(τ), τ) } τ ∈ S2,1.

33/33