49
October 5 October 5 th th , 2011 , 2011 Low Low-Carbon and Energy Carbon and Energy-Saving Saving Low Low-Carbon and Energy Carbon and Energy-Saving Saving Approaches for Sewerage Approaches for Sewerage Systems in Japan Systems in Japan Hitoshi Nakazawa Hitoshi Nakazawa Japan Sewage Works Agency 1

Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

October 5October 5thth, 2011, 2011

LowLow--Carbon and EnergyCarbon and Energy--SavingSavingLowLow--Carbon and EnergyCarbon and Energy--Saving Saving Approaches for Sewerage Approaches for Sewerage

Systems in JapanSystems in Japan

Hitoshi NakazawaHitoshi NakazawaJapan Sewage Works Agency

1

Page 2: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

ContentsContentsContentsContentsI. Sewerage Systems for Sound and Healthy

Water Cycling and Resources/Energy RecyclingII. Present State of Sewerage Systems in JapanIII. Realization of Low-Carbon and Energy-SavingIII. Realization of Low Carbon and Energy Saving

for Sewerage Systems in JapanIV Renewable Energy Utilization TechnologiesIV. Renewable Energy Utilization Technologies

from Sewage SludgeV Recent Topics on Low Carbon and EnergyV. Recent Topics on Low-Carbon and Energy-

Saving Projects for Sewerage Systems in Japan

2

Page 3: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

1.1. Potential of sewerage systems asPotential of sewerage systems asI. Sound and Healthy Water Cycle and Resources/Energy RecyclingI. Sound and Healthy Water Cycle and Resources/Energy Recycling

1.1. Potential of sewerage systems as Potential of sewerage systems as water reclamation & circulation water reclamation & circulation

and resources/energy recycle systemsand resources/energy recycle systemsand resources/energy recycle systemsand resources/energy recycle systems(Water Cycling)(Water Cycling)

rainfall Water qualityImprovement

Reclaimed wastewater

evaporationstorage of water Infiltration of stormwater

(Resources/Energy(Resources/Energy

infiltration

Recycling)Recycling)Biomass energy as

- digestion gas- sewage sludge fuel

runoff to river

water utilization

g g

Phosphorus recovery

3wastewater treatment

water utilization

Page 4: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

2 Roles of sewerage systems2 Roles of sewerage systemsI. Sound and Healthy Water Cycle and Resources/Energy RecyclingI. Sound and Healthy Water Cycle and Resources/Energy Recycling

2. Roles of sewerage systems2. Roles of sewerage systemsin water cycling systemin water cycling system

(1) Adoption of suitable wastewater reclamation technologies to variousreclamation technologies to various utilization purposes

(2) Rainwater storage and utilization(2) Rainwater storage and utilization

(3) Infiltration for groundwater cultivation

4

Page 5: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Water Quality and Facility StandardsWater Quality and Facility StandardsI. Sound and Healthy Water Cycle and Resources/Energy RecyclingI. Sound and Healthy Water Cycle and Resources/Energy Recycling

y yy yfor Wastewater Reuse in Japanfor Wastewater Reuse in Japan

Standards Applying

Flushing Water

Sprinkling Water

Water for Landscape

Water for RecreationalApplying

LocationWater Water Landscape

UseRecreational

UseEscherichia

ColiNot

detectableNot

detectable1,000CFU

/100mLNot

detectableColi detectable detectable /100mL detectable

Turbidity 2 degreesor less

2 degrees or less

2 degrees or less

2 degrees or less

pH Exit of 5.8-8.6 5.8-8.6 5.8-8.6 5.8-8.6Appearance treatment

facility forShall not be distasteful

Shall not be distasteful

Shall not be distasteful

Shall not be distasteful

Chromaticity reuse - - 40 degrees or less

10 degrees or less

Odor Shall not be Shall not be Shall not be Shall not be distasteful distasteful distasteful distasteful

Facility Standards -

Sand filtration, equivalent or

better

Sand filtration, equivalent or

better

Sand filtration, equivalent or

better

Precipitation + sand filtration, equivalent or

5

better better better equivalent or better

Page 6: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

3 C t t ib ti t3 C t t ib ti t

I. Sound and Healthy Water Cycle and Resources/Energy RecyclingI. Sound and Healthy Water Cycle and Resources/Energy Recycling

3. Concrete measures contributing to 3. Concrete measures contributing to lowlow--carbon societycarbon society

(1) Energy-saving measuresair diffuser, appropriate operationair diffuser, appropriate operation

(2) Renewable energy utilization from biomass and natural energies

biomass: digestion gas (CH4) biomass solid fuels

(carbonized / dried sludge)natural energies:

solar, hydro, wind power generationin wastewater treatment plant

6

Page 7: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

11 Present state of sewerage systemsPresent state of sewerage systemsII. Present State and Strategies on Sewerage SystemsII. Present State and Strategies on Sewerage Systems

1.1. Present state of sewerage systems Present state of sewerage systems in Japanin Japan

S d l ti (M h 2010)• Sewered population (March, 2010)Percentage of sewered population 73.7%Sewered population 93,600,000

• Reuse of reclaimed wastewater (FY2008)Annual treated wastewater amount (A)( )

14,440million m3/yearAnnual reuse amount of treated wastewater (B)Annual reuse amount of treated wastewater (B)

202million m3/yearB/A (%) only 1 4 %B/A (%) only 1 4 %

7

B/A (%) only 1.4 %B/A (%) only 1.4 %

Page 8: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Wastewater ReuseWastewater ReuseII. Present State and Strategies on Sewerage SystemsII. Present State and Strategies on Sewerage Systems

Wastewater Reuse Wastewater Reuse in Respective Application (FY2008)in Respective Application (FY2008)

Toilet flushwater 3.6%

Cleaning andwatering to

Supply to industrialwater 1.2%

Direct supplyto factories

7.2%

- Annual treated wastewater (A)14 440 million m3/year

Supply forlandscape

Watering

roads 0.1%Agricultural

use 8.3%

14,440 million m3/year- Annual reuse amount of

treated wastewater (B)202 million m3/year

landscape26.8%

snowmeltingwater

trees 2.2%

Reused amount oftreated wastewater in

FY2008202 million m3/year

202 million m3/year(B) / (A) = 1.4%

River

water16.1%

Wateramenity use

3.1%

Rivermaintenanceflow 31.4%

8

Page 9: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Power consumption (FY2008)Power consumption (FY2008)

II. Present State and Strategies on Sewerage Systems II. Present State and Strategies on Sewerage Systems

Power consumption (FY2008)Power consumption (FY2008)

(1) A l ti i t(1) Annual power consumption in sewerage systems7,210 million kWh/year (C)= 0.7% of annual power consumption in Japan

* 90% of (C) was consumed 90% of (C) was consumedin municipal wastewater treatment plants

(2) Unit power consumption per wastewater treated0.5 kWh/m3

9

Page 10: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Sewage sludge generated (FY2008)Sewage sludge generated (FY2008)II. Present State and Strategies on Sewerage SystemsII. Present State and Strategies on Sewerage Systems

Sewage sludge generated (FY2008)Sewage sludge generated (FY2008)

(1)(1) Annual sewage sludge generatedAnnual sewage sludge generated(1)(1) Annual sewage sludge generatedAnnual sewage sludge generated2,468 thousand DS2,468 thousand DS--ton/yearton/year

(2) Sewage sludge recycling rate Sewage sludge recycling rate 78%78%* Sludge recycling as a material for cement

dominates a large percentage of sludge g p g gbeneficial uses.** Only 13.7% of sewage sludge generated is y g g g

used as biomass energy sources for digestion gas (13.0%) and solids fuel (0.7%).

10

Page 11: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

State of Sewage Sludge Beneficial UseState of Sewage Sludge Beneficial UseII. Present State and Strategies on Sewerage SystemsII. Present State and Strategies on Sewerage Systems

State of Sewage Sludge Beneficial Use State of Sewage Sludge Beneficial Use (FY2008)(FY2008)

Solid fuel

Digestion gas

Solid fuel0.7% Recycling rate:Recycling rate:

78%78%(Landfill andg g

13.0%

Agricultural use

(Landfill and coastal reclamation:

23%)

9.7%Annual recycledsewage sludge

1,770,000 DS-t/year Biomass energy sources:Biomass energy sources:13 7%13.7%

No biomass use (construction material)

76.6%

11

Page 12: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

2 F d t l t t i2 F d t l t t i

II. Present State and Strategies on Sewerage SystemsII. Present State and Strategies on Sewerage Systems

2. Fundamental strategies on 2. Fundamental strategies on sewerage systems in Japansewerage systems in Japan

(1) Realization of safe livingFlood control, Seismic countermeasure, Water system risk reduction

(2) Creation of favorable environment(2) Creation of favorable environment- Water quality improvement in public watersWater quality improvement in public waters- Creation of sound and healthy water circulation- Creation of resources and energy recycle- Creation of resources and energy recycle

(3) Realization of comfortable and active living

12

Page 13: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

1 Fundamental strategies1 Fundamental strategiesIII. Realization of LowIII. Realization of Low--Carbon and Energy Saving Carbon and Energy Saving

1. Fundamental strategies1. Fundamental strategies(1) Drastic energy saving measures(2) Effective use of biomass energy

2. Solutions to realization of low2. Solutions to realization of low--carbon carbon and energyand energy--saving approachessaving approachesgygy g ppg pp

(1) Energy-saving measures to reduce greenhouse gas emissions by energy and fuel consumptiongas emissions by energy and fuel consumption

Greenhouse gas : CO2, CH4 and N2O(2) Renewable energy utilization from biomass(2) Renewable energy utilization from biomass

Digestion gas, Sewage sludge fuel

13

Page 14: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

1. Sewage sludge fuel conversion technologies1. Sewage sludge fuel conversion technologiesIV. Renewable Energy Utilization TechnologiesIV. Renewable Energy Utilization Technologies

g g gg g g(1)(1) Sludge carbonizing(2) Sludge drying

Carbonized sludge

Sludge carbonizing plant(Tokyo Metropolitan Government)

14Dried and pelletized sludge

Page 15: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Characteristics of conventionalCharacteristics of conventionalIV. Realization of LowIV. Realization of Low--Carbon and Energy SavingCarbon and Energy Saving

Characteristics of conventional Characteristics of conventional biomass solid fuelsbiomass solid fuels

Dried andDried and

Calorific

Coal Coal (example)(example)

Dried and Dried and pelletized pelletized

sludgesludgeCarbonizedCarbonized

sludgesludge

255Water

2615~1910~15Calorific

value (MJ/kg)

203050Ash content (%)

255Water content (%)

NegativeP itiN tiOd

-0.60.4High specific gravity

-NegativePositiveSelf-heat generation

NegativePositiveNegativeOdor

15

NegativePositivegeneration

Page 16: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Image of a biomassImage of a biomass--fuel conversion projectfuel conversion projectIV. Realization of LowIV. Realization of Low--Carbon and Energy SavingCarbon and Energy Saving

gg p jp jSewerage operatorsSewerage operators Electric utilities operatorElectric utilities operator

Bi f lBiomass fuel

Carbonization facility

Centralization of sludge

Wastewater treatment plant

Biomass fuel

Coal thermal power plantCarbonization facility

Nearby wastewater treatment plants

Biomass fuel

Wastewater treatment plant

facility

16

Page 17: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

2. Biogas utilization technologies2. Biogas utilization technologiesIV. Realization of LowIV. Realization of Low--Carbon and Energy SavingCarbon and Energy Saving

2. Biogas utilization technologies2. Biogas utilization technologies(1) Biogas power generation(2) Biogas power generation using fuel cells(3) Supply of fuel for natural gas vehicles(3) Supply of fuel for natural gas vehicles(4) Supply of biogas as low material for

urban gas supply

3. Gasification technologies3. Gasification technologies

(1) Sewage sludgesludge gasification furnace(1) Sewage sludgesludge gasification furnace

17

Page 18: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Supply to power

Biogas recovery system in WWTPBiogas recovery system in WWTP

Biogas refineryBiogas storage Generator

company

Increase of energy self sufficiency

Anaerobic digester

Solubilization by heating

WWTPHeat supply

Anaerobic digesterHeating

of digesterSupply of biogasSludge

Dewatering

Garbage, food processing factory wasteBeneficial use

FiltrateSidestream

1818

Sidestream treatment by

anammox

Page 19: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Innovation in lowInnovation in low--carbon and energycarbon and energy--Recent Topics in JapanRecent Topics in Japan

o at o oo at o o ca bo a d e e gyca bo a d e e gysaving technologiessaving technologies

(1) Energy-saving measuresCentrifuge for dewatered sludge withCentrifuge for dewatered sludge with

lower water content (2) N tili ti(2) New energy utilization

Small hydropower generationS a yd opo e ge e at o(3) B-DASH Project by MILT (FY2011 -)

Breakthrough by Dynamic Approach in Sewerage High Technology Project

19

g g gy j

Page 20: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Overall image of innovative technologyOverall image of innovative technologyBB--DASH ProjectDASH Project

Overall image of innovative technologyOverall image of innovative technologyby METAWATER Co., Ltd. & Japan Sewage Works Agency

W t t t t t t 【水処理系】

【超高効率固液分離】 流入下水

<省エネルギー化>

下水

Wastewater treatment system Energy conservation

WastewaterUltrahigh solids-liquid separation]

【汚泥処理系】

【高効率高温消化】 【スマート発電システム】生ご

<創エネルギー化> 電力供給および制御系 Sludge treatment system Energy creation

G b

Power supply and control system

Smart power generation systemHigh-efficiency high-temperaturedigestion

【高効率高温消化】 【 ト発電 テ 】生ごみ Garbage

H b id t t Pl t ti

digestion

[ Wastewater Treatment ] Recycle water, Environmentally sound waterEnergy conservation through reduction of inflow loads

ハイブリッド型発電機 プラント運転最適化制御 Hybrid type generator Plant operation optimizing control

20

Energy conservation through reduction of inflow loads[ Sludge Treatment ] Electric power, Resources, Heat

Energy creation through maximization of biomass intake

Page 21: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Measures to facilitate Low‐Carbon andMeasures to facilitate Low Carbon and Energy‐Saving water use in semiarid areas

5th Oct 20115th Oct. 2011

Osamu ITAGAKI : Senior Researcher, Climate Change Adaptation R h G / W t M t d D Di Ri D

Palmyra Rural Damascus

Research Group / Water Management and Dam Div. , River Dep. , 

National Institute for Land and Infrastructure Management.

F JICA E (W R P li Ad i ) i S iFormer JICA Expert (Water Resources Policy Adviser) in Syria

from May 2007 to June 2010.

Page 22: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Location of SyriaLocation of Syria

Turkey

IranThe Mediterranean

Syrian Arab Republic Jordan Iraq

* Base map ( Syria (orthographic projection).svg ) is downloaded from Creative Commons.

Page 23: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Outlines of Syria (1)*Outlines of Syria (1)

• Capital city: Damascus

• Area: 185 thousand km2(about a half of Japan)Area: 185 thousand km (about a half of Japan)

• Population: 22.5 million (2010)• Gross National Income per capita: 

2 160 dollars(2008)2,160 dollars(2008)• Official language: Arabic

• Religion: Islam(86%), Christian(8%)

* Data book of the world (2011) (Ninomiya Shoten publishers Co., Ltd.)

Rural Damascus

Page 24: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Outlines of Syria (2)*Outlines of Syria (2)

Exports from Japan to Syria (2009)

26 1 billion yen (Motorcars 41 6% Tyres26.1 billion yen (Motorcars 41.6%, Tyres17.6%, Machinery 12.7%, Electric devices 6 7% Buses and trucks 6 1%)6.7%, Buses and trucks 6.1%)

Imports from Syria to Japan (2009)

3.4 billion yen (Processed petroleum 78.3%, Raw cotton 10 1% Soap 1 8%)Raw cotton 10.1%, Soap 1.8%)

* Data book of the world (2011) (Ninomiya Shoten publishers Co Ltd )

Rural Damascus

 Data book of the world (2011) (Ninomiya Shoten publishers Co., Ltd.)

Page 25: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Outlines of hydrology and water use in Syria (1)

• About a half of the land is in semiarid (Al Badiah) basin.

• We can see rainfall from the autumn to the spring. The annual average rainfall around the center of gDamascus is about 200–250 mm, and there is snowfall in the winter.

• There are some international rivers flowing in Syria. e.g. Euphrates, Tigris, Orontes.e.g. Euphrates, Tigris, Orontes.

• A large part of water is used for agriculture.

Rural Damascus

Page 26: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Outlines of hydrology and water use in Syria (2)

• Under water shortage, farmers tend to use water as much as possible.

• Most of the water use depends on the ground water etc. drawn by pumps.y p p

• When the rate of fuel for pumps had risen dramatically the tendency to decrease thedramatically, the tendency to decrease the operation time of pumps became stronger. Also, interest in the efficient irrigation techniquesinterest in the efficient irrigation techniques became stronger among the farmers.

• Disposed sewage water is reused in agriculture

Rural Damascus

• Disposed sewage water is reused in agriculture.

Page 27: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Memories of water service in Syria (1)

As a resident at fourth floor of an apartment near the center of DamascusDamascus.  

1. We basically received the tap water before noon. Each h h th t k th ft f th b ildi fhouse has the tank on the rooftop of the building for reserving water before noon, and we use the water 

d i th t k i th ft Th freserved in the tank in the afternoon. The source of the tap water in my district was springs in the suburbs of Damas s If the basin had re ei ed m h rainfallof Damascus. If the basin had received much rainfall and the ground water level near the spring was high, the pressure of the tap water would be higher and thethe pressure of the tap water would be higher, and the duration of water service would be longer, sometimes 24 hours a day24 hours a day.

Tartus

Page 28: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Memories of water service in Syria (2)

2. We reserved drinking water in a portable tank in the kitchen before noon, or purchased bottled water (spring water in Syria).

3. When the water service was limited (e.g. in late summer), it was difficult to reserve water in the tank on the rooftop of the building because of the lack of the tap water pressure. Every house had a small pump near the divergence of the water pipe to increase the tap water pressure.

4. The rate of water was very cheap compared with that of electricity etc..

Tartus

of electricity etc..

Page 29: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Measures to facilitate Low‐Carbon and easu es to ac tate o Ca bo a dEnergy‐Saving water use in Syria (1)

• Since there are wide semiarid areas under water shortage water saving and conservation is moreshortage, water saving and conservation is more emphasized than Low‐Carbon and Energy‐Saving water use e g Syria‐Japan technical cooperation project onuse. e.g. Syria‐Japan technical cooperation project on Development of Efficient Irrigation Techniques and Extension in Syria (DEITEX)Extension in Syria (DEITEX).

• Since most of the water use is depending on the ground water etc drawn by pumps water saving directlywater etc. drawn by pumps, water saving directly connects with Low‐Carbon and Energy‐Saving by saving the fuel

Al Badiah

the fuel.

Page 30: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Measures to facilitate Low‐Carbon and easu es to ac tate o Ca bo a dEnergy‐Saving water use in Syria (2)

• Continuous collection of the hydrological data (e.g. rainfall ground water level) analysis of those data andrainfall, ground water level), analysis of those data, and integrated water resources management contributes to Low‐Carbon and Energy‐Saving water use by efficientLow Carbon and Energy Saving water use by efficient water resources distribution etc. (e.g. decrease of pump up decrease of water treatment) e g Syria‐Japanup, decrease of water treatment).   e.g. Syria Japan technical cooperation project on Water Resources Information Center (WRIC)Information Center (WRIC).

Al Badiah

Page 31: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Farmland in Rural DamascusFarmland in Rural Damascus

With water, it has become greenit has become green.

Rural Damascus

Page 32: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

A well at a water service stationin semiarid areas

Sweida

Page 33: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Agricultural portable pumps along a riverAgricultural portable pumps along a river

Dayr Az Zawr

Page 34: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Sewage disposal plant in Rural DamascusSewage disposal plant in Rural Damascus

Rural Damascus

Page 35: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Irrigation canal f h di l l (1)from the sewage disposal plant (1)

Rural Damascus

Page 36: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Irrigation canalfrom the sewage disposal plant (2)

Rural Damascus

Page 37: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

An intake pit of the irrigation canalAn intake pit of the irrigation canal

Rural Damascus

Page 38: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Irrigation by the waterfrom the sewage disposal plant

Rural Damascus

Page 39: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Ground water observation station ( )(1)

Rural Damascus

Page 40: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Ground water observation station (2)

Rural Damascus

Page 41: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

River flow observation station (1)

Damascus

Page 42: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

River flow observation station (2)River flow observation station (2)

Damascus

Page 43: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Meteorological observation stationg

Lattakia

Page 44: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Rainfall observation station

Lattakia

Page 45: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Evaporation observation stationEvaporation observation station

Lattakia

Page 46: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

A windmill near a damin semiarid areas 

Al Badiah

Page 47: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

Solar cells at a water service stationin the semiarid areas

Al Badiah

Page 48: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

The conclusion (1)• Since most of water is drawn by pumps, water saving directly connects with Low Carbon andsaving directly connects with Low‐Carbon and Energy‐Saving by saving the fuel. 

• To facilitate Low‐Carbon and Energy‐Saving water use, it is needed to continuously collectwater use, it is needed to continuously collect basic hydrological data (e.g. rainfall, ground water level) analyze them and manage waterwater level), analyze them, and manage water resources in an integrated way.

Lattakia

Page 49: Low-Carbon and EnergyCarbon and Energy-Saving Approaches for

The conclusion (2)• Reuse of disposed sewage water in agriculture may contribute to Low Carbon and Energymay contribute to Low‐Carbon and Energy‐Saving water use with careful management.

• Generating facilities by windmill, or by solar cells have been partially introduced. It mayhave been partially introduced. It may contributes to Low‐Carbon and Energy‐Saving if the maintenance system of the facilities isthe maintenance system of the facilities is available.   

Lattakia