14
March 2014 LIMIT Best Practice Using DVS1612 Version LIMIT2014 www.cae-sim-sol.com Documentation

LIMIT Best Practice Using DVS1612 - CAE Simulation … · -sim sol.com LIMIT Best Practice Using DVS1612 page 3 Nominal Stress Assessment of nominal stress Use OFFSET/ENDINGS in LIMIT/SetupManager

  • Upload
    dangtu

  • View
    234

  • Download
    1

Embed Size (px)

Citation preview

March 2014

LIMIT Best Practice Using DVS1612 Version LIMIT2014

www.cae-sim-sol.com

Documentation

page 2 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

Assessment with DVS1612

Stress Type, Nominal Stress

Mesh Size

WELD_GLOBAL

WELD

Setups (Examples)

Checks in Postprocessing

Overview

page 3 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

Nominal Stress

Assessment of nominal stress Use OFFSET/ENDINGS in LIMIT/SetupManager

Permissible Stress Values include notch effect of girder (e.g. EC3, DVS, …)

Stress Types, Flange with Gusset

Nominal stress

DVS1612

page 4 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

Mesh Size Linear quads with reduced integration or centered output According to DVS1612 : Offset from toe to stress point: 1 x t– 1,5 x t

Element size 2 – 3 times thickness sometimes not conservative strong influence on mesh size

Quads with first or higher order interpolation and corner output e.g. quadrilateral, 8 Nodes (e.g. S8R) Mesh size as fine as necessary to resolve gradients in transverse direction. Conforming with DVS1612: define Offset parameter with 1 x t define Endings parameter with at least 1 x t, better 1.5 x t

little influence on mesh size

Mesh Size

Endings

Offset

page 5 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

*WELD_GLOBAL

Global analysis:

Stresses taken directly from FE result on both shell surfaces

Assessment points 5 and 6 active

Critical cutting plane with rotating weld direction notch cases define permissible stresses

Result: largest degree of utilization and critical direction

Notes: Can be very conservative, when large stresses parallel (axial) to weld

Is not conservative, when stresses of shell are much lower then in throat of weld

*WELD_GLOBAL

page 6 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

*WELD

Local analysis:

Stresses transformed in weld coordinate system: axial, transverse, shear

Assessment points: 1 to 4 => weld cross section

5 and 6 => shell surface

most accurate way to do the fatigue assessment

*WELD

page 7 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

Some examples for different setups

Double fillet weld

Single fillet weld

One side full penetration weld

Full penetration weld

*WELD

page 8 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

DVS 1612 Double Fillet Weld (connected sheet)

ROOT: Notch cases depending on loading direction

Axial (parallel to weld): Tab.B-1.3, #1.3.13-#1.3.16 => C- Transverse: Tab.B-1.5, #1.5.13 => F2 Shear: page 6, line H => H

Toe: Notch cases depending on loading direction

Axial (parallel to weld): Tab.B-1.3, #1.3.13-#1.3.16 => C- Transverse: Tab.B-1.5, #1.5.1-#1.5.6 => E5 Shear: page 6, line H => H

page 9 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

DVS 1612 Double Fillet Weld (continuous sheet) Base Material: Notch cases

depending on loading direction Axial (parallel to weld): Sec. 4.4.2 => A Transverse: Sec. 4.4.2 => A Shear: Sec. 4.4.2 => H

Toe: Notch cases depending on loading direction

Axial (parallel to weld): Tab.B-1.3, #1.3.13-#1.3.16 => C- Transverse: Tab.B-1.4, #1.4.10-#1.4.13 => E5 Shear: page 6, line H => H

Page 10

Double Fillet Weld

Offset: 1 x Thickness, DVS1612, Sec. 4.3 Endings: Corrects for local stress concentration! Use t or even larger values to capture nominal stress!

inactive

Page 11

Single Fillet Weld

Axial: Tab.B-1.3, #1.3.21-#1.3.24 => E4 Toe: Transverse: Tab.B-1.5, #1.5.1-#1.5.6 => E5 Root: Transverse: Tab.B-1.5, #1.5.14 => F2 Shear: page 6, line H or H- => H

Axial: Tab.B-1.3, #1.3.21-#1.3.24 => E4 Axial at End: Tab.B-4.2, #4.2.5 => F1 Transverse: Tab.B-1.4, #1.4.14 => E6 Shear: page 6, line H => H

Base Material inactive

Page 12

One Side Full Penetration Weld

Axial: Tab.B-1.3, #1.3.7-#1.3.12 => C- Toe: Transverse: Tab.B-1.5, #1.5.1-#1.5.6 => E5 Root: Transverse: Tab.B-1.5, #1.5.7-#1.5.9 => E6- Shear: page 6, line H+ => H+

Axial: Tab.B-1.3, #1.3.7-#1.3.12 => C- Axial at End: Tab.B-4.2, #4.2.5 => F1 Transverse: Tab.B-1.4, #1.4.7-#1.4.9 => E6+ Shear: page 6, line H+ => H+

Base Material inactive

Page 13

Full Penetration Weld

Axial: Tab.B-1.3, #1.3.7-#1.3.12 => C- Toe: Transverse: Tab.B-1.5, #1.5.1-#1.5.6 => E5 Root: Transverse: Tab.B-1.5, #1.5.1-#1.5.6 => E5 Shear: page 6, line H+ => H+

Axial: Tab.B-1.3, #1.3.7-#1.3.12 => C- Axial at End: Tab.B-4.2, #4.2.5 => F1 Transverse: Tab.B-1.4, #1.4.1-#1.4.6 => E5 Shear: page 6, line H+ => H+

Base Material inactive

page 14 LIMIT Best Practice Using DVS1612 www.cae-sim-sol.com

Postprocessing

Checking position of stress extraction points:

LIMIT VIEWER