24
Uslu et al – Supplementary Information 1 Long-range enhancers regulating Myc expression are required for normal facial morphogenesis Veli V Uslu et al. Supplementary Information Supplementary Figure 1: Conserved organization of the 8q24 region in mouse and human. Supplementary Figure 2: Deletion series to delineate the MNE region Supplementary Figure 3: Duplications series to delineate the MNE region Supplementary Figure 4: Expression of genes flanking the CL/P region. Supplementary Figure 5: Transposon insertions do not induce expression changes Supplementary Figure 6: Morphological and cellular differences between del(8-17) and WT Supplementary Figure 7:Comparison of gene expression in the face of del(8-17) vs WT embryos Supplementary Figure 8: Reduced expression of blood-related genes in del(14-17) mice. Supplementary Figure 9: Functional and genetic structure of the human CL/P risk interval. Supplementary Figure 10: Molecular nature of the 8q24 CL/P risk factor. Supplementary Figure 11: RNA quality control and qPCR primer efficiencies. Nature Genetics: doi:10.1038/ng.2971

Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  1  

Long-range enhancers regulating Myc expression are required for normal facial

morphogenesis

Veli V Uslu et al.

Supplementary Information

Supplementary Figure 1: Conserved organization of the 8q24 region in mouse and human.

Supplementary Figure 2: Deletion series to delineate the MNE region

Supplementary Figure 3: Duplications series to delineate the MNE region

Supplementary Figure 4: Expression of genes flanking the CL/P region.

Supplementary Figure 5: Transposon insertions do not induce expression changes

Supplementary Figure 6: Morphological and cellular differences between del(8-17) and WT

Supplementary Figure 7:Comparison of gene expression in the face of del(8-17) vs WT

embryos

Supplementary Figure 8: Reduced expression of blood-related genes in del(14-17) mice.

Supplementary Figure 9: Functional and genetic structure of the human CL/P risk interval.

Supplementary Figure 10: Molecular nature of the 8q24 CL/P risk factor.

Supplementary Figure 11: RNA quality control and qPCR primer efficiencies.

Nature Genetics: doi:10.1038/ng.2971

Page 2: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  2  

Supplementary Table 1: List of the different insertions spanning the CL/P region.

Supplementary Table 2: List of the deletions and duplications spanning the CL/P region.

Supplementary Table 3: Regions enriched for H3K27ac and H3K4me1 (.xls)

Supplementary Table 4: Mis-expressed genes in del(8-17) versus WT mice (.xls)

Supplementary Table 5: RNA-Seq data for the genes surrounding the MNE (.xls)

Supplementary Table 6: GO terms enrichment analysis for differentially expressed genes.

Supplementary Table 7: GO terms enrichment analysis for highly but differentially expressed

genes.

Supplementary Table 8: List of deregulated genes (p<0.05) involved in cranio-facial

development.

Supplementary Table 9: genotyping primers used for the different mouse alleles

Supplementary Table 10: primers used for qRT-PCR experiments

Nature Genetics: doi:10.1038/ng.2971

Page 3: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  3  

Supplementary Figure 1

Conserved organization of the 8q24 region in mouse and human.

Representation of the 8q24 interval (hg19, chr. 8: 127,200,000–131,500,000) from the UCSC

Genome Browser64 with the 640-kb CL/P risk interval boxed3. ENCODE tracks summarizing

regulatory and transcription activities (from seven cell lines) are shown65, as well as the score

of evolutionary conservation of the sequence (GERP track66). The paucity of gene annotation,

transcriptional activity (RNA-seq tracks) and promoter-associated chromatin marks

(H3K4me3) highlights the ‘gene desert’ constituted by this region between PVT1 and

GSDMC. The region comprises, however, many evolutionarily conserved elements (peaks in

the GERP track) and potential tissue-specific enhancers (peaks in the H3K4me1 and

H3K27ac tracks). The Mouse Net track shows the extensive syntenic chain linking mouse and

human orthologous sequences, with extreme conservation in sequence and relative order

between the two species.

Nature Genetics: doi:10.1038/ng.2971

Page 4: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  4  

Supplementary Figure 2 Deletion series to delineate the MNE region. (a) Schematic

representation of the different deletions (red bars) generated and analyzed along the interval,

with the different regulatory regions identified (blue, medionasal enhancer (MNE); orange,

nasal epithelial enhancer (NEE)) shown as ovals. (b–e) LacZ staining of E11.5 embryos with

different deletions, highlighting the persistence or loss of the two expression domains (blue

arrowhead, MNP; orange arrowhead, NC). Insets in c–e, 150-µm vibratome sections through

the head of embryos, showing strong expression in the nasal epithelium of del(8–14)

heterozygous embryos (c). This domain of staining is absent in del(14–15) embryos (d) and

weak but present in del(15–17) embryos (e).

Nature Genetics: doi:10.1038/ng.2971

Page 5: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  5  

Supplementary Figure 3 Duplications series to delineate the MNE region. (a) Schematic

representation of the positions and LacZ expression patterns in E11.5 embryos for the 10a,

13a and 20a transposon insertions. Regulatory regions are indicated as before. The

topological boundary found around the Gsdmc cluster67, which overlaps with the regulatory

transition between the different landscapes, is shown with double red brackets. (b) Schematic

representation of the trans-allelic Cre-mediated recombination51 used to produce the different

duplications, as a reciprocal product of the deletions. (c) Representation of the different

duplications and (d) associated LacZ expression in E11.5 embryos. Duplications

encompassing the region (10–13) led to expression in the fronto- and medionasal processes,

whereas a duplication of the region (13–20) conferred expression in the nasal epithelium only.

Even though it is unclear whether topological boundaries are fully respected in the context of

rearrangements68, the different expression of the LacZ sensor for the dup(10–20) and dup(13–

20) alleles, which place it at the same distance from the centromeric CL/P region (blue oval),

can be better explained by the contribution of enhancer elements lying in the duplicated

telomeric regions.

Nature Genetics: doi:10.1038/ng.2971

Page 6: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  6  

Supplementary Figure 4 Expression levels of the genes flanking the CL/P region in the face

of E11.5 embryos. Expression levels were measured by qRT-PCR and are shown with the

lowest expression levels (for Gsdmc) set as 1 (log10 scale). Error bars represent ± s.d. from

four independent biological replicates. *, the primers used cannot distinguish the different

tandemly duplicated Gsdmc genes

 

Nature Genetics: doi:10.1038/ng.2971

Page 7: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  7  

Supplementary Figure 5 Transposon insertion does not induce expression changes.

Endogenous gene expression in the face of E11.5 embryos homozygous for expression

showing the strongest LacZ expression is not different from wild-type control. Expression

was determined by qRT-PCR (three biological replicates). Expression levels were normalized

to Gusb levels between samples and, for each gene, represent with wild-type levels equal to 1.

Error bars are ± s.d.

 

 

Nature Genetics: doi:10.1038/ng.2971

Page 8: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  8  

Supplementary Figure 6 Morphological and cellular differences between del(8-17) and WT

(a) Comparison of different bone lengths and skull measures (IOD, interorbital distance;

NBL, nasal bone length; FBL, frontal bone length; PBL, parietal bone length) in 5-week-old

(n = 4 (del(8–17); n = 4 (wild-type)) mice. Del(8–17) mice showed reduced nasal and frontal

bone lengths (Student’s t test, P = 0.00398 and P = 0.00099, respectively). Boxplots show

median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of

del(8–17) and wild-type E11.5 embryos. Mitotic cells were identified by staining for

phosphorylated H3 and counted on serial sections. Each dot represents the normalized

proportion of cells positive for phosphorylated H3 for a given section. Del(8–17) embryos

showed slight but significant differences (Student’s t test, P =1.77 × 10–6). Boxplots show

median, 1st and 3rd quartiles. Whiskers indicate 1.5 IQR of the 1st and 3rd quartiles. ***

indicates P <0.005  

Nature Genetics: doi:10.1038/ng.2971

Page 9: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  9  

Supplementary Figure 7 Expression changes in the face of del(8-17) embryos compared to

WT controls. (a) A heat map showing normalized expression values for all genes with a

minimum expression of 100 reads (summed across all samples). Each row corresponds to 1 of

the 13,586 genes under consideration, and the columns correspond to the different samples

(black, wild type; gray, deletion). Colors show gene expression on the log2 scale (blue, low

expression; yellow, high expression). (b) A heat map showing normalized expression values

for differentially expressed genes. Each row corresponds to a differentially expressed gene,

and columns correspond to the different samples (black, wild type; gray, deletion). Colors

show gene expression on the log2 scale (blue, low expression; yellow, high expression).

Nature Genetics: doi:10.1038/ng.2971

Page 10: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  10  

Supplementary Figure 8 Reduced expression of blood-related genes in del(14-17) but not

del(8-14) mice. Several genes with restricted expression in blood cells had downregulated

expression in del(8–17) versus wild-type face samples. Overall, their expression levels were

low, consistent with the presence of a few small blood vessels in the dissected facial

mesenchyme. qPCR analysis of expression changes for some of these genes shows that this

misexpression is associated with another regulatory region, located in (14–17) and therefore

distinct from the MNE. **P < 0.01, *P < 0.05, Student’s t test. Error bars are ± s.d.

Nature Genetics: doi:10.1038/ng.2971

Page 11: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  11  

Supplementary Figure 9 Genetic and functional organization of the CL/P interval on 8q24.

(a) Schematic representation of the 8q24 region, from the UCSC browser. The interval

showing strong association with CL/P identified by Birnbaum and colleagues3 is outlined in

red, with the position of the SNP (rs987525) with the lowest P value indicated by a red bar.

This interval consists of multiple LD blocks (HapMap Phased LOD track). Importantly,

multiple SNPs along this broad interval showed association with CL/P, in part independently

of rs987525 (refs. 3,5). The orthologous region to the (10–13) MNE is outlined in blue, with

ovals showing candidate enhancer modules in the region, including the Vista hs1877

element14. (b) The critical MNE region contains two main LD blocks, as shown by

Haploview, using HapMap CEU data (phase 2, r24)69.

Nature Genetics: doi:10.1038/ng.2971

Page 12: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  12  

Supplementary Figure 10 – Molecular nature of the 8q24 CL/P risk factor

The 8q24 CL/P risk interval is a remote regulatory region (MNE) that specifically controls the

high levels of expression of MYC in the developing medionasal region. Genetic variation in

the MNE may perturb the GRN controlling the fate of the neural crest–derived mesenchymal

cells, possibly through NR2F1 and TFAP2A, and may alter the growth and metabolic potential

of the medial nasal process. This imbalance may be exacerbated by environmental (or

genetic) conditions, leading to defective fusions of the different facial processes.

Nature Genetics: doi:10.1038/ng.2971

Page 13: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  13  

Supplementary Figure 11. RNA quality control and Primer Efficiency (a) RNA quality

measured by Bioanalyzer. RNA Integrity Number (RIN; value assigned from 0 to 10) was

calculated with Agilent 2100 Bioanalyzer software. Example histograms for three samples are

shown, and the minimum RIN value of the samples used for qRT-PCR was 9.10. (b) Primer

efficiency was measured using four- to eightfold dilutions of the cDNA stock. Curves show

log2 values for the dilution ratio plotted against Ct values from qRT-PCR amplification using

the different primer pairs.

Nature Genetics: doi:10.1038/ng.2971

Page 14: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  14  

Supplementary  Table  1  –  List  of  the  different  insertions  spanning  the  CL/P  region.      

Line_name  Short  Name   Chr   Position  

Expression  in  E11.5  MNP   LoxP   Transposon   transposon  parent  

196231    

15   60133316   0   minus   SB9   179039  197658e12  *  

 15   60550577   0   minus   SB9   179039  

205880   c8a   15   61051281   0   minus   SB9   196231  or  194578  209545  

 15   61350326   0   minus   SB9   194578  

196895e2  *   1a   15   61940681   ++   minus   SB9   179039  211151  

 15   62073790   +   plus   SB9   194578  

194578    

15   62168343   ++   plus   SB9   179039  193642  

 15   62237968   ++   plus   SB9   184347  

197272    

15   62461203   0   plus   SB9   184347  188150   7a   15   62561825   ++   minus   SB9   179039  193284  

 15   62614447   +++   minus   SB9   179039  

194832    

15   62646407   +++   plus   SB9   184347  190909   8b   15   62668503   ++   minus   SB9   184347  184347   8a   15   62668548   +++   plus   SB9   179039  196919  

 15   62668549   +++   minus   SB9   184347  

197662e6  *    

15   62742085   ++   plus   SB9   184347  193970   10a   15   62853768   0   minus   SB9   184347  

210632e2  *    

15   62882596   ++   plus   SB9   193970  194575   13a   15   63135562   +++   minus   SB9   179039  195052   14a   15   63167953   ++   minus   SB9   179039  195964  

 15   63181305   ++   minus   SB9   179039  

193058   14b   15   63185343   ++++   plus   SB9   179039  193637   14c   15   63196469   ++   plus   SB9   179039  192339   15a   15   63291835   ++++   plus   SB9   179039  193315  

 15   63461422   +   minus   SB9   179039  

196554    

15   63523860   ++++   plus   SB9   179039  194577  

 15   63547655   ++++   plus   SB9   179039  

179039   17a   15   63550550   ++++   plus   SB9   176598  192857   17b   15   63550550   ++++   minus   SB9   179039  186894  

 15   63562249   +++   plus   SB9   179039  

196337    

15   63577759   +   minus   SB9   179039  191058-­‐emb16  *  

 15   63595268   0   plus   SB9   179039  

192566   18a   15   63616937   0   plus   SB9   179039  195308  

 15   63694045   0   minus   SB9   179039  

vu-­‐emb1-­‐12  *    

15   63736919   0   minus   SB9   179039  196896e9    *  

 15   63824158   0   minus   SB9   179039  

192331   20a   15   63831346   0   minus   SB9   179039  192571  

 15   63937869   0   plus   SB9   179039  

180206   21a   15   63942706   0   minus   SB9   SBlac-­‐E    

Positions are given based on genome assembly MGSCv37/mm9. Expression in the medio-nasal process (MNP) is determined by the relative intensity of the LacZ staining observed for the corresponding insertion (0: no expression; + to ++++: faint to very strong). Insertions assessed directly as F0 (for which ones only one embryo was obtained) are indicated with a star (*). All others were established as lines and multiple F1 embryos produced by mating transgenic males with wild-type females. Spatial distribution and intensity of the LacZ staining is reproducible amongst littermates and between different litters of the same insertion. Additional information available online with the TRACER database (tracerdatabase.embl.de)

Nature Genetics: doi:10.1038/ng.2971

Page 15: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  15  

Supplementary  Table  2  –  List  of  the  deletions  and  duplications  spanning  the  CL/P  region.      

Line   Cen  breakpoint   Tel  breakpoint   Region  spanned  (mm9)   Length  (bp)  

del(c8-­‐7)   205880   188150   chr15:61051281-­‐62561825   1510544  

del(7-­‐10)   188150   193970   chr15:62561825-­‐62853768   291943  

del(8-­‐14)   184347   193058   chr15:62668548-­‐63185343   516795  

del(7-­‐14)   188150   195052   chr15:62561825-­‐63167953   606128  

del(8-­‐17)   184347   179039   chr15:62668548-­‐63550550   882002  

del(13-­‐20)   194575   192331   chr15:63135562-­‐63831346   695784  

dup(13-­‐20)   194575   192331   chr15:63135562-­‐63831346   695784  

del(15-­‐17)   192339   179039   chr15:63291835-­‐63550550   258715  

del(14-­‐16)   195052   193315   chr15:63167953-­‐63461422   293469  

del(17-­‐21)   192857   180206   chr15:63550550-­‐63942706   392156  

del(14-­‐17)   193637   179039   chr15:63196469-­‐63550550   354081  

del(14-­‐15)   193058   192339   chr15:63185343-­‐63291835   106492  

dup(10-­‐20)   193970   192331   chr15:62853768-­‐63831346   977578  

dup(8-­‐21)   190909   180206   chr15:62668503-­‐63942706   1274203  

 

Nature Genetics: doi:10.1038/ng.2971

Page 16: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  16  

Supplementary Table 3: Regions enriched for H3K27ac and H3K4me1 :

Supplementary Excel file

Supplementary Table 4: Mis-expressed genes in del(8-17) versus WT mice (p-value

<0.05)

Supplementary Excel file

Supplementary Table 5: RNA-Seq data for the genes surrounding the MNE

Supplementary Excel file

Nature Genetics: doi:10.1038/ng.2971

Page 17: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  17  

Supplementary  Table  6  –  Analysis  of  enrichment  of  GO  terms  in  differentially  expressed  genes  upon  deletion  of  (8-­‐17)      

GO term Description P-value FDR q-value Enrichment (N, B, n, b)

GO:0044391 ribosomal subunit 3.99E-19 4.87E-16 45.07 (9493,74,37,13) GO:0003735 structural constituent of ribosome 8.19E-15 2.55E-11 34.00 (9493,83,37,11) GO:0022625 cytosolic large ribosomal subunit 1.42E-13 5.77E-11 105.65 (9493,17,37,7) GO:0005840 ribosome 2.73E-13 8.35E-11 24.98 (9493,113,37,11) GO:0006412 translation 1.57E-13 1.57E-09 17.28 (9493,193,37,13) GO:0003723 RNA binding 7.23E-08 7.51E-05 3.93 (9493,1176,37,18) GO:0019538 protein metabolic process 2.07E-05 2.29E-02 2.57 (9493,1900,37,19) GO:0050767 regulation of neurogenesis 2.40E-05 2.39E-02 6.45 (9493,318,37,8) GO:0032268 regulation of cellular protein metabolic

process 4.86E-05 4.04E-02 3.67 (9493,839,37,12)

GO:0051246 regulation of protein metabolic process 1.15E-04 4.97E-02 3.36 (9493,916,37,12) GO:0042127 regulation of cell proliferation 1.57E-04 5.81E-02 3.88 (9493,662,37,10) GO:0045595 regulation of cell differentiation 2.86E-04 8.64E-02 3.60 (9493,712,37,10) GO:2000026 regulation of multicellular organismal

development 3.13E-04 9.18E-02 3.56 (9493,720,37,10)

GO:0031325 positive regulation of cellular metabolic process

3.73E-04 9.55E-02 2.78 (9493,1200,37,13)

GO:0032270 positive regulation of cellular protein metabolic process

3.53E-04 9.76E-02 4.40 (9493,467,37,8)

GO:0008284 positive regulation of cell proliferation 4.03E-04 1.00E-01 5.00 (9493,359,37,7) GO:0009653 anatomical structure morphogenesis 4.54E-04 1.05E-01 3.40 (9493,754,37,10 GO:0009893 positive regulation of metabolic process 6.37E-04 1.35E-01 2.63 (9493,1267,37,13)      

Analysis  was  performed  with  Gorilla70,  by  comparing  differentially  expressed  genes  with  expression  range  

>100  and  p-­‐adj.  <0.05  to  genes  detected  with  the  same  expression  range  in  the  tissue.  Enrichment  of  GO  

terms  is  calcuted  as  (b/n)  /  (B/N),  with  N  =  total  number  of  genes;  B  =  total  number  of  genes  associated  

with  a  specific  GO  term,  n=number  of  differentially  expressed  genes  b=number  of  differential  expressed  

genes  associated  with  a  specific  GO  term.  GO  terms  supported  by  less  than  6  differentially  expressed  genes  

and  redundant  ones  were  removed.  

     

Nature Genetics: doi:10.1038/ng.2971

Page 18: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  18  

Supplementary  Table  7  –  Analysis  of  enrichment  of  GO  terms  for  highly  expressed  genes  differentially  expressed  upon  deletion  of  (8-­‐17).      

GO term Description P-value FDR q-value Enrichment (N, B, n, b) GO:0006412 translation 1.76E-15 5.77E-12 16.00 (384,18,16,12) GO:0019538 protein metabolic process 2.84E-06 1.86E-03 3.18 (384,98,16,13) GO:0009059 macromolecule biosynthetic process 3.24E-06 1.77E-03 3.15 (384,99,16,13) GO:0044267 cellular protein metabolic process 6.84E-06 3.20E-03 3.35 (384,86,16,12) GO:0044249 cellular biosynthetic process 1.57E-05 6.42E-03 2.79 (384,112,16,13) GO:0006417 regulation of translation 7.16E-05 2.61E-02 6.86 (384,21,16,6) GO:0071704 organic substance metabolic process 3.38E-04 1.01E-01 1.63 (384,236,16,16) GO:0043170 macromolecule metabolic process 4.57E-04 1.25E-01 1.77 (384,203,16,15) GO:0008152 metabolic process 9.99E-04 2.52E-01 1.52 (384,252,16,16) GO:0003735 structural constituent of ribosome 4.69E-16 3.67E-13 24.00 (384,10,16,10) GO:0005198 structural molecule activity 4.70E-09 1.84E-06 8.57 (384,28,16,10) GO:0003723 RNA binding 1.94E-05 5.07E-03 2.20 (384,164,16,15) GO:0044391 ribosomal subunit 8.92E-17 4.45E-14 22.00 (384,12,16,11) GO:0005840 ribosome 5.09E-15 1.27E-12 21.82 (384,11,16,10)

 

Analysis  was  performed  with  Gorilla70,  by  comparing  differentially  expressed  genes  with  expression  range  

>3000  and  p-­‐adj.  FDR<0.05,  to  genes  detected  with  the  same  expression  range  in  the  tissue.  Enrichment  of  

GO   terms   is   calcuted   as   (b/n)   /   (B/N),   with   N   =   total   number   of   genes;   B   =   total   number   of   genes  

associated  with  a  specific  GO  term,  n=number  of  differentially  expressed  genes  b=number  of  differential  

expressed   genes   associated   with   a   specific   GO   term.   GO   terms   supported   by   less   than   6   differentially  

expressed  genes  and  redundant  ones  were  removed.  

 

Nature Genetics: doi:10.1038/ng.2971

Page 19: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  19  

Supplementary Table 8:

Deregulated genes (p<0.05) involved in cranio-facial development

Gene  name  

Expr.  Change  (log2)  

Pval   Pathway   Relevance  for  CL/P    and  facial  morphology   references  

Myc   -­‐2.583963   1.21275E-­‐86     8q24  GWAS   this  work  and  ref  3  

Etv5   0.2663346   1.78193E-­‐05   Fgf      71  

17693063  Bmp7   0.2623349   2.41086E-­‐05   Bmp     CL/P  in  mouse  ko   72  Nr2f1   -­‐0.2455414   2.67368E-­‐05   NCC      

20  

Pdgfc   0.2006095   0.00015968   Pdgf   mouse  mutant,  human  linkage/GWAS   73,74  

Pvrl4   0.485702   0.000170635     paralogous  to  CL/P-­‐causing  gene  Pvrl1     75  Fzd6   0.3001039   0.000260691   Wnt        Dusp4   0.3562477   0.000378409   Fgf        Bmp4   0.2712896   0.000462893   BMP   mutation  causes  CL  in  human  

(epithelium)  76  

Tgfa   0.3216962   0.000685507     human  CPO   77      

Lrp4   0.2686782   0.000782122   Wnt        Col17a1   0.4056272   0.00269577     normal  facial  morphology  GWAS   24  Dusp6   0.2163654   0.002969277   Fgf     maxillary/mandibulary  growth   78  

Wnt5a   0.1963515   0.003162661   Wnt     facial  dysmorphism  (dominant  Robinow  syndrome)  

79  

Eif3e   -­‐0.171818   0.0037729   translation   NCC  -­‐  zebrafish   80  Spry4   0.282755   0.005827626   Fgf        Twist1   0.1482429   0.006090016   NCC     severe  craniofacial  defects  in  ko  mice   81  Trp63   0.1432408   0.006184221     craniofacial  defects,  epithelium   82  Sp8   0.2064278   0.00652463     craniofacial    centers   83  

Dlx3   0.2222632   0.006984368    mild  craniofacial  phenotype  

(mouse  knockout)  84  

Col9a1   -­‐0.2032272   0.007139884      CP  (Stickler  syndrome)   85  

Spry1   0.2737054   0.007458963   Fgf     craniofacial  defect  incl.  CP  upon  ectopic  expression  in  NCC  

86  

Wnt9b   0.2672289   0.007815228   Wnt     CL/P  (mouse  hypomorph)   34  

Foxp1   -­‐0.1272622   0.00849356    mild  craniofacial  abnormalities  

in  human  87  

Tcf4   0.1165964   0.009933771   Wnt     craniofacial  defects  in  Tcf4/Lef1  ko  mice     88  

Rspo1   -­‐0.2729092   0.01104947   Wnt      89  

Fgf9   0.3517922   0.01288658   Fgf        Rdh10   0.1974687   0.0131987   RA    

90  Acvr2a   0.1388022   0.02026706     NCC  in  zebrafish   91  Bmp1   0.1320451   0.03430452   Bmp        Cdh1   0.1435271   0.01860036     CL/P  GWAS   92  Col2a1   -­‐0.1306992   0.02858671      CP  (Stickler  syndrome)   85  

10100048  Dkk1   0.373885   0.01742373   Wnt     over-­‐expression  cause  facial  

malformations  88  

Dlx6   0.2248032   0.01662266      89  

Hmga2   0.1590215   0.01930564     normal  facial  morphology  GWAS   93  

Lef1   0.2186644   0.02763419   Wnt     craniofacial  defects  in  Tcf4/Lef1  ko  mice     88  

Msx1   0.1502287   0.03015016   NCC     CP  and  craniofacial  defects  in  mouse  ko   94  

Mtr   -­‐0.1142592   0.04963768   Folate  metabolism      

Snai2   0.1623218   0.02615497   NCC      95  

Sox10   -­‐0.3723462   0.04498194   NCC        

Nature Genetics: doi:10.1038/ng.2971

Page 20: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  20  

Genes from Supplementary Table 4 were annotated for reported function

(Fgf/Bmp/Wnt/retinoic acid signalling, NCC gene-regulatory network). Phenotypes

observed in mutant mice (gain or loss-of function) or in human patients carrying

mutations/polymorphism are briefly described.

Nature Genetics: doi:10.1038/ng.2971

Page 21: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  21  

Supplementary Table 9 – Genotyping Primers    

Insertion  Name   Primer  sequence  (L-­‐end)   Primer  sequence  (R-­‐end)  

Generic  SB   AAGTAGATGTCCTAACTGACTTGC   TCCTAACTGACCTAAGACAGG  Insertion  specific  Primers  to  use  with  the  corresponding  generic  ones  

196231   CCTGGAATCTCCTTTTGTTCAGG   GTCCAACAGCTTGTCCAGATCC  

205880   GGACGTTTTGTGCTGAGAAAGG   TCCTGGAACCTTCTGAAACAGG  

209545   TTCATGGCAGGTATGATTGTGG    211151   TCACCTGAGCAAGTCTGTCTCC   ACAGGAGGACCCATTAAACACC  

194578   CAGGAGTTTGCCAATCAACAGTG   GAAAGCAAGTGGGGAAGTCAGAG  

193642   TTCTCTGGGTTGGAAGCTGTG   AATCGGCCCACAGTTCTGAAT  

197272   CAACTCTCTGCTCCACTGATGC   TGGTCTTGAAGCATCCTCTTCC  

188150   ATGGTTGGCCAAAGAAGTTG   AATGTGGCCACTCTCTTTGC  

193284   GATAAGTTTCCTTCCCCCATCG   CACATTAGTGCGACCCATTCAA  

194832    

CCTCTCATGTTGACAGTCAAGACG  

190909   ATCCCATGAAAGGCATGGAGAG   TGGTGTCTCTTCCCACCATTTG  

184347   TGGTGTCTCTTCCCACCATTTG   ATCCCATGAAAGGCATGGAGAG  

196919   ATCCCATGAAAGGCATGGAGAG   TGGTGTCTCTTCCCACCATTTG  

193970   TGCTCAGTCCAGTGGATGACTATG   TGGTTGCCTTTTTGTCTGATTGT  

194575   CCACAAGTAGATCAGCCACAAACC   ATTGTTGGCAAAACACAACAGG  

195052   TTGGAATTTGAAAACGACATTGG   GCAGTCTGCTTGTTTGTTTGTTTG  

195964   AACCCCACTTCCTGAACCACTG   TGTGTCACACTGGTGGAAAAGAAAC  

193058   TTGGGTACATCTGTCACCAGAGTC   TCAGAGTGTGGTCAACTGTGGAA  

193637   GCATGGATTCTATGGGTGTTGG   CCTCCTGGGATTTCCATGACTC  

192339   AATGCCAAAGACAAGGACTCCAG   GATGGGACTTCCCACATAACAGC  

193315   GGCCTAGCAAACACAGAAGTGG   ATCCACTCCCCTCTCTGTTTCC  

196554   GGCCTAATCCCCTGTAATGACC   AAGGGGGCTTGATTTGAATAGC  

194577   CTTCACACTTGACAAGGGGTGTG   TGTGTTTGGACACGGAAAATGAC  

179039   GAGCAACGTGCTGATCTATGGG   GTTCCTCCCAAGGTTCATGCTC  

192857   GTTCCTCCCAAGGTTCATGCTC   GAGCAACGTGCTGATCTATGGG  

186894   CCTTGCCATTGTGTTCTGAG   TGATGTGGTGACTGACATCTGA  

196337   CAGCCTGACAGAAGAGAGAGACC   TATCCATAAGGGATGGCAATGG  

192566   CATAGCTCTGAGTGCCTCCAAAAG   TGAGTATTTTTGCATCGATATCATAACA  

195308   CCATGAGAGCTGGAGAGAGTCTTG   AGTTATTGTCCGGTCAGGCAAAG  

192331   CAGGAGGCTTTGGACTCAACACT   CCTCTTTTGCCAACGTCTTCC  

192571   ACCCTTGGCTGAAGACATACCA   CAGGACTCCAGTCATGTGATGC  

180206   GGCTTTGACCCTGACTTTAGG   ATACCACCATGCTTGGCTTGAC  

 

Nature Genetics: doi:10.1038/ng.2971

Page 22: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  22  

Supplementary Table 10 – qPCR primers  

qPCR  Primer  F   Sequence  (5’-­‐3’)   qPCR  Primer  R   Sequence  (5’-­‐3’)  

Csf-­‐1  F   GGAGCTCTGGGACCTGCTC   Csf-­‐1  R   CTACGTCCCGGTGGATGC  

ApoE  F   ACCCTGGAGGCTAAGGACTTG   ApoE  R   TCATCTTCGCAATTGTGATTGG  

Ano1  F   AAGTAAACGGCGGAAGTGTGG   Ano1  R   CATAGTCCCCATCGTGCAGAG  

Nr2F1  F   CATCGTGCTATTCACGTCAGATG   Nr2F1  R   GATTTCTCCTGCAGGCTTTCG  

Tpi1  F   CTTCGTTGGGGGCAACTG   Tpi1  R   CGGTGCACAAACCACCTC  

Itgb3  F   ACACCAGTGGGAGGGCAGTC   Itgb3  R   TATCAGGACCCTTGGGACACTC  

Sox11  F   GGAGCTGAGCGAGATGATCG   Sox11  R   AACACCAGGTCGGAGAAGTTCG  

A1bg-­‐201  F   TGGAGCTGCGGGTGAATG   A1bg-­‐201  R   CCAGATGTACTGTGCTTTTCCAC  

Fam84b  F   CCAGGGAAAGGATTCAATTAAGG   Fam84b  R   CACAACAGCAGGCCAAAAACA  

eGFP  F   GGGCACAAGCTGGAGTACAAC   eGFP  R   CTGCTTGTCGGCCATGATATAG  

cMyc  F   CCCTAGTGCTGCATGAGGAGACAC   cMyc  R   CCACAGACACCACATCAATTTCTTCC  

Pvt1  F   CTGAGGTGGAGGAAGTTGCCCTTG   Pvt1  R   GGCCACCTCAATCAGGCAGTGTC  

Asap1  F   AAGAACGGGATCCTGACCATCTCC   Asap1  R   TGGCAGGTGAGGAGGTTTAACTTAGC  

Gsdmc  F   GCAATCAAAGGGATCATCAACCAG   Gsdmc  R   TGAATCTGTTTTCTCTGTTTGCCACTG  

GusB  F   CTCTGGTGGCCTTACCTGAT   GusB  R   CAGTTGTTGTCACCTTCACCTC  

Pdhb  F   TGTTGTCCACTCCCTACCCTAGATAC   Pdhb  R   CATTCTTATCTTGCCCCTTCCAGTG  

Rplp1  -­‐F   CCTGGCTTGTTTGCCAAGG   Rplp1  -­‐R   GCAGTGGATGGAGCAGCAC  

Rps20  -­‐F   CCTGACTCACCGCTGTTCG   Rps20  -­‐R   CGTCTTTCCGGTATCTTTAAATGC  

 

     

Nature Genetics: doi:10.1038/ng.2971

Page 23: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  23  

Supplementary references. 64. Meyer, L. R. et al. The UCSC Genome Browser database: extensions and updates

2013. Nucleic Acids Res 41, D64–9 (2013). 65. The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in

the human genome. Nature 489, 57–74 (2012). 66. Davydov, E. V. et al. Identifying a high fraction of the human genome to be under

selective constraint using GERP++. PLoS Comput Biol 6, e1001025 (2010). 67. Dixon, J. R. et al. Topological domains in mammalian genomes identified by analysis

of chromatin interactions. Nature 485, 376–380 (2012). 68. Nora, E. P. et al. Spatial partitioning of the regulatory landscape of the X-inactivation

centre. Nature 485, 381–385 (2012). 69. Barrett, J. C., Fry, B., Maller, J. & Daly, M. J. Haploview: analysis and visualization of

LD and haplotype maps. Bioinformatics 21, 263–265 (2005). 70. Eden, E., Navon, R., Steinfeld, I., Lipson, D. & Yakhini, Z. GOrilla: a tool for

discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48 (2009).

71. Matsumura, K. et al. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling. Biochem Biophys Res Commun 404, 1076–1082 (2011).

72. Kouskoura, T. et al. The etiology of cleft palate formation in BMP7-deficient mice. PLoS ONE 8, e59463 (2013).

73. Ding, H. et al. A specific requirement for PDGF-C in palate formation and PDGFR-alpha signaling. Nat Genet 36, 1111–1116 (2004).

74. Choi, S. J. et al. The PDGF-C regulatory region SNP rs28999109 decreases promoter transcriptional activity and is associated with CL/P. Eur J Hum Genet 17, 774–784 (2009).

75. Suzuki, K. et al. Mutations of PVRL1, encoding a cell-cell adhesion molecule/herpesvirus receptor, in cleft lip/palate-ectodermal dysplasia. Nat Genet 25, 427–430 (2000).

76. Suzuki, S. et al. Mutations in BMP4 are associated with subepithelial, microform, and overt cleft lip. Am J Hum Genet 84, 406–411 (2009).

77. Shiang, R. et al. Association of transforming growth-factor alpha gene polymorphisms with nonsyndromic cleft palate only (CPO). Am J Hum Genet 53, 836–843 (1993).

78. Nikopensius, T. et al. A missense mutation in DUSP6 is associated with Class III malocclusion. J. Dent. Res. 92, 893–898 (2013).

79. Person, A. D. et al. WNT5A mutations in patients with autosomal dominant Robinow syndrome. Dev Dyn 239, 327–337 (2010).

80. Xia, Z. et al. Eif3ba regulates cranial neural crest development by modulating p53 in zebrafish. Dev Biol 381, 83–96 (2013).

81. Bildsoe, H. et al. Requirement for Twist1 in frontonasal and skull vault development in the mouse embryo. Dev Biol 331, 176–188 (2009).

82. Yang, A. et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398, 714–718 (1999).

83. Kasberg, A. D., Brunskill, E. W. & Steven Potter, S. SP8 regulates signaling centers during craniofacial development. Dev Biol 381, 312–323 (2013).

84. Duverger, O. et al. In vivo impact of Dlx3 conditional inactivation in neural crest-derived craniofacial bones. J. Cell. Physiol. 228, 654–664 (2013).

85. Pagon, R. A. et al. Stickler Syndrome. (University of Washington, Seattle, 1993).

Nature Genetics: doi:10.1038/ng.2971

Page 24: Long-range enhancers regulating Myc expression …...median, 1st and 3rd quartiles. Whiskers indicate min./max (b) Cell proliferation in the face of del(8–17) and wild-type E11.5

Uslu et al – Supplementary Information

  24  

86. Yang, X. et al. Conditional expression of Spry1 in neural crest causes craniofacial and cardiac defects. BMC Dev Biol 10, 48 (2010).

87. Horn, D. Mild to Moderate Intellectual Disability and Significant Speech and Language Deficits in Patients with FOXP1 Deletions and Mutations. Mol Syndromol 2, 213–216 (2012).

88. Brugmann, S. A. et al. Wnt signaling mediates regional specification in the vertebrate face. Development 134, 3283–3295 (2007).

89. Jin, Y.-R., Turcotte, T. J., Crocker, A. L., Han, X. H. & Yoon, J. K. The canonical Wnt signaling activator, R-spondin2, regulates craniofacial patterning and morphogenesis within the branchial arch through ectodermal-mesenchymal interaction. Dev Biol 352, 1–13 (2011).

90. Sandell, L. L. et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 21, 1113–1124 (2007).

91. Albertson, R. C., Payne-Ferreira, T. L., Postlethwait, J. & Yelick, P. C. Zebrafish acvr2a and acvr2b exhibit distinct roles in craniofacial development. Dev Dyn 233, 1405–1418 (2005).

92. Song, Y. & Zhang, S. Association of CDH1 promoter polymorphism and the risk of non-syndromic orofacial clefts in a Chinese Han population. Arch. Oral Biol. 56, 68–72 (2011).

93. Fatemifar, G. et al. Genome-wide association study of primary tooth eruption identifies pleiotropic loci associated with height and craniofacial distances. Hum Mol Genet 22, 3807–3817 (2013).

94. Satokata, I. & Maas, R. Msx1 deficient mice exhibit cleft palate and abnormalities of craniofacial and tooth development. Nat Genet 6, 348–356 (1994).

95. Murray, S. A., Oram, K. F. & Gridley, T. Multiple functions of Snail family genes during palate development in mice. Development 134, 1789–1797 (2007).

   

Nature Genetics: doi:10.1038/ng.2971