8
Uptec Low Temperature Scanning Synchrotron Microscope 1 Uptec Bad junction Nb(200) Al(30) Al(30) Nb(200) 200!m Full illumination with 55 Fe X-ray source (5.9keV, 6.4keV) 0.4K 200!m Bias:0.7mV, 300nA (b) Nose level Bias:0.3mV, 16nA A Charge (a) 92eV fd21-06.-16nA The answer is spatial nonuniformity. 2

Low Temperature Scanning Synchrotron Microscope · Uptec LTSSM 1D scan 146!m R. Cristiano et al., J. Appl. Phys. 86, 4580 (1999).! Al 30nm 5! Uptec The spatial profile depends on!!

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Uptec

Low Temperature Scanning Synchrotron Microscope!

1!

Uptec

Bad junction!

Nb(200)

Al(30)

Al(30)

Nb(200)

200!m

Full illumination with 55Fe X-ray source (5.9keV, 6.4keV)

0.4K!

200!m

Bias:0.7mV, 300nA

(b) Nose level!

Bias:0.3mV, 16nA

A

Charge! (a)

92eV

71eV

fd21-06.-16nA!

The answer is spatial nonuniformity.

2!

Uptec

Low Temperature Scanning Synchrotron Microscope

LTSSM

PF@KEK, TERAS@AIST

6 keV - 20 keV, Multipole Wiggler + Si(111)

70 - 1900 eV, Bending magnet + Grating

Scanning has not been available by LTD.

5 - 10!m x-ray microbeam

3!

Uptec

LTSSM 3D images, 200!m, Vbias=!/e

top bottom

(a)

Integration

+! =!

Photo

n y

ield

[k c

ounts

]!

Charge [106 electrons]!

(b)

200!m STJ

Charge [a.u.]!

55Fe full illumination (c)

6keV, Al 30nm

4!

Uptec

LTSSM 1D scan 146!m

R. Cristiano et al., J. Appl. Phys. 86, 4580 (1999).!

Al 30nm

5!

Uptec

The spatial profile depends on!

! " bias point,

! " junction size,

! " strength of magnetic field,

! " thickness of Al layers (vist J11, M. Ukibe et al.), and

! " photon energy (this study).

6!

Uptec

Energy linearity!

Nb(200)

Al(?)

Al(?)

Nb(200)

200!m

How about practical soft x-ray range?

7!

Uptec

6keV

Nb L escape

Si K"

Total absorption

Spatial profiles at 6 keV and 1.74 keV!

200!m square, Al 30nm

SiK" (1.74keV)

8!

Uptec

How about further lower energies (< 1.74keV)?!

The spectrum for 520 eV and 1040 eV shows the same

large spatial nonuniformity as for 1.74 keV and 6keV.

200!m square, Al 30nm

6keV

Hopeless ?

9!

Uptec

100!m square, Al 30nm

The spectrum of the 100!m-square junction for 520

eV shows that the spatial nonuniformity is small.

Smaller junctions help us.!

#=1.3!s

10!

Uptec

Energy linearity and FWHM!

100!m square, Al 30nm

11!

Uptec

Junctions with thicker Al!

100!m square, Al 70nm #=1.9!s

Nb(150)

Al(70)

Al(70)

Nb(200)

100!m

12!

Uptec

Energy linearity and FWHM

100!m square, Al 70nm

13!

Uptec

200!m-square junction with 70nm Al!

200!m square, Al 70nm

14!

Uptec

Conclusions!

! " Spatial profile strongly depends on photon energy.

! " Response to low energies (< ~1 keV) may be within

conventional quasiparticle diffusion model. The uniformity

and E-linearity is improved by increasing the Al thickness.

! " Response to high energies (> ~1 keV) requires new signal

creation framework

(high density of excitation, too far from equilibrium state).

! " Full understanding of STJ operation requires an

advanced nonequilibrium theory and further LTSSM

studies.

! " Stephan’s favorite 50nm Al may be good for energy

resolution, response time, and detector size in < 2 keV.

! " Junctions have a high energy resolution, a high count rate,

and a reasonable detector size for soft X-ray spectroscopy.

15!