Loss ppt QC

  • Upload
    jitenkg

  • View
    217

  • Download
    0

Embed Size (px)

Citation preview

  • 7/23/2019 Loss ppt QC

    1/157

    $$: Swiss NSF, Nano Center Basel, EU (RTN), DARPA & ONR, ICORP-JST

    Spin Qubits in Quantum Dots

    Daniel Loss

    Department of Physics

    University of BaselSwitzerland

  • 7/23/2019 Loss ppt QC

    2/157

    G. Burkard

    B. CoishH.A. EngelV. GolovachD. Klauser

    M. TrifD. DiVincenzoC. EguesO. Gywat

    M. LeuenbergerJ. LevyF. MeierP. RecherE. Sukhorukov

    S. TaruchaB. AltshulerD. AwschalomL. Glazman

    L. Kouwenhoven

    G. Abstreiter

    L. SamuelsonL. VandersypenC. MarcusB. WesterveltC. Bruder

    D. BulaevN. BonesteelM.S. ChoiK. Ensslin

    A. ImamogluJ. LehmannA. MacDonaldD. Saraga

    J. SchliemannC. SchnenbergerD. StepanenkoM. BorhaniR. Hanson

    J. ElzermanF. Koppens

    Special thanks to many Collaborators:

  • 7/23/2019 Loss ppt QC

    3/157

    Outline

    A. Spin qubits in quantum dots

    1. Basics of quantum computing and quantum dots

    2. Quantum gates: interaction based and measurement based entanglement

    B. Spin decoherence in GaAs quantum dots

    Spin orbit interaction and spin decay Alternative spin qubits: holes, graphene, nanotubes,... Nuclear spins and hyperfine induced decoherence

    classical spin bath vs quantum and non-Markovian behavior

    C. Nuclear spin order in 2DEGs (ultra-low temp.)

    Kondo lattice in marginal Fermi liquid

  • 7/23/2019 Loss ppt QC

    4/157

    Quantum Information

    Classical digital computernetwork of Boolean logic gates, e.g. XOR

    bits:

    physical implementation:e.g. 2 voltage levels

    gate: electronic circuit

    Quantum computer

    physical implementation:quantum 2-level-system:

    quantum gate: unitary transformation(is reversible!)

    1,0, =ba

    1,10,22=++= ba

    1,0

    qubits

  • 7/23/2019 Loss ppt QC

    5/157

    Quantum Computing (basics)

    basic unit: = state of a quantum two-level systemqubit

    "natural" candidate: electron spin

    1) prepare N qubits (input)2) apply unitary transformation in 2N-dim. Hilbert space computation

    3) measure result (output)

    quantum computation:

    "quantum" computation faster than "classicalfactoring algorithm (Shor 1994): exp N N2

    database search (Grover 1996): N N1/2

  • 7/23/2019 Loss ppt QC

    6/157

    Electron qubit: spin better than charge

    natural choice for qubit: spin of electron

    12 TT

    echspin arg >>

    1 ns

    due to longer relaxation/decoherence* times

    Awschalom et al., 97

    Tarucha et al., 02Kouwenhoven et al., 03-07

    Abstreiter et al., 04Zumbuhl & Kastner et al., '08

    10ns -1s

    mesoscopicsFujisawa et al. 03Marcus et al. 01

    *)

    theory: for single spin in GaAs dot (in principle)

    GaAs

  • 7/23/2019 Loss ppt QC

    7/157

    Spin qubits in quantum dots key elements

    Initialization 1 electron, low T, high B0

    Read-out convert spin to charge

    then measure charge

    ESR pulsed microwave magnetic field

    SWAP exchange interaction

    H0 ~ i zi

    HJ ~ Jij (t) i j

    HRF ~ Ai(t) cos(i t) xi

    Coherence spin-orbit interaction

    nuclear spins

    EZ=

    gBB

    EZ=

    gBB

    J(t) J(t)

    SL S

    R

    DL & DiVincenzo, PRA 1998

  • 7/23/2019 Loss ppt QC

    8/157

    Electrical control and detection

    Tunable # of electrons

    Tunable tunnel barriers

    Electrical contacts

    A quantum dot as a tunable artificial atom

    Confinement

    Discrete # charges

    Discrete orbitals

    Delft group (L. Kouwenhoven & L. Vandersypen)

  • 7/23/2019 Loss ppt QC

    9/157

    C. Marcus et al., PRL 2004

    GaAs/AlGaAs Heterostruktur

    2DEG 90 nm depth, ns = 2.9 x 1011 cm-2 Temp.: 100 mK

  • 7/23/2019 Loss ppt QC

    10/157

    Double Dot in Carbon Nanotube (SW)

    Schnenberger group (Grber et al., Phys. Rev. B 74, 075427 (2006))

  • 7/23/2019 Loss ppt QC

    11/157

    Quantum Computing with Spin-QubitsDL & DiVincenzo, PRA 57 (1998)

    H(t)=J(t) SLS

    R

    SL SR

    1. Quantum gates based on exchange interaction:

    Spin 1/2 of electron = qubit

  • 7/23/2019 Loss ppt QC

    12/157

    Quantum Computing with Spin-QubitsDL & DiVincenzo, PRA 57 (1998)

    SL SR H(t)=J(t) SLSR

    CNOT (XOR) gate

    s

    dttHi

    s duringJeTU

    s

    0,)(0

    )('

    =

    =

    x0

    01

    a b

  • 7/23/2019 Loss ppt QC

    13/157

    Quantum Computing with Spin-QubitsDL & DiVincenzo, PRA 57 (1998)

    H(t)=J(t) SLSRSL SR

    CNOT (XOR) gate

    2/12/122 121

    SW

    Si

    SW

    SiSi

    XOR UeUeeUz

    zz

    =

    :SWU

    + i

    SW eU :2/1

    switching time: 180 psPetta et al., Science, 2005

  • 7/23/2019 Loss ppt QC

    14/157

    Quantum XOR gate with 'sqrt of swap'

    ,2/12/1)2/()2/( 121

    SW

    Si

    SW

    SiSi

    XOR UeUeeUzzz +=

    | | | |

    | (|+i|) (i |+ |) |

    i| (|-i|) (i |- |) -i|

    i| | - | -i|

    i| i | i| -i|

    2/1

    SWU

    z

    Sie 1

    2/1

    SWU

    zSi

    e2

    2

    zSi

    e1

    2

    2

    4/ie

    2

    4/ie

    2

    4/iie

    2

    4/iie

  • 7/23/2019 Loss ppt QC

    15/157

    Quantum XOR gate with 'sqrt of swap'

    2/1

    SWU

    | |+i|Square-root-of-swap:

    Entanglement is crucial for quantum computing!

    entangled state= entangler: product state

    = |1

    x |2

    ,2/12/1)2/()2/( 121

    SW

    Si

    SW

    SiSi

    XOR UeUeeUzzz +=

  • 7/23/2019 Loss ppt QC

    16/157

    Note: Control of exchange interaction J and switching timeneeds to be very precise (1:104)

    experimental challenge

    CNOT gate without interaction?

    Yes: CNOT gates based on measurement:

    Linear optics & single-photon detection conditional sign flip (non-deterministic) [1]Full Bell state analyzer & GHZ state deterministic quantum computing [2]

    Partial Bell-state (parity) measurements deterministic quantum computing [3]

    [1] E. Knill, R. Laflamme and G. J. Milburn, Nature 409, 46 (2001).

    [2] D. Gottesman and I.L. Chuang, Nature 402, 390 (1999).[3] C.W.J. Beenakker et al., Phys. Rev. Lett. 93, 020501 (2004).

  • 7/23/2019 Loss ppt QC

    17/157

    CNOT gate can be implemented with two parity gates

    Beenakker, Kindermann & DiVincenzo, PRL 04

    =

  • 7/23/2019 Loss ppt QC

    18/157

    Deterministic entangler:

    P

    a

    b

    c

    d

    a,b: input armsc,d: output arms

    baba

    input statein arm a

    input statein arm b (ancilla)

    ( ) ( ) ( ) ( )bababababbaa +++=++

    Thus, we get:

    Beenakker et al., 2004

    Projective measurement: measurement of parity p projects input state into

    either parallel output state (p=1) or antiparallel output state (p=0). If p=0, thenapply x(d) on output state get always same final output state in arms c and d.

    1, =+ pifdcdc

    dcdcdcdc pif +=+ ,0,

    dcdcaa ++

  • 7/23/2019 Loss ppt QC

    19/157

    | + || - | even parity Bell state: parallel spins

    | + || - |

    odd parity Bell state: antiparallel spins

    Q: Does scheme exist for electron spins tomeasure parity of Bell states non-destructively?

    Measurement-based quantum computing

    with spin qubitsEngel & DL, Science 309, 586 (2005)

    Advantage:parity measurement is digital (0 or 1) quantum gate is digital

  • 7/23/2019 Loss ppt QC

    20/157

    Double Quantum Dot and QPC

    Current IQPC depends on charge state1

    odd parity: tunneling

    even parity: no tunneling

    IQPC

    Quantumpoint contact

    [1] J.M. Elzerman et al., Nature 430, 431 (2004)

    IQPC

    IQPC

    I

    I

    L R

  • 7/23/2019 Loss ppt QC

    21/157

  • 7/23/2019 Loss ppt QC

    22/157

    Tunneling transitions (coherent)

    Single level picture

    Many processes forsmall level spacing

    But for>>Uonly transitions (a)

    and (d) are relevant

    |SL(a)

    |SL(b)

    |SR(c)

    |T0L(d)

    |T0L(e)

    |T0L(f)

    |T0

    L

    (g)

  • 7/23/2019 Loss ppt QC

    23/157

    Phases due to different Zeeman interaction

    during virtual occupation of state LR

    |LR vs|LRcorrectable via one-qubit gatessuppression via large tdand fast read-out

    Detuning from resonance

    increases measurement time

    Finite exchangeJ for LL and RR

    additional dynamical phasecorrectable via one-qubit operations

    Tunneling tStT and/orJLJR

    |S and |T0 are distinguishable decoherence!

    Imperfections

  • 7/23/2019 Loss ppt QC

    24/157

  • 7/23/2019 Loss ppt QC

    25/157

    Universal Quantum Computing with Parity Gates

    Two qubit dots (1 and L), paritymeasurement using reference dot (R)

    (1, 1, 0) (0, 2, 0) (0, 0, 2)Transfer back adiabatically to (1,1,0)

    1

    L

    R

    P =

    Parity gate for spin :(Engel & Loss, Science 05):

    CNOT gate can be implemented with twoparity gates (Beenakker et al., PRL 04):

    =

  • 7/23/2019 Loss ppt QC

    26/157

    Perform parity gate (some details)

    12

    R2

    QPC

    time

    1 2 3

    p

  • 7/23/2019 Loss ppt QC

    27/157

    a

    t

    R2

    c

    R1

    QPC 1

    QPC 2

    time

    1 2 3

    p1

    4 5 6 7 8 9 10

    p2

    H

    H

    H

    H

    m

    11

    Protocol for CNOT gate (1)

    c

    t

    2121 tcctcUCNOT =

    H

    Engel and DL, 05

  • 7/23/2019 Loss ppt QC

    28/157

    Protocol for CNOT gate (3): Conditional operations p1, p2, m represent the outcome of the measurements of steps 3, 7, and 10.

    Detection of even parity (superposition of |00 and |11) is labeled as 0; odd parity as 1

    In step 11, single-qubit gates listed on the rhs are applied to qubits c and t

    I stands for identity (do nothing), X for X, Z for Z

    p1 p2 m c t

    0 0 0 I I0 0 1 I X

    0 1 0 Z I

    0 1 1 Z X

    1 0 0 I X

    1 0 1 I I

    1 1 0 Z X

    1 1 1 Z I

  • 7/23/2019 Loss ppt QC

    29/157

    CNOT-Gate in Topological Quantum Computing via Parity(braiding of non-abelian anyons, Kitaev 03)

    Zilberberg, Braunecker,and Loss, PRA 77, 012327 (2008)

    Ising anyons, Bravyi 06

  • 7/23/2019 Loss ppt QC

    30/157

    i

    i

    iBiji

    ij

    ij StBgSStJHrrrr

    += ))(()(

    2-qubit gate'sqrt of swap' (s 100 ps)Petta et al., Science '05

    1-qubit gatevia ESR for single spin (s 10 ns)Koppens et al., Nature '06, PRL '07;

    via EDSR (T2 10 s), Science '07

    Spin-Qubits in Dots are Scalable (?)

  • 7/23/2019 Loss ppt QC

    31/157

    i

    i

    iBiji

    ij

    ij StBgSStJHrrrr

    += ))(()(

    2-qubit gate'sqrt of swap' (s 100 ps)Petta et al., Science '05

    1-qubit gatevia ESR for single spin (s 10 ns)Koppens et al., Nature '06, PRL '07;

    via EDSR (T2 10 s), Science '07

    Spin-Qubits in Dots are Scalable (?)

    T2/

    s~ 103 -105 *)

    *) Coish & DL, PRB 75 (2007): s for single spin can be < 1ns (via exchange)

    i.e. system is scalable

  • 7/23/2019 Loss ppt QC

    32/157

    Spin-Qubits from Electrons

    Many more choices for spin qubits:

    SL S

    Rsimplest spin-qubit:

    spin-1/2 of 1 electron == 1,0

    'exchange only qubits' DiVincenzo et al., 20003 electrons:

    'singlet-triplet' qubits Levy 2002, Taylor et al., 2005

    2 electrons: 'spin-cluster qubits' Meier, Levy & DL, `03

    N coupled electrons: AF spin chains, ladders, clusters,...

    molecular magnets Leuenberger & DL, 01; Affronte et al., 06Lehmann et al., 07; Trif et al., 08

    == + 01,0 TTS

    01,0 TS ==

  • 7/23/2019 Loss ppt QC

    33/157

    Quantum Computing with Spin-Qubits

    SL SR

    Need to understand the dynamics and decoherencemechanisms for electron spins in quantum dots

    CNOT (XOR) gate based on

    entanglement such as

    ++ ii eore

    i.e. phase coherence is crucial

  • 7/23/2019 Loss ppt QC

    34/157

    Spin decoherence in GaAs quantum dots

    1) Spin-orbit coupling (Dresselhaus & Rashba)

    interaction between spin and charge fluctuations

    Relaxation with rate 1/ T1

    + Decoherence with rate 1/ T2= decay of coherent superposition

    Two important sources of spin decay in GaAs:

    2) Hyperfine interaction between electron spin and nuclear spinsleads to non-exponential decay

    G l i H il i

  • 7/23/2019 Loss ppt QC

    35/157

    ( )tgH B hSBS +=where h(t) is a fluctuating (internal) field with < h(t) >=0

    ( ) ( ) ( ) ( )[ ]

    += htEi

    YYXX ZethhthhdtT 00Re1

    1

    ( ) ( )

    += thhdtTT ZZ 0Re2

    11

    12

    Relaxation (T1) and decoherence (T2) times in weak coupling:

    General spin Hamiltonian:

    [if < hi(t) hj(t) >~ij,i,j=(X,Y,Z)]

    relaxation

    contribution

    dephasing

    contribution

    See e.g. Abragam

  • 7/23/2019 Loss ppt QC

    36/157

    ( )tgH B hSBS +=where h(t) is a fluctuating (internal) field with < h(t) >=0

    ( ) ( )

    += thhdtTT

    ZZ 0Re2

    11

    12

    For SOI linear in momentum:

    General spin Hamiltonian:

    relaxationcontribution

    dephasingcontribution

    Golovach, Khaetskii, DL, PRL 04

  • 7/23/2019 Loss ppt QC

    37/157

    $$: Swiss NSF, Nano Center Basel, EU (RTN), DARPA & ONR, ICORP-JST

    Spin Qubits in Quantum Dots

    Part II

    Daniel Loss

    Department of PhysicsUniversity of Basel

    Switzerland

  • 7/23/2019 Loss ppt QC

    38/157

    All-electrical control and read-out achieved

    Spin qubits in GaAs dots present status

    1-qubit gate electron spin resonance

    gate duration ~ 25 ns; observed 8 periods

    2-qubit gate exchange interactiongate duration ~ 0.2 ns; observed 3 periods

    Phasecoherence

    T2* ~ 20 nsT

    2

    > 1 s

    See also Hanson et al., Rev. Mod. Phys. 2007

    Initialization 1-electron, low T, high B0

    Read-out via spin-charge conversion

    Energy

    relaxation

    T1~ 1 secduration ~ 100 s; 82-97% fidelity

    duration ~ 5 T1; 99% fidelity ?

  • 7/23/2019 Loss ppt QC

    39/157

    Outline

    A. Spin qubits in quantum dots

    1. Basics of quantum computing and quantum dots

    2. Quantum gates: interaction based and measurement based entanglement

    B. Spin decoherence in GaAs quantum dots

    Spin orbit interaction and spin decay Alternative spin qubits: holes, graphene, nanotubes,... Nuclear spins and hyperfine induced decoherence

    classical spin bath vs quantum and non-Markovian behavior

    C. Nuclear spin order in 2DEGs (ultra-low temp.)

    Kondo lattice in marginal Fermi liquid

  • 7/23/2019 Loss ppt QC

    40/157

    Spin orbit interaction in GaAs quantum dots

    interaction between spin and charge fluctuations SOI is weaker in quantum dots than in bulk since dot = 0

    (Khaetskii & Nazarov, `00; Halperin et al., `01; Aleiner & Falko, `01)

    e.g. spin-phonon: Khaetskii & Nazarov, PRB 64 (2001)Golovach, Khaetskii & Loss, PRL 93 (2004)

    Fal'ko, Altshuler, Tsyplyatev, PRL (2005)Bulaev & Loss, PRL `05 (hole spin)

    ( ) ( ) )( 3pOppppH yyxxxyyxSO +++=

    Dresselhaus SOIRashba SOI

  • 7/23/2019 Loss ppt QC

    41/157

    Basics on Spin-Orbit Interaction

    Relativistic (Einstein) correctionfrom Dirac equation:

    =m

    pVs

    mcHso

    rr

    22

    1

    MeV12 2 mc

    p

    ( )p

    free electrons

    eV1gE

    k

    ( )k

    semiconductor (Zinc-blende)

    conduction band

    heavy holes

    light holes

    bandstructureeffects

    R hb i bit i t ti i 2D

  • 7/23/2019 Loss ppt QC

    42/157

    Rashba spin-orbit interaction in 2D

    spintronics

    Rashba & Dresselhaus spin-orbit in 2DEG

  • 7/23/2019 Loss ppt QC

    43/157

    E. Rashba, Nature Physics 2, 149 ('06)

    Rashba & Dresselhaus spin orbit in 2DEG

  • 7/23/2019 Loss ppt QC

    44/157

    Rashba & Dresselhaus Spin-Orbit in 2DEG

    ( )xyy

    xR ppH =

    ( )yyx

    xD ppH =

    zE~Structure-inversion asymmetry tunable bygates: (Rashba, 1960)

    Bulk-inversion asymmetry (Dresselhaus, 1955)

  • 7/23/2019 Loss ppt QC

    45/157

    Rashba & Dresselhaus Spin-Orbit in 2DEG

    ( )xyy

    xR ppH =

    ( )yyx

    xD ppH =

    zE~Structure-inversion asymmetry tunable bygates: (Rashba, 1960)

    Bulk-inversion asymmetry (Dresselhaus, 1955)

    =

    is conserved spin (new basis) which makesspin of electrons independent of their momentum ( spin FET ?

    tune Rashba term s.t.

    yxDR ppHH m=+ ( )yx

    ( )yx

    Spin-Orbit Interaction in GaAs Quantum Dots (2DEG):

  • 7/23/2019 Loss ppt QC

    46/157

    ( )xyyx

    yyxxSO

    pp

    ppH

    ++=

    p ( )

    Dresselhaus S.-O.

    Rashba S.-O.

    ( )tUHHHH phelSOZdot +++=

    Model Hamiltonian:

    ( )rUm

    pHdot += *

    2

    2

    B = BZ gH 21

    ( ) ...= tU

    phel any potential fluctuation, e.g., phonons

    ( )2

    r

    *

    2

    ~m

    h

    piezoelectric & deformationacoustic

    Electron-phonon interaction (2D):

  • 7/23/2019 Loss ppt QC

    47/157

    Electron phonon interaction (2D):

    ( ) ( )( ) += +

    j

    jjjj

    qjc

    i

    zphel bbiqeeqFU

    , /2

    q

    qqqq

    rq

    h

    zq,qq=

    ( )( ) ( )( )( )qqqjj

    j eqeqqq

    +=

    2

    2

    piezo-electric interaction:

    ( )

    ( ) ( )

    ( )( )qqqjj

    j eqeqq

    += 2

    1

    deform. potential interaction:

    for GaAs:1,0 jj =q and

    =

    =otherwise,0

    )(,14 cyclicxyzh

    Parameter regime:

  • 7/23/2019 Loss ppt QC

    48/157

    Parameter regime:

    *, mSOSO h=

  • 7/23/2019 Loss ppt QC

    49/157

    Parameter regime:

    In this regime, we find that

    12 2TT =

    --- the spin-orbit interaction in GaAs quantum dots causes

    a spin decay with the largest possible decoherence time,T2=2T1.

    Note that, generally, T22T1, and, usually, one expectsT2

  • 7/23/2019 Loss ppt QC

    50/157

    Parameter regime:

    (typically: 100 nm, and SO1-10 m

    2*2 mTkB h

  • 7/23/2019 Loss ppt QC

    51/157

    ( )tUHHHH phelSOZdot +++=( ) ( )[ ]tUStUHHHeeH phelphelZd

    SS

    +++= ,

    ~

    [ ] SOZd HSHH =+ ,with S defined bywith px=im*[Hd,x], get [ ] == ddSO LiHiH ,

    ( ) ( ) ......

    1

    1 102

    ++=

    +=

    += SSLi

    L

    L

    LLi

    LLS d

    d

    Z

    d

    d

    Zd

    no orbital B effect to O(Hso):

    ( ) ,10 = iPS nEnH nd =, =n

    nn nnAAP

    ( )

    ( ) ( )[ ] 0,,0

    == nnphelnnphel tUitUS

    1st order in HSO

    leading order is due to Zeeman term (no orbital):

  • 7/23/2019 Loss ppt QC

    52/157

    ( )( ) ,2

    1

    eff BB += tgH

    B

    ( ) ( ),2 tt BB =

    ( ) ( ) ,/, 1 SOpheld tULt =

    ( )

    ,

    1

    11

    =

    = B

    d

    BZ

    d L

    PgiLL

    PS

    constanttindependenspin~

    eff += HH

    giving the effective Hamiltonian:

    where

    ( ),0,',' += xy ( ) ,1*

    h = m( )

    ( )

    =

    +=

    2'

    2'

    yxy

    yxxwith

    Linear SO & Zeeman transverse fluctuations only:

  • 7/23/2019 Loss ppt QC

    53/157

    ( ) ( ) ''' aa +== teHetH tiHSOtiHSOZZ

    ,, ba == ZSO HH

    ( ) ( ) ( )[ ][ ]nanaaa +=+= tttHSO '''''

    bbn=( ) ( ) ,''' aaannnana +=

    first term commutes with HZ

    ( ) ( ),'''' tt aa =since rotation is around n.with ( ) ,0'' =na t

    i.e. Zeeman interaction induces only

    fluctuations transverse to b

    ( ))( tpaa=

    go to rotating frame:

    )('' tb

    Now:

    )('' tb

    '''' aa RUU =+

  • 7/23/2019 Loss ppt QC

    54/157

    1st order in Hso (time dependent perturbation theory):

    ( ) ( )[ ][ ]nan + tdttxdt

    ddtctHdt

    TT

    SO

    T

    '')(000

    SO linear : a ~ p ~ dx/dtnot a total derivative

    for (He-ph)n, n>0

    const. no orbital B field effect *)

    Thus: if SO interaction linear in pwe get only transverse

    fluctuations no pure dephasing T2=2T1

    *) note: no orbital B field effect--only Zeeman, see alsoKhaetskii & Nazarov 00, Halperin et al., 01, Aleiner & Falko, 01

    Derive Bloch equation for spin dynamics:

  • 7/23/2019 Loss ppt QC

    55/157

    SSBS += Bg&

    ( ) ( ) ( )

    =

    0

    2

    22

    02

    dtetBBg

    wJ iwt

    jiB

    ijij

    h

    spectral function

    ( ) ( ) ( ) ,Re wJwJwJ ijijij = ( ) ( ) ( )wJwJwI ijijij =

    Im

    relaxation:

    dephasing:

    decay: ,dr +=

    ( ) ( ) ( ) ( ) ( ) ( ), ++

    += qjpipqpqkkpqijpjpiippqqppqijr

    ij IlIlJllJll

    ( ) ( )00 ++ = pjpipqqpijd

    ij JllJll 0

    c=/ s=100 ps

  • 7/23/2019 Loss ppt QC

    56/157

    quantum well piezo deformation

    ( ) ( )( )

    ( )SOj

    j

    j

    j

    sz

    j jc

    zXX

    sze

    szFe

    dsm

    NzzJT

    j 222

    2

    222

    2

    2sin

    2

    0

    3

    522

    0

    *

    32

    1

    /cos

    sin2

    12Re1

    22

    +

    +=

    +

    h

    22

    22

    2

    2

    '

    2

    2

    '

    2

    2

    '

    2

    2

    ' 411112

    +++

    +

    +

    =

    zyxyx lllll effective SO length

    Bgz B=Golovach, Khaetski, Loss, PRL 93 (2004)

    Relaxation rate:Bose function super-Ohmic: ~z

    3

  • 7/23/2019 Loss ppt QC

    57/157

    smsssms /1037.3,/107.4 3323

    1 =

    quantum well piezo deformation

    ( ) ( )( )

    ( )SOj

    j

    j

    j

    sz

    j jc

    zXX

    sze

    szFe

    dsm

    NzzJT

    j 222

    2

    222

    2

    2sin

    2

    0

    3

    522

    0

    *

    32

    1

    /cos

    sin2

    12Re1

    22

    +

    +=

    +

    h

    13,/16.0,sin)1cos3(23

    ,2sin2,cossin23,7,

    2

    14

    21

    14

    2

    1

    14

    221

    14

    2

    001,

    2

    ,3

    ,2,1

    =

    ===

    mChh

    hheVjj

    22

    22

    2

    2

    '

    2

    2

    '

    2

    2

    '

    2

    2

    ' 411112

    +++

    +

    +

    =

    zyxyx lllll effective SO length

    speed of sound

    Bgz B=

    Spin relaxation rate 1/T1 for GaAs Quantum Dot

  • 7/23/2019 Loss ppt QC

    58/157

    Spin relaxation rate 1/T1 for GaAs Quantum Dot

    ( ) 22 2sin2

    0

    122

    1

    sin)(1

    jB sBgk

    B edBgT

    ++

    22 BB 2

    )( ph pHSO

    power-5 law for B< 3T (GaAs)

    Golovach et al., PRL 93 (2004)

    Numerical value of T1 for GaAs parameters (13!):

  • 7/23/2019 Loss ppt QC

    59/157

    )()0020.00077.0(04.043.0 TBg =Hanson ea PRL 91 (196802) 200329.0=gor with linear fit:

    Theory: T8Bfor,s7501 =T

    ( )

    ===

    e

    cSO

    m

    mssshmd

    067.0,mkg103.5,scm1035.3,scm1073.4

    ,mC16.0,eV7.6,1.13,0,m9,nm5,nm32,meV1.1,,,,,,,,,,,

    3355

    2

    *

    321140

    *

    0

    hh

    Zumbuhl ea PRL 89 (276803) 2003

    TsT [email protected] =Experiment:Elzerman et al.,

    Nature 430, 431 (2004)

    22/SO

    s11005501 =T due to uncertainties in gfactorms7.21=T for SO=17m [Huibers ea PRL 83, 5090 (1999)]

    Current record: T1 > 1 s (B 1 T) in GaAsS A h K M L I R d D Z b hl

  • 7/23/2019 Loss ppt QC

    60/157

    S. Amasha, K. MacLean, I. Radu, D. Zumbuhl,

    M. Kastner, M. Hanson, A. Gossard, Phys. Rev. Lett. 100, 46803 (2008).

    data in good agreement with theory

    Golovach, Khaetskii, DL, PRL 93 (`04)

    Rashba & Dresselhaus SOI Effectswell understood (?)

    Spin relaxation rate 1/T1 for GaAs Quantum Dot

  • 7/23/2019 Loss ppt QC

    61/157

    ( ) 22 2sin2

    0

    5

    1

    sin)(1

    jB sBgk

    B edBgT

  • 7/23/2019 Loss ppt QC

    62/157

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40

    1

    2

    3

    T

    1

    [ms]

    S-T splitting [meV]

    Theory: Golovach, Khaetskii, Loss, PRB 2007

    Experiment on double-dots, Meunier et al., PRL 2007

    phonon wavelength

    matches dot size

    p 1

  • 7/23/2019 Loss ppt QC

    63/157

    Brute force nuclear polarization with large B-field:

    Note: spin phonon rate is non-monotonic function of B-field

    Chesi & DL, cm0804.3332

    1/T1,2 depends strongly on B-field direction (magic angles):

  • 7/23/2019 Loss ppt QC

    64/157

    ( )( )0,2/

    ,,1

    11 ===

    T

    f

    T

    ( ) ( )( )[ ]

    2sinsin2cos11

    ,, 22222

    +++=f

    43,2, === 1Texact!

    Special case:

    Rashba and Dresselhaus interfere! *)

    *) Schliemann, Egues, DL, PRL `03

    Golovach, Khaetskii, LossPRL 93, 016601 (2004)

    ellipsoid

    1/T1,2 depends strongly on B-field direction(magic angles):

  • 7/23/2019 Loss ppt QC

    65/157

    ( )( )0,2/

    ,,1

    11 ===

    T

    f

    T

    ( ) ( )( )[ ]

    2sinsin2cos11

    ,, 22222

    +++=f

    43,2, === 1Texact!

    Special case:

    Rashba and Dresselhaus interfere! *)

    *) Schliemann, Egues, DL, PRL `03

    Golovach, Khaetskii, LossPRL 93, 016601 (2004)

    ellipsoid

    Relaxation of spin in GaAs quantum dots dominated by

  • 7/23/2019 Loss ppt QC

    66/157

    Relaxation of spin in GaAs quantum dots dominated by

    spin-orbit & phonons with ultra-long relaxation times T1:

    T1 ~ 1s for B ~ 1TAmasha et al.,Phys. Rev. Lett. (2008)

    Relaxation of spin in GaAs quantum dots dominated by

  • 7/23/2019 Loss ppt QC

    67/157

    e a at o o sp Ga s qua tu dots do ated by

    spin-orbit & phonons with ultra-long relaxation times T1:

    But measured spin decoherence times are muchshorter: T2~1- 10 s Petta et al. '05; Koppens et al. '06/'07

    T1 ~ 1s for B ~ 1T

    From Rashba- SOI we expect T2 = 2T1 Golovach et al., PRL '04

    Thus, spin decoherence in GaAs must be dominated byother effects hyperfine interaction with nuclear spins

    Burkard, DL, DiVincenzo, PRB 99

    Amasha et al.,Phys. Rev. Lett. (2008)

    Hyperfine interaction:

  • 7/23/2019 Loss ppt QC

    68/157

    Major source of dynamics/decoherenceQuantum dots Si:P donors

    Molecular magnetsNV centers in diamond

    Ono and Tarucha, PRL (2004),Petta et al., Science (2005),

    Koppens et al., Nature (2006)E Abe et al., PRB (2004)

    Childress et al., Science (2006),Hanson et al., PRL (2006)

    Ardavan et al., PRL (2007)Barbara et al., Nature (2008)

    ...All are potential candidates for quantum information processing applications

  • 7/23/2019 Loss ppt QC

    69/157

    1. Avoid nuclear spin problem: use holes or othermaterials such as C, Si, Ge,...

    2. Use GaAs (still best material) and dealwith nuclear spins

    Strategies:

  • 7/23/2019 Loss ppt QC

    70/157

    1. Avoid nuclear spin problem: use holes or othermaterials such as C, Si, Ge,

    2. Use GaAs (still best material) and dealwith nuclear spins

    Strategies:

    Heavy Hole Spins in Quantum Dots

    fl d HH LH i i d l li d HH

  • 7/23/2019 Loss ppt QC

    71/157

    Heiss et al., Phys. Rev. B 76,2413062 (2007);

    [and: Gerardot et al., Nature451, 44108 (2008)]

    flat dot HH-LH mixing suppressed long-lived HH

    Bulaev & Loss, PRL 95, 076805 (2005)

    Abstreiter/Finley group 07: T1 ~ 200 s

    self-assembled InGaAs dots

    Hyperfine effect on holes??

    Hyperfine Interactions with Nuclear-Spins

  • 7/23/2019 Loss ppt QC

    72/157

    Hyperfine Interactions with Nuclear Spins

    Fermi contact hyperfine interaction

    Anisotropic hyperfine interaction

    Coupling of orbital angular momentum

    kkjS

    k

    ISrh k

    rrr

    = )(38

    4

    01

    )/1())((3

    4 30

    2

    kk

    kkkkjS

    k

    rdrISInSnh

    k +=

    rrrrrr

    )/1(43

    03

    kk

    kkjS

    k

    rdr

    ILh

    k +

    =

    rr

    Band structure of a GaAs QW

  • 7/23/2019 Loss ppt QC

    73/157

    Band structure of a GaAs QW

    In the quasi-2D limit, a gapdevelops between the HH andLH sub-bands.

    The HH-LH degeneracy islifted.

    For GaAs:

    eV

    eVeVE

    LH

    SO

    g

    1.0

    3.05.1

    =

    ==

    (QW height of5nm)

    s-type

    p-type

    Hyperfine Interactions with Nuclear-Spins

  • 7/23/2019 Loss ppt QC

    74/157

    yp p

    Fermi contact hyperfine interaction

    Anisotropic hyperfine interaction

    Coupling of orbital angular momentum

    kkjS

    k

    ISrh k

    rrr

    = )(38

    4

    01

    )/1())((3

    4 30

    2

    kk

    kkkkjS

    k

    rdrISInSnh

    k +=

    rrrrrr

    )/1(43

    03

    kk

    kkjS

    k

    rdr

    ILh

    k +

    =

    rr

    Electronsh1 isotropic

    Holesh2,3 Ising-like

    h2,3 ~ 0.2 h1

    Fischer, Coish, Bulaev, Loss, arXiv:0807.0368

    Carbon-based Nanostructures

  • 7/23/2019 Loss ppt QC

    75/157

    Folklore: 12C is light atom and thus weak spin-orbit interactionis it true?

    )( 3 yyxx ppvH +=

    2D Dirac-Hamiltonian:

    Spin Qubits in Graphene

  • 7/23/2019 Loss ppt QC

    76/157

    Trauzettel, Bulaev, Loss & Burkard, Nature Physics 3, 192 (2007)

    Advantages: weak SOI and

    (almost) no nuclear spins;& long-range interaction

    Challenge: armchair boundariesto lift orbital degeneracy

    Carbon Nanotube Quantum Dots

  • 7/23/2019 Loss ppt QC

    77/157

    Nygard, Cobden, Lindelof, Nature 408, 342-6 (2000).Jarillo-Herrero, et al., Nature 429, 389 (2004).Mason, et al., Science 303, 655 (2004).Graber, et al., Phys. Rev. B 74, 075427 (2006).

    Carbon Nanotube:

  • 7/23/2019 Loss ppt QC

    78/157

    Carbon Nanotube:

    Dirac-like bandstructure withsmall gap: semiconducting NT:

    Gate-controlled confinment:

    Spin orbit interaction: zparaiperp

    SOI ScheSiH 132 2.).( ++= +

    Ando, J. Phys.Soc. Jpn., 2005;

    Huertas-Hernando et al., PRB 2006

    Spectrum of Nanotube Quantum-Dot in B-fieldD. Bulaev, B. Trauzettel, and D. Loss, PRB 77, 235301 (2008)

  • 7/23/2019 Loss ppt QC

    79/157

    Spin-Orbit Interaction leads to zero-field splitting

    Spectrum of Nanotube Quantum-Dot in B-fieldD. Bulaev, B. Trauzettel, and D. Loss, PRB 77, 235301 (2008)

  • 7/23/2019 Loss ppt QC

    80/157

    Spin-Orbit Interaction leads to zero-field splitting

    Spectrum experimentally

    confirmed, see Kuemmeth, Ilani,Ralph, McEuen, Nature 452 (2008)

    Spectrum of Nanotube Quantum-Dot in B-fieldD. Bulaev, B. Trauzettel, and D. Loss, PRB 77, 235301 (2008)

  • 7/23/2019 Loss ppt QC

    81/157

    Spectrum experimentally

    confirmed, see Kuemmeth, Ilani,Ralph, McEuen, Nature 452 (2008)

    Spin-Orbit Interaction leads to zero-field splitting all-electrical control of spin possible!

    Spin Relaxation and Spin Decoherence Rates in Nanotubesdue to Electron-Phonon and Spin Orbit Interactions

  • 7/23/2019 Loss ppt QC

    82/157

    Extreme variations withB-field: spin relaxation rate

    can be varied by a factor 108

    !

    1/f phonon noise

    due to quadratic bending modes ~ q2

    in 1D

    Bulaev et al., PRB 77, 235301 (2008)

  • 7/23/2019 Loss ppt QC

    83/157

    1. Avoid nuclear spin problem: use holes or othermaterials such as C, Si, Ge,

    2. Use GaAs (still best material) and dealwith nuclear spins

    Strategies:

    Spin-bath dynamics

  • 7/23/2019 Loss ppt QC

    84/157

    Fully-polarized bath exact dynamics

    Thermal (completely random) bath

    Spin-echo decay

    Semiclassical dynamics

    Khaetskii, Loss, Glazman, PRL (2002), ...: power-law or inverse-log decay

    Khaetskii, Loss, and Glazman, PRL (2002), Merkulov, Efros, andRosen, PRB (2002), Coish and Loss (2004), ...: Gaussian decay

    Erlingsson and Nazarov, PRB (2004), Yuzbashyan et al., J. Phys. A.(2005), Al-Hassanieh et al., PRL (2006), Chen, Bergman, and Balents,PRB (2007), ...: power-law or inverse-log decay

    de Sousa and Das Sarma, PRB (2003), Witzel and Das Sarma, PRL(2007), Yao, Liu, and Sham, PRL (2007), ...: super-exponential decay

    BUT: Non-exponential decay inconsistent with Markovianquantum error-correction models!!

    zvv

    Hyperfine Interaction in Single Quantum Dot

  • 7/23/2019 Loss ppt QC

    85/157

    x

    y

    zB( )rr

    z

    ( ) nKsHdd 1001014

    2/12

    nuclear spindipole-dipole interaction

    ddB

    i

    ii HSBgISAH ++=

    electron Zeeman energy

    2)( ii rAA

    v

    hyperfine interactionis non-uniform:

    516 10,10 = NsN

    A

    Khaetskii, DL, Glazman, 02; Coish & DL, 04-07; Eto 04; Sham 06; Altshuler 06;Balents 07 ...

    Separation of the Hyperfine Hamiltonian

  • 7/23/2019 Loss ppt QC

    86/157

    Hamiltonian: VHhSBSgH zB +=+= 0vv

    = iiiIAh

    vv

    Note: nuclear field

    ... ... ... ...

    zzB ShBgH )(0 +=

    ( )++ += ShShV

    2

    1

    longitudinal component

    flip-flop terms

    Separation:

    yx ihhh =V V

    is a quantum operator

    Nuclear spins provide hyperfine field hwith

    ( ) fl i b l i

  • 7/23/2019 Loss ppt QC

    87/157

    (quantum) fluctuations seen by electron spin:

    Sv

    hv

    Nuclear spins provide hyperfine field hwith

    ( t ) fl t ti b l t i

  • 7/23/2019 Loss ppt QC

    88/157

    (quantum) fluctuations seen by electron spin:

    Sv

    hv

    Nuclear spins provide hyperfine field hwith

    ( t ) fl t ti b l t i

  • 7/23/2019 Loss ppt QC

    89/157

    (quantum) fluctuations seen by electron spin:

    With mean =0 and (quantum) varianceh:

    1

    2

    1

    2

    )10(5/

    = ===

    == nsmTNAIAhh nucl

    N

    k

    kknucl

    r

    what state?

    Svh

    v

    Initial conditions for nuclear spinsCoish &DL, PRB 70, 195340 (2004)

  • 7/23/2019 Loss ppt QC

    90/157

    [ ] === knnz

    z

    kkzI nhnIAnhnn ,)0(

    )3(

    Pure state of hz-eigenstate:

    Initial conditions for nuclear spinsCoish &DL, PRB 70, 195340 (2004)

  • 7/23/2019 Loss ppt QC

    91/157

    ( )

    ( )

    =

    =

    +==

    N

    NNNI

    k

    i

    k

    N

    kIIII

    NNffNN

    fef k

    1)0(

    1,)0(

    )2(

    1

    )1(

    [ ] === knnz

    z

    kkzI nhnIAnhnn ,)0(

    )3(

    Superposition (1) or mixture (2) of hz-eigenstates:

    Pure state of hz-eigenstate:

    Initial conditions for nuclear spinsCoish &DL, PRB 70, 195340 (2004)

  • 7/23/2019 Loss ppt QC

    92/157

    [ ] === knnz

    z

    kkzI nhnIAnhnn ,)0(

    )3(

    ( )

    ( )

    =

    =

    +==

    N

    NNNI

    k

    i

    k

    N

    kIIII

    NNffNN

    fef k

    1)0(

    1,)0(

    )2(

    1

    )1(

    Superposition (1) or mixture (2) of hz-eigenstates:

    Pure state of hz-eigenstate: Pure state of hz-eigenstate:

    nuclear spin bath behaves classically !

    Gaussian decay and narrowing

    Zeroth order in flip-flop terms: )]0([Tr )( thBgi zBeSS +

  • 7/23/2019 Loss ppt QC

    93/157

    Zeroth order in flip-flop terms:

    Gaussian decay

    )]0([Tr )(0 I

    thBgiIteSS +++ =

    ,22 2

    0

    .)(cttti

    measno

    t eeSS

    ++

    zh

    h

    B

    nsp

    N

    Atc 5

    1

    22

    = h

    GaAs, N=105

    C h t i l t t i l t

    (tunneling)

    E. Laird et al., PRL '06: free induction decay

  • 7/23/2019 Loss ppt QC

    94/157

    Theory (full lines): Coish & DL,PRB 72, 125337 (2005)

    Coherent singlet- tripletoscillations due to hyperfinemixing with Gaussian distribution reasonable agreement

    between theory and experiment

    Koppens et al., PRL 2007: driven Rabi oscillations

  • 7/23/2019 Loss ppt QC

    95/157

    Gaussian Hyperfine field :

    (Klauser, Coish & DL)

    Gaussian decay and narrowing

    Zeroth order in flip-flop terms: )]0([Tr )( IthBgiIzBeSS +++ =

  • 7/23/2019 Loss ppt QC

    96/157

    Zeroth order in flip flop terms:

    Prepare nuclear spin system with a measurement of the Overhauser field

    B. Coish and D. Loss (PRB 2004), G. Giedke et al. (PRB 2006)D. Klauser et al. (PRB, 2006), D. Stepanenko et al. (PRL 2006)

    Gaussian decay

    )]0([Tr0 IIt

    eSS ++ =

    ,22 2

    0

    .)(cttti

    measno

    t eeSS

    ++

    zh

    h

    B

    Precession

    [ ] nnzBtimeas

    t hBgeSS += ++

    ,0

    .)(

    B

    h

    nsp

    N

    Atc 5

    1

    22

    = h

    GaAs, N=105

    Narrowing of nuclear spins in double dots with ESR

    Klauser, Coish & DL, PRB 73, 205302 (2006)

    ESR: oscillating exchange J(t) J +j cos(t) leads to Rabi oscillations:

  • 7/23/2019 Loss ppt QC

    97/157

    z

    nB hBg +

    ESR: oscillating exchange J(t)=J0+j cos(t) leads to Rabi oscillations:

    +=

    =

    ESR at frequency = measures eigenvalue nuclear spins projected into corresponding eigenstate |n>

    z

    nB hBg + z

    nh

    If quantum measurement is ideal, then Gaussian superpositioncollapses to a single Lorentzian (ESR linewidth):

    j/2

    Quantum control of

  • 7/23/2019 Loss ppt QC

    98/157

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 20

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    -2 -1.5 -1 -0.5 0 0.5 1 1.5 20

    0.1

    0.2

    0.3

    0.4

    0.5

    0 20 40 60 80 100

    b)a)

    c)

    M = 51, = 1

    M= 100, = 22

    M= 50, = 0

    (x x0)/0

    (x x0)/0

    (x x0)/0

    M

    d)

    (x) (x)

    (x)P

    Quantum control ofnuclear spin bath

    through measurementof single electron spin

    Klauser, Coish & DL, PRB 73, 205302 (2006)

  • 7/23/2019 Loss ppt QC

    99/157

    [ ]

    ===

    knnz

    z

    kkzI

    nhnIAnhnn ,)0()3(

    Consider now nuclear spins in pure state of hz-eigenstates:

    hv

    Narrowed initial nuclear spin state h=0 at t=0

  • 7/23/2019 Loss ppt QC

    100/157

    hSv .constIS

    k

    k=+rr

    Khaetskii, DL, Glazman, PRL 02 & PRB 03

    Coish &DL, PRB 70, 195340 (2004)

    t>0: quantum dynamics ... ... ... ...V V

    changes hyperfine field in time by 1/N spin precesses influctuating hyperfine field spin dephases (power law decay)

    flip-flops

    back action of Son hBz

    hv

    IS

    Narrowed initial nuclear spin state h=0 at t=0

  • 7/23/2019 Loss ppt QC

    101/157

    hSv

    Dynamics (flip-flops): ... ... ... ...V V

    .constISk

    k=+rr

    2/3

    /

    2

    2

    )/()(4

    )0()(

    NAt

    e

    pIAbN

    AStS

    NitA

    zz

    +

    Time scale is N/A = 1s (GaAs) and decay is bounded

    power law decay

    back action of Son h

    E.g.

    Bz

    Khaetskii, DL, Glazman, PRL 02 & PRB 03, Coish &DL, PRB 04

    Quantum vs. Classical Dynamics

  • 7/23/2019 Loss ppt QC

    102/157

    N

    A

    IKKSBSH

    N

    kk

    z

    ==+= = ;; 1vvv

    Special case: Uniform hyperfine coupling =kA

    )()()(

    )()()(

    tstktk

    tstkBts

    vv&vv

    vv&v

    =

    +=

    Classical: Time-dependentmean-field (TDMF)

    Exact solutioncf. Yuzbashyan and Altshuler,

    J. Phys. A (2005)

    Quantum:

    Exact solutioncf. Coish, Yuzbashyan, Altshuler, Loss

    J. Appl. Phys. 101, 081715 (2007);

    [ ][ ]KHiK

    SHiSv&v

    v

    &

    v

    ,

    ,

    ==

    t

    t

    K

    Sv

    v

    Initial Conditions

    Classical Quantum

  • 7/23/2019 Loss ppt QC

    103/157

    ( )

    ( )sssss

    kk

    s

    k

    cos,sinsin,cossin)0(

    cos,0,sin)0(

    =

    =

    v

    v

    ( )==

    +=

    =

    m

    k

    K

    mK

    iK

    k

    siss

    ks

    mKdKKe

    e

    ky

    s

    ,,2

    sin

    2

    cos

    )0(

    )(

    Classical Quantum

    )0(sv

    )0(kv

    B

    Sv

    Kv

    B

    classical vectors spin coherent states('minimum uncertainty')

    ( )0=B

    Classical vs. Quantum Dynamics

  • 7/23/2019 Loss ppt QC

    104/157

    ( )

    ( ) N

    AT

    tsS

    tsStd

    TtC

    xtx

    xtxTt

    t

    ==+

    =

    +

    ;1.0

    ;21

    )(22

    ( )

    ( )10=B

    TDMF:

    quantum:

    )(tsx

    txS

    Time-dependent mean-field (TDMF) = exact quantum solution1)( =tC

    )(tsS xtx for times t> AN

    c

    2=1)(

  • 7/23/2019 Loss ppt QC

    105/157

    Time

    21

    ~

    b

    A

    N

    A

    Nc ~

    A

    N

    A

    b~

    ???~2T 2Tt>>

    tx

    Fully polarized nuclei: exactly solvable case

    BSIS AH

    Khaetskii, DL, Glazman, PRL `02 & PRB `03

  • 7/23/2019 Loss ppt QC

    106/157

    The initial nuclear spin configuration is fully polarized. With the initial wavefunction 0 we construct the exact wave function of the system for t > 0 :

    Normalization condition is: , and we assume that

    From the Schrdinger equation we obtain:

    paramagnon

    entangled

    BSIS += Bii

    i gAH

    (1)

  • 7/23/2019 Loss ppt QC

    107/157

    Laplace transform of (1) gives:

    ++

    +

    +=

    ++=+==

    k

    k

    k

    iu

    iuuD

    iut

    uDi

    uDtiu

    2/A4/)2A(

    A

    4

    1

    4

    )2A()(

    ,2/A4/)2A(

    )0(A)(2)(

    )0()(

    kz

    2

    kz

    kz

    k

    ])2

    )(A1(lnN2i-A[2

    2/A

    A 20

    k

    2

    k =+

    N

    zidz

    ik

    Introducing 4/)2A( z ++= iiu , using (t=0)=1, k (t=0)=0,and replacing the sum over k by an integral

    self-energy

    (1)

  • 7/23/2019 Loss ppt QC

    108/157

    where A = kA k; l=1,, N set of N+1 coupled differential eqs. (N>>N)

    Spin correlator: 2/))(1()()(2

    000 tStStC zz ==

    Laplace transform of (1) gives:

    here

    note: sums k replaced by integrals over rk3 (valid for t < N2/A),

    with x,y (Gaussians) integrated out non-analyticity

    integration contour and singularities

  • 7/23/2019 Loss ppt QC

    109/157

    The singularities are: two branch points (=0, 0= i A02(0)/ 2N), and firstorder poles which lie on the imaginary axis (one pole for z > 0, two poles for

    z < 0). For the contribution from the branch cut (decaying part) we obtain:

    )0(20 =here and .)0()(),(2

    00

    2

    000 == zzz

    g g

    1) Large Zeeman field |z| >> A :

    Asymptotic behavior ( = t/(N/A) >>1) determined by nuclei at dot center:

  • 7/23/2019 Loss ppt QC

    110/157

    i.e. power law decay and bounded by 1/N and (A/z)2

    The decay law depends on the magnetic field strength . However, the

    characteristic time scale for the onset of the non-exponential decay is the same

    for all cases and given by (A/N )-1 (microseconds in GaAs dot).

    ~ 1/ N

    2) No external magnetic field (z= 0):Asymptotic behavior ( >> 1) determined by weakest coupled nuclear spins:

    2/3ln/1~ non-universal

    z

    Bi

    ii SBgISAH +=

    vv

    General case: below full polarization

  • 7/23/2019 Loss ppt QC

    111/157

    x

    y

    zB

    ( )rr

    z

    Coish & Loss, 04-07; Eto 04; Sham 06; Altshuler 06; Balents 07,...

    Generalized Master Equation

    Generalized Master Equation (exact): [ ]OHLO ,=

    Bill Coish &DL, PRB 70, 195340 (2004)

    Liouville op.

  • 7/23/2019 Loss ppt QC

    112/157

    tdtttitiLt

    t

    SSSS =

    0

    0 )()()()( &

    )0()( IViQLt

    IS LLeiTrt =

    [ ] )0()()( 1)2(0)2( SSS siiLss

    ++=

    Ge e a ed aste quat o (e act)

    L++=+= )()()0(1

    )()4()2(

    ssLiQLsLiTrsSSIVIS

    )0(11

    )0(1

    )0(1

    00

    IVVIIVIIVI LiQLs

    QLiQLs

    LTrLiQLs

    LiTrLiQLs

    LiTr ++

    +

    =+

    Lowest-order Born approximation:

    +

    =i

    i

    S

    st

    iS dsset

    )()( 21

    Laplace transform, expand self-energy in the transverse coupling :VL

    )()( tTrt IS =

    [ ]

    [ ]OVOL

    OHOL

    V ,

    ,00

    =

    =

    ( )OTrQO II )0(1 =

    )0()0()0( IS =

    nnI =)0(

    [ ] nhnhnnzz

    =

    Initial conditions and perturbative regime

    Initial State: )0()0()0( IS =1

    El i[ ]=

    nnzznhnh ,

  • 7/23/2019 Loss ppt QC

    113/157

    j

    z

    jI mnInnn == ,)0(

    zzyyxxSS SSSI 0002

    1)0( +++=

    Nuclear spins:

    Electron spin:

    =i

    z

    iiz

    nnzz

    IAh

    Initial conditions and perturbative regime

    Initial State: )0()0()0( IS =SSSI

    1)0(El t i

    [ ]=nnzznhnh ,

  • 7/23/2019 Loss ppt QC

    114/157

    )(

    )()( 0

    sis

    sNSsS

    zz

    zz

    z ++=

    )()( 0

    siis

    SsS

    n ++

    ++ +=

    longitudinal and transverse electron spin dynamics decouple to all orders:

    j

    z

    jI mnInnn == ,)0(

    zzyyxxSS SSSI 0002

    1)0( +++=

    Nuclear spins:

    Electron spin:

    =i

    z

    iiz IAh

    [ ]nnzn

    hb+=

    Perturbative regime for all electron spin dynamics given by: IAb >>

    ( )1

    12

    0

    2/1

    0

    2

  • 7/23/2019 Loss ppt QC

    115/157

    0iLs +

    [ ]

    [ ]

    [ ])()()(

    )()()(

    )()()(

    )2(

    )2(

    )2(

    sIcsIciNs

    isIisIiNcs

    isIisIiNcs

    nn

    nn

    ++++

    +

    ++

    +=

    ++=

    ++=

    1,ln

    2

    4

    1)(

    1

    0

    2

    == md

    ixs

    xxdx

    m

    d

    Ais

    A

    NsI

    k k

    k

    mm

    =

    m

    l

    rr

    02

    1exp)0()(

    In d Dimensions:

    ),1:2/1(

    )()()(

    ,)1()1(

    +

    ===

    =

    +=

    fcfcI

    mFmPmF

    mmIIc

    m

    I

    d=m=2: [ ] isisssI = )log()log()( mbranch cuts

    Dependence on the envelope wave function

    1

    Donor Impurity:

    ( )02/exp)( lrr

    1exp)0()(

    =m

    rr

    Envelope wave function:

  • 7/23/2019 Loss ppt QC

    116/157

    0 10 20 30 40 50

    t [2 --h/A0]

    -0.5

    0

    0.5

    Re[I

    +(t)/I

    0]

    2D Quantum Dot:

    [ ]sANt 1/2 h

    ( ) 2//exp)( 20lrr

    )0(

    )(

    +

    +

    R

    tR

    .2

    exp)0()(0

    =l

    r

    ,2,

    1

    )1(/

    > m

    d

    ettR NiAt

    m

    d

    X

    ,11,ln

    )1(2

    =>>

    m

    d

    t

    ttRX

    in d dimensions.

    Decaying fraction of the spin:

    zXSStR XtXX ,,)( 0 +==

    2

    2

    )(4 pIAbN

    A

    +=

    Dot:

    Si:P

    Spin dynamics is `non-Markovian (for t~N/A)

    Born-Markov Approximation not valid:

  • 7/23/2019 Loss ppt QC

    117/157

    ( )

    t

    ti

    t

    t

    t

    tti

    ttSeSStttdiSiS nn +

    +++++

    ++ ==

    ~

    0

    )2()( ,)(e~&

    ( )

    ( ) !0)~(Im

    )~(Re~

    )2(

    )2(

    =+==

    +==

    ++

    ++

    n

    n

    is

    is

    )(0

    tRSeS t

    t ++

    + +=

    From the exact GME:

    i.e. vanishing decay rate!

    Markov approximation(in the rotating frame)

    non-Markovianremainder term

    0,1

    )0( *

    2

    =+ zBBgNp

    R

    Stationary Limit & Decaying Fraction

    p

    Longitudinal spin: Stationary limit within the Born approximation (I=1/2):

  • 7/23/2019 Loss ppt QC

    118/157

    +

    +===

    12)(lim

    1lim

    0

    0

    0

    pS

    ssSdtST

    Sz

    zs

    T

    tzTz

    Np21

    zS

    Decaying fraction for b=0 is of order independent ofdimensionality or specific form of the electron envelope wavefunction.

    This result is confirmed by exact diagonalization ofsmall systems, e.g., Ntot=15:

    0 5 10 15 20t (2N/A)

    -0.5

    -0.4

    -0.3

    -0.2

    -0.1

    0

    0.1

    t

    )2

    1,0(

    122

    ==== IbNp

    N

    n

    Summary of electron spin dynamics

    zXSStR XtXX ,,)( 0 +== 2*2

    )(4)(

    pIABgNAtR

    zB

    X +=

  • 7/23/2019 Loss ppt QC

    119/157

    =

    m

    l

    rr

    02

    1exp)0()( in d dimensions, and for a wave function:

    += 1

    * pIABg

    A

    zB

    Exact when p=1,Born approximation valid in

    the weakly perturbative regime.

  • 7/23/2019 Loss ppt QC

    120/157

    Time

    21

    ~

    b

    A

    N

    A

    Nc ~

    A

    N

    A

    b~ ???~

    2

    T2

    Tt>>

    tx

    Free-induction decay: Big picturePower law:

    Khaetskii, Loss, Glazman, PRL (2002)Coish and Loss, PRB (2004)

    tx

  • 7/23/2019 Loss ppt QC

    121/157

    Time

    21

    ~

    b

    A

    N

    Initial quadratic (Gaussian?) decay:Yao, Liu, Sham, PRB 06, PRL 07, NJP 07

    2)/(2)/(1 tt etx

    A

    Nc ~

    A

    N

    A

    b~ ???~

    2

    T2

    Tt>>

    t

    Free-induction decay: Big picturePower law:

    Khaetskii, Loss, Glazman, PRL (2002)Coish and Loss, PRB (2004)

    tx

  • 7/23/2019 Loss ppt QC

    122/157

    Time

    ???

    21

    ~

    b

    A

    N

    Initial quadratic (Gaussian?) decay:Yao, Liu, Sham, PRB 06, PRL 07, NJP 07

    2)/(2)/(1 tt etx

    A

    Nc ~

    A

    N

    A

    b~ ???~2T 2Tt>>

    t

    Free-induction decay: Big picturePower law:

    Khaetskii, Loss, Glazman, PRL (2002)Coish and Loss, PRB (2004)

    tx

  • 7/23/2019 Loss ppt QC

    123/157

    Time

    ???

    21

    ~

    b

    A

    N

    Initial quadratic (Gaussian?) decay:Yao, Liu, Sham, PRB 06, PRL 07, NJP 07

    2)/(2)/(1 tt etx

    A

    Nc ~

    A

    N

    A

    b~ ???~2T 2Tt>>

    Long-time power law:Deng and Hu, PRB (2006)

    2/1 tx t

    t

    Consider now times t >> N/ACoish, Fischer, and Loss, Phys. Rev. B 77, 125329 (2008)

    Coherence of an electron spin can exhibit exponential

  • 7/23/2019 Loss ppt QC

    124/157

    p pdecay for large magnetic field and narrowed initial

    bath-state Hyperfine Hamiltonian

    2nd order effective Hamiltonian (Schrieffer-Wolff trafo)

    Reproduces 4th-order rates when expanded to 2nd order in flip-flopsonly

    )(2

    1)( ++ ++++= ShShIbShbH

    k

    z

    kk

    zz

    hf

    +

    +++=

    +

    k

    z

    kk

    z

    lk

    lkz

    lkz IbSIIhb

    AAhbH

    2

    1

    Details of the Transformation

    Write the hyperfine Hamiltonian as

    ( )++ +++ ShShVSHVHH z 1

  • 7/23/2019 Loss ppt QC

    125/157

    Schrieffer-Wolff transformation

    This can be rewritten as

    ( )+=+=+= ShShVSHVHH zhf2

    ,, 000

    VL

    SVSHeHeH S

    hf

    S

    0

    0

    1],,[

    2

    1=+=

    ( ) DSXSSHSSHH z ++=+= ++

    diagonal off-diagonal

    (with respect to product eigenbasis of )z

    kI

    Hyperfine-Mediated Nuclear-Field Fluctuations Heff

    )()( 3VODSXH zeff +++=

  • 7/23/2019 Loss ppt QC

    126/157

    Effective (fluctuating) field leads topure dephasing of electron spin

    Fixed frequency(narrowed initial state)

    (small for large b)

    = 10],[ TSH z

    Beff ~ +X

    2/Tt

    tx eS

    zhb +

    z

    k

    k

    kID

    bIIAA

    X lklk

    lk

    1

    2

    1

    +

    Generalized Master Equation (GME)

    Initial conditions:

    nnnn === )0()0()0()0(

  • 7/23/2019 Loss ppt QC

    127/157

    Nakajima-Zwanzig GME:

    Expand in powers of

    nnnn nIIs === ,)0(,)0()0()0(

    '0

    )'('t

    t

    tn

    t

    SttdtiSiSdt

    d+++

    =

    bXSV z 1~=

    ...)()()()4()2(

    ++= ttt 1

  • 7/23/2019 Loss ppt QC

    128/157

    Markovian regime:

    + 0 )(Re, tSex tt

    )()(

    ~ )(tet

    ti n

    = +

    2Tc

  • 7/23/2019 Loss ppt QC

    129/157

    Markovian regime:

    + 0 )(,tt

    )()(

    ~ )(

    tet

    ti n

    = +

    2Tc

  • 7/23/2019 Loss ppt QC

    130/157

    Markovian regime:

    + 0 )(,tt

    )()(

    ~ )(

    tet

    ti n

    = +

    2Tc

  • 7/23/2019 Loss ppt QC

    131/157

    Homonuclear system:

    Continuum limit:

    =

    02

    )0()(Re1

    XtXdteT

    ti titiXeetX

    =)(

    tAAi

    l

    lk

    klkeAA

    bXtX

    )(22

    2

    1)0()(

    tAAi

    lklkeAAdldk

    b

    )(22

    002

    1 ANc /

    )0()( XtX

    t

    Distribution of coupling constants

    k spins

    N spinsd=1

    (e.g. nanotube, nanowire)

  • 7/23/2019 Loss ppt QC

    132/157

    d=2

    d=3

    volume occupied by one spin

    (e.g. lateral quantum dot)

    (e.g. Self-assembled dot, defect)

    Decoherence Rate:

    Homonuclear System

  • 7/23/2019 Loss ppt QC

    133/157

    Coupling toone nucleus

    Geometricalfactor

    N

    A

    b

    A

    q

    df

    II

    T

    22

    2 3

    )1(1

    +=

    4~I 1

  • 7/23/2019 Loss ppt QC

    134/157

    Markovian

    Non-Ma

    rkovian

    1D quantum dot (e.g. nanotube, nanowire)

    donor impurity

    2D quantum dot(e.g. lateral gated dot)

    2T

    =

    q

    Ba

    rr exp)0()(

    Heteronuclear system

    (neglecting inter-species flip-flops*) =

    i

    iiT

    2

    2

    1

  • 7/23/2019 Loss ppt QC

    135/157

    Isotopic abundance

    IIn =9/2 IGa,As =3/2

    InxGa1-xAs, x=0.05

    *) if difference in nuclear

    Zeeman energy > A/N

    explains strong isotopedependence seen in transport

    measurements (Ono+Tarucha,04; Yacoby 07)

    Free-induction decay due to HyperfinePower law:

    Khaetskii, Loss, Glazman, PRL (2002)Coish and Loss, PRB (2004)

    2Long-time power law:

    tx

  • 7/23/2019 Loss ppt QC

    136/157

    Time

    ???

    21

    ~

    b

    A

    N

    Initial quadratic (Gaussian?) decay:Yao, Liu, Sham, PRB 06, PRL 07, NJP 07

    2)/(2)/(1 tt etx

    A

    Nc ~

    A

    N

    A

    b~ ???~2T 2Tt>>

    g pDeng and Hu, PRB (2006)

    2/1 tx t

    Power law:Khaetskii, Loss, Glazman, PRL (2002)Coish and Loss, PRB (2004)

    2

    Long-time power law:tx

    Free-induction decay due to Hyperfine

  • 7/23/2019 Loss ppt QC

    137/157

    Time

    21

    ~

    b

    A

    N

    Initial quadratic decay:Yao, Liu, Sham, PRB 06

    2)/(1 tx t

    A

    Nc ~

    A

    N

    A

    b~ NbT

    2

    2

    2 ~ 2Tt>>

    g pDeng and Hu, PRB (2006)

    2/1 tx tExponential decayCoish et al., PRB (2008)

    2/Tt

    t ex

    Summary of Part A&B

    spin qubits and entanglement: all-electrical control spins in GaAs dots: long relaxation times (secs!)

  • 7/23/2019 Loss ppt QC

    138/157

    spins in GaAs dots: long relaxation times (secs!)

    due to SOI & phonons but short decoherence due to hyperfine interaction alternative systems: holes, graphene, nanotubes,...

    power law decay for times up to N/A exponential decoherence with strong isotope

    dependence ( for t > N/A, and large B)

    1. Dynamical polarization

    C. Polarization of nuclear spins

  • 7/23/2019 Loss ppt QC

    139/157

    ESR & optical pumping:

  • 7/23/2019 Loss ppt QC

    140/157

    A ~90eV in GaAs

    A/EF

    ~ 10-2

  • 7/23/2019 Loss ppt QC

    141/157

    Schrieffer-Wolff transformationintegrate out electron degrees of freedom

    RKKY interactionbetween nuclear spins

    (overrules direct dipolarinteraction)

    electron spin susceptibility

    A ~90eV in GaAs

    A/EF

    ~ 10-2

  • 7/23/2019 Loss ppt QC

    142/157

    Look at stability by considering spin wave excitations

    electron spin susceptibilityfor noninteracting Fermi gas

    2D

    What is required for magnetic order?

    Assume a ferromagnetic ground state(ensured by Weiss mean field theory)

  • 7/23/2019 Loss ppt QC

    143/157

    Look at stability by considering spin wave excitationsspin wave excitation

    spectrum

    2D2D

    What is required for magnetic order?

    Assume a ferromagnetic ground state(ensured by Weiss mean field theory)

  • 7/23/2019 Loss ppt QC

    144/157

    Look at stability by considering spin wave excitationsspin wave excitation

    spectrum

    continuum of zero energy excitations

    nuclear order unstable no magnetization!

    2D

    But if...

    Ferromagnetic order would be stable up to some T > 0if the spin wave dispersion was linear at |q| 0

    Required: Non analytic behavior

  • 7/23/2019 Loss ppt QC

    145/157

    Required: Non-analytic behavior

    Many-body corrections from electron-electroninteraction beyond standard Fermi-liquid theory?

    Non-analyticities in Spin Susceptibility in 2DEG

    Consider screened Coulomb U and 2nd order pert. theory in U:

    )q(

    ,0 A typical diagram

  • 7/23/2019 Loss ppt QC

    146/157

    Chubukov, Maslov, PRB 68 ('03)Aleiner, Efetov PRB 74 ('06)

    ,q

  • 7/23/2019 Loss ppt QC

    147/157

    Possibility of spiral order

    But it has the wrong sign!

    Negative spin wave dispersion.

  • 7/23/2019 Loss ppt QC

    148/157

    But is this generally true? Based on perturbation theory &screened Coulomb interaction

    Shekhter & Finkelstein, PRB`06;

    Braunecker, Simon, Loss, PRB08

    Chesi, Zak, DL, in preparation

    NO! Renormalization important in 2D!

    Possibility of spiral order

    Renormalization

    Backscattering strongly renormalized by Cooper channelcontribution (P 0 & presence of Fermi sea).

  • 7/23/2019 Loss ppt QC

    149/157

    is possible

    Leads to renormalization of scattering amplitude: () (,q)Saraga, Altshuler, Loss, Westervelt, PRB 05;Chesi, Zak, Loss, 08

    Renormalize lowest order diagrams

    Chesi, Zak, DL, in preparation

  • 7/23/2019 Loss ppt QC

    150/157

    Chubukov, Maslov, PRB 68, 155113 (2003)

    Renormalization

    Include Cooper channel in S(q) (Kohn-Luttinger instability w.r.t. q):

  • 7/23/2019 Loss ppt QC

    151/157

    renormalized scatteringamplitude

    Saraga, Altshuler,Loss, Westervelt

    PRB 05

    dominating Cooper channel: = (: angle between incident electrons)

    Since

    if

    for small |q|

    Braunecker, Simon, Loss, PRB08

    Ferromagnetic order is possible

    Nuclear Ferromagnetstable

  • 7/23/2019 Loss ppt QC

    152/157

    Also a possibility

  • 7/23/2019 Loss ppt QC

    153/157

    Possibly spiral order

    Critical Temperature

    Nuclear Ferromagnetstable

    shape obtained also

  • 7/23/2019 Loss ppt QC

    154/157

    Finite magnetization at low temperatures -value of Critical Temperature?

    shape obtained also

    by Local Field Factorcalculation for

    long-range Coulombinteractions

    Critical Temperature

    Nuclear magnetization at finite temperature

  • 7/23/2019 Loss ppt QC

    155/157

    valid atwith the Curie Temperature

    Finite magnetization at finite temperature in 2D!

    Estimate for GaAs 2DEG: Tc ~ 25 K 1 mK, for rs ~ 0.8 - 8

  • 7/23/2019 Loss ppt QC

    156/157

    ERR

    OR

    :

    syn

    ta

    xerr

    or

    OFFENDIN

    G

    CO

    MMAND

    :--n

    ostrin

    STA

    CK

    :

    /Ti

    tl

    e

    ()

    /Subject

    (D

    :2

    00807070

    85744+

    02

    00

    )

    /M

    odD

    ate

    ()

    /K

    eyw

    or

    ds

    (PDF

    Cr

    eator

    Ver

    si

    on

    0.9.5)

    /Cr

    eator

    (D

    :2

    00807070

    85744+

    02

    00

    )

    /Cr

    eati

    onD

    at

    e

    (Ammini

    str

    at

    ore)

    /A

    uth

    or

    -m

    ark-

  • 7/23/2019 Loss ppt QC

    157/157

    gv

    al--