296
Lte Long term evolution

LTE Overview

Embed Size (px)

DESCRIPTION

LTE slide

Citation preview

Page 1: LTE Overview

LteLong term evolution

Page 2: LTE Overview

Page 2

Content:• Lte introduction 3• OFDMA and SC-FDMA 13• Physical Layer Lte 33• Physical Channels and Signals 53• Multiple Input Multiple Output antennas 95• Bandwidths

107• System and UE parameter

112• Interfaces and Nodes 117• Protocols and Procedures

141• Structure and Layers

225• MBMS

262• Miscellaneous

272

Page 3: LTE Overview

Page 3

Lte Introduction

Page 4: LTE Overview

Page 4

3GPP, CDMA2000 and WiMAX evolution:

Page 5: LTE Overview

Page 5

LTE

Voic

eD

ata

OtherTechnologies

3GPP Technologies

GSM

EDGE

EDGE II

WiMAX

TD-SCDMA

CDMA 1X

CDMA EV-DO

UMB

FDD TDD

LTE-A

WCDMA

HSPA

HSPA+

WLAN

Telecom evolution:

Page 6: LTE Overview

Page 6

• 36.101 User Equipment (UE) radio transmission and reception • 36.104 Base Station (BS) radio transmission and reception • 36.133 Requirements for support of radio resource management• 36.141 Base Station (BS) Conformance Testing• 36.201 LTE Physical Layer general description• 36.211 E-UTRA; Physical Channels and Modulation• 36.212 E-UTRA; Multiplexing and channel coding• 36.213 E-UTRA; Physical Layer Procedures• 36.214 E-UTRA; Physical layer - Measurements• 36.300 E-UTRA Stage 2 Overall Description• 36.302 Services Provided by the Physical Layer• 36.304 UE Procedures in Idle Mode• 36.306 UE Radio Access Capabilities• 36.321 MAC Specification• 36.322 RLC Specification• 36.323 PDCP Specification• 36.331 RRC Specification• 36.3xx UE Categories• 36.401 EUTRAN Architecture description• 36.410 S1 General Aspects and Principles• 36.411 S1 Layer 1 • 36.412 S1 Signalling Transport • 36.413 S1 Application Protocol (S1-AP)• 36.414 S1 Data Transport• 36.420 X2 general aspects and principles• 36.421 X2 layer 1• 36.422 X2 signalling transport• 36.423 X2 protocol specification (X2-AP)• 36.424 X2 data transport• 36.44x MBMS• 36.5xx Conformance Testing• 36.801 Measurement Requirements• 36.803 User Equipment (UE) radio transmission and reception • 36.804 Base Station (BS) radio transmission and reception• 36.902 Self-configuring and self-optimizing network• 36.913 LTE-A• 36.938 Mobility between E-UTRAN and 3GPP2, Mobile WiMax• 36.942 Radio Frequency (RF) system scenarios

Lte Specifications:

Page 7: LTE Overview

Page 7

REL.8: Lte:

-MIMO Antenna Technique used

-OFDM (DL) and SC-FDMA (UL) used as Access Technology

-Lte Targets: 100 Mbps downlink, 50 Mbps uplink data rate(initial) Reduce latency (100 ms from Idle to Cell DCH)

Scalable bandwidth (1,4 – 20 MHz)Operation in both FDD and TDD

-Voice via PS Core Network

-Mobility: optimized 0 – 15 km/h, high performance 15 – 120 km/h,maintain 120 – 350 (500) km/h

-Cell sizes: up to 5 km – up to 100 km

-Integration of GERAN, UTRAN, CDMA2000 and WiMax

Page 8: LTE Overview

Page 8

REL.8: Lte (Long term evolution):

Spectrum fexibility: 1.4, 3, 5, 10, 15, 20 MHz UL & DLfor paired and unpaired spectrum

Spectrum efficiency: DL 5 bps/Hz, UL 2,5 bps/Hz

Peak Data Rate: DL 100 Mbps, UL 50 Mbps(@ 20 MHz bandwidth) (without MIMO)

Control plane latency: < 100 ms (idle to active), < 50 ms (dormant to active)

Users per cell: 200 at 5 MHz bandwidh**

User plane latency < 5 ms

Page 9: LTE Overview

Page 9

REL.8: Lte versus WiMax:

Parameter Lte Mobile WiMAXChannel bandwidth Variable 1.4 – 20MHz Variable 3.5 –

10MHz*

Duplex FDD & TDD TDD (FDD)Downlink Technique OFDMA S-OFDMA

Downlink Modulation Schemes

QPSK, 64-QAM, 16-QAM 64-QAM, 16-QAM, QPSK

Uplink SC-FDMA S-OFDMAUplink Modulation

SchemesQPSK, 16-QAM, 64QAM 64-QAM, 16-

QAM, QPSK

Frame Length 10 ms (slot = 0.5 ms) 5 msMultiple Antenna

TechniquesSTC, MIMO, AAS STC, MIMO, AAS

Page 10: LTE Overview

Page 10

REL.8: Lte (Long term evolution):

Possible peak data rates:

4

2

1

MIMO order(Tx/Rx antennas)

1,4 5 10 20Carrier bandwidth (MHz)

HSPA LteEvolution >200Mb/s>50Mb/s

HSPA LteEvolution >100Mb/s>25Mb/s

Lte HSPA Lte Lte >4Mb/s 14 Mb/s >25Mb/s >50Mb/s

Page 11: LTE Overview

Page 11

E-UTRA frequency bands:E-UTRA Band: Uplink (UL): Downlink (DL): UL-DL Band separation: Bandwidth: Mode:

1 1920 - 1980 MHz 2110 -2170 MHz 130 MHz 2 x 60 MHz FDD

2 1850 -1910 MHz 1930 -1990 MHz 20 MHz 2 x 60 MHz FDD

3 1710 -1785 MHz 1805 -1880 MHz 20 MHz 2 x 75 MHz FDD

4 1710 -1755 MHz 2110 - 2155 MHz 355 MHz 2 x 45 MHz FDD

5 824 - 849MHz 869 - 894MHz 20 MHz 2 x 25 MHz FDD

6 830 - 840 MHz 875 - 885 MHz 35 MHz 2 x 10 MHz FDD

7 2500 - 2570 MHz 2620 - 2690 MHz 50 MHz 2 x 70 MHz FDD

8 880 - 915 MHz 925 - 960 MHz 10 MHz 2 x 35 MHz FDD

9 1749.9 - 1784.9 MHz 1844.9 - 1879.9 MHz 60 MHz 2 x 35 MHz FDD

10 1710 -1770 MHz 2110 - 2170 MHz 340 MHz 2 x 60 MHz FDD

11 1427.9 - 1452.9 MHz 1475.9 - 1500.9 MHz 23 MHz 2 x 25 MHz FDD

12 698 - 716 MHz TBD* 728 - 746 MHz TBD* 12 MHz 2 x 18 MHz FDD

13 777 – 787 MHz 746 – 756 MHz 21 MHz 2 x 10 MHz FDD

14 788 – 798 MHz 758 – 768 MHz 20 MHz 2 x 10 MHz FDD

..17 704 - 716 MHz 734 - 746 MHz 18 MHz 2 x 12 MHz FDD

..

33 1900 - 1920 MHz 1900 - 1920 MHz N/A 20 MHz TDD

34 2010 - 2025 MHz 2010 - 2025 MHz N/A 15 MHz TDD

35 1850 - 1910 MHz 1850 - 1910 MHz N/A 60 MHz TDD

36 1930 - 1990 MHz 1930 - 1990 MHz N/A 60 MHz TDD

37 1910 - 1930 MHz 1910 - 1930 MHz N/A 20 MHz TDD

38 2570 - 2620 MHz 2570 – 2620 MHz N/A 50 MHz TDD

39 1880 – 1920 MHz 1880 – 1920 MHz N/A 40 MHz TDD

40 2300 - 2400 MHz 2300 - 2400 MHz N/A 100 MHz TDD

Page 12: LTE Overview

Page 12

E-UTRA Band 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

1

2

3

4

5

6

7

8

9

10

11

12

13

14

17

...

33

34

35

36

37

38

39

40

E-UTRA band / channel bandwidth:

Page 13: LTE Overview

Page 13

OFDMA and SC-FDMA

Orthogonal Frequency Division Multiple Access & Single Carrier – Frequency Division Multiple Access

Page 14: LTE Overview

Page 14

f

P

W-CDMA or CDMA2000 single carrier transmission:

e.g. 5 MHz

Page 15: LTE Overview

Page 15

Frequency Division Multiplexing (FDM)

Frequency

. . . . . . . . .

Sub carriers

. . . . . . . . .

Page 16: LTE Overview

Page 16

Orthogonal Frequency Division Multiplexing (OFDM)

Frequency

. . . . . . . . .

In an OFDM system, a very high rate data stream is divided into multiple parallel low rate data streams. This is possible with orthogonal frequencies. Each smaller data stream is then mapped to individual data sub-carrier and modulated using some sorts of PSK (Phase Shift Keying) or QAM (Quadrate Amplitude Modulation). i.e. BPSK, QPSK, 16-QAM, 64-QAM.

Orthogonal Sub carriers

. . . . . . . . .

OFDM makes more efficient use of available spectrum.Sub-carrier spectrum ‘overlaps’, BUT orthogonally means that all sub-carriers (except the wanted one) are zero at the decision point. Spectrum has been saved with no loss in performance.

Page 17: LTE Overview

Page 17

Orthogonal Frequency Division Multiplexing Access (OFDMA)

Frequency

. . . . . . . . .

OFDMA employs multiple closely spaced sub-carriers, but the sub-carriers are divided into groups of sub-carriers. Each group is named a sub-channel. The sub-carriers that form a sub-channel need not be adjacent. In the downlink, a sub-channel may be intended for different receivers. In the uplink, a transmitter may be assigned one or more sub-channels.

Sub channel A

Sub channel B

Sub channel C

Guard band Guard band

Page 18: LTE Overview

Page 18

Orthogonal Frequency Division Multiplexing Access (OFDMA):S

ub

car

rier

s

Su

b c

han

nel

s

Subchannelization defines sub-channels that can be allocated to subscribers depending on their channel conditions and data requirements. Using subchannelization, within the same time slot a evolved Node B (eNB) can allocate more transmit power to users with lower SNR (Signal-to-Noise Ratio), and less power to user devices with higher SNR. Subchannelization also enables the eNB to allocate higher power to sub-channels assigned to indoor subscribers resulting in better in-building coverage.Subchannelization in the uplink can save a user device transmit power because it can concentrate power only on certain sub-channel(s) allocated to it. This power-saving feature is particularly useful for battery-powered user devices.

f f

t tOFDM OFDMA

Page 19: LTE Overview

Page 19

• OFDM Sub-carrier Organization:– Data Sub-carriers

• Transport QPSK, 16-QAM, 64-QAM etc. symbols– Pilot Sub-carriers

• Transport known pilot symbol sequence (frequently at elevated power level) to permit channel estimation and coherent demodulation at receiver

– Guard Sub-carriers• Suppressed – permits spectrum shaping

– DC Sub-carrier (not used)• Frequently suppressed to support direct-conversion receivers (with significant

zero-frequency component ingress due to 1/f noise etc.)

GuardSub-carriers

PilotSub-carriersData

Sub-carriersDC

Sub-carrier

OFDM Sub-carrier Organization:

f

Page 20: LTE Overview

Page 20

REL.8: LTE (Long Term Evolution):

Why OFDM:• Robustness against multipaths using a large number of narrow-band sub-carriers (serial to parallel conversion)• Ease of scheduling of time/frequency resources• High spectral efficiency• Excellent enabler for multiple antennas (MIMO)• For even higher data rate support (> 10 x 3G-WCDMA)

Frequency

Df (Hz)

Nc sub-carriers

BW (Hz)

Page 21: LTE Overview

Page 21

0 0

• In frequency domain zero crossing of all other carriers except the considered one due to SINC property.

OFDM – Orthogonally:

f

Page 22: LTE Overview

Page 22

REL.8: Lte (OFDMA: Frequency – Time representation):

Parallel transmission of data over multiple carriers!

S u b -c a r r ie r sF F T

T im e

S y m b o ls

5 M H z B a n d w id th

G u a rd I n te r v a ls

F r e q u e n c y

Page 23: LTE Overview

Page 23

Data PayloadCyclicPrefix

Ts (Symbol Period)

Tu (Useful Symbol Period)Tg

Tg

Tg = T GuardTg = 4,7 µs (5,2 µs for the first CP) Tu ~ 66,7 µsfor Frame structure 1 Ts ~ 71,5 µs

copy

Insertion (copy) of normal Cyclic Prefix (CP):

Page 24: LTE Overview

Page 24

Data PayloadCyclicPrefix

Ts (Symbol Period)

Tu (Useful Symbol Period)Tg

Tg

Tg = T Guard

copy

Insertion of Extended Cyclic Prefix (CP):The extended cyclic prefix is defined in order to cover large cell scenarios with higher delay spread!

Tg = 16,6 µs Tu ~ 66,7 µsfor Frame structure 1 Ts ~ 83,3 µs

Page 25: LTE Overview

Page 25

Data PayloadCyclicPrefix

Ts (Symbol Period)

Tu (Useful Symbol Period) TgTg

Tg = T Guard

copy

Tg = 33,3 µs Tu ~ 133,3 µsfor Frame structure 1 Ts ~ 166,6 µs

Insertion of dedicated MBMS Cyclic Prefix (CP):DL only

Page 26: LTE Overview

Page 26

DFT Sub-carrier Mapping

CP insertion

Size-NTX Size-NFFT

Coded symbol rate= R

NTX symbols

IFFT

LTE Uplink: Single Carrier FDMA (SC-FDMA):

Page 27: LTE Overview

Page 27

LTE Uplink: Single Carrier FDMA (SC-FDMA):

Page 28: LTE Overview

Page 28

Transmission of M modulation symbols

TransmissionReduced Tx power!

SC-FDMA localized transmission:

Page 29: LTE Overview

Page 29

S/P

M Data Symbols

M-DFT

0

0

N-IFFTCP Insertion

P/STx

SC-FDMA localized transmission:

Page 30: LTE Overview

Page 30

Downlink OFDMA:

Uplink SC-FDMA:f

f

t

SC-FDMA Symbol

15 kHz

60 kHz

OFDMA Symbol

P

4 Symbols transmitted:

CP

CP

Page 31: LTE Overview

Page 31

eNB

UE1

UE2

UE3

UE4

UE5

“QPSK” “16QAM” “64QAM”

Modulation:AMC: Adaptive Modulation and Coding

P

Page 32: LTE Overview

Page 32

Modulation Schemes:

QPSK (2bit/symbol)

16QAM (4bit/symbol)

64QAM (6bit/symbol)

I

Q

Page 33: LTE Overview

Page 33

Physical Layer Lte

Page 34: LTE Overview

Page 34

Physical Layer for E-UTRA:Frame structure type 1 (FDD) normal CP:

Slot

Symbol

1 2 3 4 5 6 7

#0 #1 #2 #3 #19#18

One radio frame, Tf = 307200Ts = 10 ms

One slot, Tslot = 15360Ts = 0.5 ms

One subframe

CP

Page 35: LTE Overview

Page 35

Physical Layer for E-UTRA:

Slot

1 2 3 4 5 6

#0 #1 #2 #3 #19#18

One radio frame, Tf = 307200Ts = 10 ms

One slot, Tslot = 15360Ts = 0.5 ms

One subframe

SymbolCP

Frame structure type 1 (FDD) extended CP:

Page 36: LTE Overview

Page 36

Physical Layer for E-UTRA:

Slot

Symbol

1 2 3

#0 #1 #2 #3 #19#18

One radio frame, Tf = 307200Ts = 10 ms

One slot, Tslot = 15360Ts = 0.5 ms

One subframe

CP

Frame structure type 1 (FDD) dedicated MBMS CP:

Page 37: LTE Overview

Page 37

One slot, Tslot=15360Ts

GP UpPTSDwPTS

One radio frame, Tf = 307200Ts = 10 ms

One half-frame, 153600Ts = 5 ms

30720Ts

One subframe, 30720Ts

GP UpPTSDwPTS

Subframe #2 Subframe #3 Subframe #4Subframe #0 Subframe #5 Subframe #7 Subframe #8 Subframe #9

Physical Layer for E-UTRA:Frame structure type 2 (TDD):

DwPTS: Downlink Pilot Time SlotUpPTS: Uplink Pilot Time SlotGP: Guard Period

Page 38: LTE Overview

Page 38

Physical Layer for E-UTRA:Frame structure type 2 (TDD):

#0 #4 #5 #6 #7

One slot, Tslot=15360Ts

GP UpPTSDwPTS

One radio frame, Tf = 307200Ts = 10 ms

One half-frame, 153600Ts = 5 ms

#8 #9

30720Ts

#1

One subframe, 30720Ts

Symbol

1 2 3 4 5 6 7

Slot

= 0,5 ms = 1 ms

For switch time periodically = 5 ms, also the second half frame has the same format!

CP

Page 39: LTE Overview

Page 39

Physical Layer for E-UTRA:Frame structure type 2 (TDD) with switch time periodically 10 ms:

1 2 3 4 5 6 7

Slot

= 0,5 ms = 1 ms

#0 #4 #5 #6 #7

One slot, Tslot=15360Ts

DwPTS

One radio frame, Tf = 307200Ts= 10 ms

One half -frame, 153600 Ts = 5 ms

#8 #9

30720Ts

#1

One subframe, 30720 Ts

SymbolCP

Page 40: LTE Overview

Page 40

UL/DL allocation for TDD frame type 2:

Uplink-downlink configuration

Downlink-to-Uplink Switch-point

periodicity

Subframe number

0 1 2 3 4 5 6 7 8 9

0 5 ms D S U U U D S U U U

1 5 ms D S U U D D S U U D

2 5 ms D S U D D D S U D D

3 10 ms D S U U U D D D D D

4 10 ms D S U U D D D D D D

5 10 ms D S U D D D D D D D

6 5 ms D S U U U D S U U D

Page 41: LTE Overview

Page 41

Configuration

Normal cyclic prefix Extended cyclic prefixDwPTS GP UpPTS DwPTS GP UpPTS

0 6592 Ts 21936 Ts

2192 Ts

7680 Ts 20480 Ts

2560 Ts1 19760 Ts 8768 Ts 20480 Ts 7680 Ts

2 21952 Ts 6576 Ts 23040 Ts 5120 Ts

3 24144 Ts 4384 Ts 25600 Ts 2560 Ts

4 26336 Ts 2192 Ts 7680 Ts 17920 Ts

5120 Ts5 6592 Ts 19744 Ts

4384 Ts

20480 Ts 5120 Ts

6 19760 Ts 6576 Ts 23040 Ts 2560 Ts

7 21952 Ts 4384 Ts - - -

8 24144 Ts 2192 Ts - - -

Variable Lengths of DwPTS / GP / UpPTS:

Tf = 307200 x Ts = 10 msTs = 32,5520833 ns

Page 42: LTE Overview

Page 42

sub frame x, (1 ms)

5 ms half frame

DwPTS, 11

symbols

GP, 1 symbol

UpPTS, 2

symbols

1 ms

control

DL data

Gurad period (GP)

UpPTS, random access /sounding

UL transmission

Configuration 8, DL:UL = 39:30

Primary SCH

secondary SCH

sub frame 0, (1 ms)

Broadcast info

TDD:

Page 43: LTE Overview

Page 43

OFDM signal generation

Layer Mapper

Scrambling

Precoding

Modulation Mapper

Modulation Mapper

Resourceelement mapper

OFDM signal generation

Scrambling

code words layers antenna ports

Resourceelement mapper

Overview of DL physical channel processing:

Page 44: LTE Overview

Page 44

ScramblingModulation

mapperTransform precoder

Resource element mapper

SC-FDMA signal gen.

Overview of uplink physical channel processing:

Page 45: LTE Overview

Page 45

Frequency

Time

A user with a high data rateuses several chunks withinthe same TTI

User#1#2#3#4#5#6#7

User#1#2#3#4#5#6#7

TTI

Subframe

Chunk bandwidth (180 kHz, 1 Resource Block)

Low data rate users

slot

All chunks for shared data channel are assigned

Multiple Access by applying chunks (Resource Blocks):

f sub carrier = 15 kHz

Page 46: LTE Overview

Page 46

DLsymbN OFDM symbols

One downlink slot slotT

0l 1DLsymb Nl

RB scD

LRB

NN

su

bcar

riers

RB scN su

bcar

riers

RBsc

DLsymb NN

Resource block

resource elements

Resource element ),( lk

0k

1RBsc

DLRB NNk

Downlink resource grid

Downlink Resource Block (RB):

180 kHz12 sub carriers

RBscN

DLsymbN

kHz 15f

kHz 15f

kHz 5.7f

Configuration

Normal cyclic prefix

12

7

Extended cyclic prefix

6

24 3

Resource block parameters:

#0 #1 #2 #3 #19#18

One radio frame, Tf = 307200Ts = 10 ms

One slot, Tslot = 15360Ts = 0.5 ms

One subframe

Example Frame type 1:

Page 47: LTE Overview

Page 47

ULsymbN SC-FDMA symbols

One uplink slot slotT

0l 1ULsymb Nl

RB

scU

LR

BN

N

subc

arri

ers

RB

scNsu

bcar

rier

s

RBsc

ULsymb NN

Resource block

resource elements

Resource element ),( lk

0k

1RBsc

ULRB NNk

Uplink resource grid

Uplink Resource Block (RB):

180 kHzConfiguration

Normal cyclic prefix 12 7

Extended cyclic prefix 12 6

RBscN

ULsymbN

Resource block parameters:

One slot, Tslot=15360Ts

GP UpPTSDwPTS

One radio frame, Tf = 307200Ts = 10 ms

One half-frame, 153600Ts = 5 ms

30720Ts

One subframe, 30720Ts

GP UpPTSDwPTS

Subframe #2 .....Subframe #0 Subframe #5 Subframe #7 Subframe #8 Subframe #9

Example Frame type 2:

Page 48: LTE Overview

Page 48

Frequency

Time

0,5 ms Slot, 7 symbols (normal CP)

180 kHz, 12 sub carrier

User 1

User 2

Resource Block Scheduling:

One RB consists of 84 resource elements =12 subcarrier x 7 symbols (normal cyclic prefix).Each symbol is QPSK, 16QAM or 64QAM.

Page 49: LTE Overview

Page 49

Resource block parameters:

RBscN UL

symbN

RBscN

DLsymbN

kHz 15f

kHz 15f

kHz 5.7f

Configuration DL

Normal cyclic prefix

127

Extended cyclic prefix

6

24 3

Configuration UL

Normal cyclic prefix 12 7

Extended cyclic prefix 12 6

MBMS

Page 50: LTE Overview

Page 50

OFDM parameters for downlink transmission scheme:

Transmission BW 1.4 MHz 3 MHz 5 MHz 10 MHz 15 MHz 20 MHz

Sub-slot duration 0.5 ms

Sub-carrier spacing 15 kHz

Sampling frequency 1.92 MHz(1/2 3.84MHz)

3.84 MHz 7.68 MHz(2 3.84MHz)

15.36MHz

(4 3.84MHz)

23.04MHz

(6 3.84MHz)

30.72MHz

(8 3.84MHz)

FFT size 128 256 512 1024 1536 2048

Number ofoccupied

sub-carriers†

72 180 300 600 900 1200

Number of OFDM symbols per slot (0,5 ms)(Short/Long CP)

7/6

CPLength

(μs/samples)

Short 4.69 6,5.21 1

4.69 6,5.21 1

4.69 6,5.21 1

4.69 6,5.21 1

4.69 6,5.21 1

4.69 6,5.21 1

Long 16.67 16.67 16.67 16.67 16.67 16.67

Page 51: LTE Overview

Page 51

E-UTRA channel bandwidths:

Channel bandwidth

BWChannel [MHz]

1.4 3 5 10 15 20

Transmission bandwidth

configuration NRB

6 15 25 50 75 100

Page 52: LTE Overview

Page 52

REL.8: Lte: BW

1.4 MHz

3 MHz

5 MHz

10 MHz

20 MHz

128

256

512

1024

2048

FFT s

ize

scale

sw

ith

BW

-sub-frame = 1 ms

Constant sub -frame length, Ts = 1 ms

Constant number of symbols Ns = 14 (12)

Page 53: LTE Overview

Page 53

Physical Channels and Signals

Page 54: LTE Overview

Page 54

LTE Physical Channels and Signals:

Physical Channelsand Physical Signals

PhysicalSignals:

PhysicalChannels:

PRACHPUSCHPUCCHPDSCHPBCHPMCHPHICHPCFICHPDCCH

DownlinkUplink

Uplink Reference SignalsRandom Access PreambleSounding SignalDownlink Reference SignalPrimary Sync. SignalSecondary Sync. Signal

Page 55: LTE Overview

Page 55

Physical Signals:

Uplink Reference Signals or Uplink pilot symbols:Zadoff-Chu Sequence

Random Access Preamble: long Zadoff-Chu Sequence

Sounding Signal: orthogonal broadband pilot channel

Downlink Reference Signal:Used for synchronization, located on selected subcarriers on selected OFDM symbols.

DL Primary Sync. Signal and Secondary Sync. Signal:Used to identify 168 cell ID groups with 3 members

DownlinkUplink

Page 56: LTE Overview

Page 56

Physical Channels:Physical broadcast channel (PBCH):The coded BCH transport block is mapped to four subframes within a 40 ms interval;40 ms timing is blindly detected, i.e. there is no explicit signalling indicating 40 ms timing;Each subframe is assumed to be self-decodable, i.e. the BCH can be decoded from a single reception, assuming sufficiently good channel conditions.Physical control format indicator channel (PCFICH):Informs the UE about the number of OFDM symbols (1, 2,3 or 4) used for the PDCCH’s;Transmitted in every subframe. Mapped to the first OFDM symbol in a downlink subframe. Carries the Control Format Indicator (CFI).Physical downlink control channel (PDCCH):Informs the UE about the resource allocation, and hybrid-ARQ information related to DL-SCH and PCH; Carries the uplink scheduling grant. Scheduling grants are provided to Layer 2.Physical downlink shared channel (PDSCH):Carries the DL-SCH.Physical multicast channel (PMCH):Carries the MCH.Physical uplink control channel (PUCCH):Carries ACK/NAK’s in response to downlink transmission;Carries CQI reports.Scheduling Request (SR). CQI and Scheduling Requests are provided to Layer 2.Physical uplink shared channel (PUSCH):Carries the UL-SCH.Physical Hybrid ARQ Indicator Channel (PHICH):Carriers ACK/NAK’s in response to uplink transmissions. DownlinkPhysical random access channel (PRACH): UplinkCarries the random access preamble.

Page 57: LTE Overview

Page 57

MME/aGW

eNB

PUSCHPRACH

LTE Cell

PUCCHPDCCHPDSCHPBCHPCFICHPHICHPMCH

Physical Signals:

Physical Channels:

Random Access PreambleSounding Sig.

UL Reference Sig.Secondary Sync.Primary Sync.DL Reference Sig.

S1 Interface

Physical Signals and Channels on Lte Air:

Page 58: LTE Overview

Page 58

REL.8: Lte:

Mapping between logical channels, transport channels and physical channels DL:

BCCH PCCH CCCH DCCH DTCH MCCH MTCH “Logical Channels”

BCH PCH DL-SCH MCH “Transport Channels”

PHICH PCFICH PDCCH PBCH PDSCH PMCH “Physical Channels”

Page 59: LTE Overview

Page 59

Mapping between downlink logical channels and downlink transport channels:

BCCHPCCH CCCH DCCH DTCH MCCH MTCH

BCHPCH DL-SCH MCH

DownlinkLogical channels

DownlinkTransport channels

Page 60: LTE Overview

Page 60

REL.8: Lte (Long term evolution):

Mapping between transport channels and physical channels DL:

PHICHPCFICH

BCH PCH DL-SCHMCH

DownlinkPhysical channels

DownlinkTransport channels

PBCH PDSCHPMCH PDCCH

Page 61: LTE Overview

Page 61

73 sub-carriers

Frequency

P-SCH sub-carriernull sub-carrier

Allocated P-SCH structure in frequency domainCentre Frequency

DC-sub carrier (DL only)

Page 62: LTE Overview

Page 62

fDL

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

72 subcarriers (1080 kHz)

DL 10 ms

PDCCH, PDSCH SSS PSS PBCH, SSS PSS

DL Primary and Secondary Synchronization Signals:

0,5 msf

5 ms

10 ms

73 subcarriers minus 1 DC subcarrier

Page 63: LTE Overview

Page 63

CenterFrequency72 Subcarrier= 1080 kHz= 6 PRB’s

PBCH, SSSand PSS onlyon the centerfrequencies

1 ms

0,5 ms 0,5 ms

DL Subframe 0:

PDCCH PBCH SSS PSS DL ReferenceSignals

PDSCH

DL Reference Signals:..

.

.

............. ...............

62 Subcarriers

Reserved

Page 64: LTE Overview

Page 64

RB=99

Physical channel mapping (DL):

Slot #0 Slot #10 6

1 ms

Fre

qu

en

cy

DC

Sub frame #0

Slot #10

Sub frame #5

N DLRB

= 100

0 6OFDM symbol #

0Slot #2

0 6 Time

RB=0

62 sub carriers

RB=52

RB=47

PDCCH/PCFICH

PBCH

PSS

SSS

PDSCH

N DLSymb

= 7

FDD frame structure (SF1) with normal cyclic prefix and 20 MHz system bandwidth:

Sub frame #1

5 ms

Reserved

6 RB’s

Page 65: LTE Overview

Page 65

OFDM Symbols

frequency

PBCHS-

SCH P

-SCH

Subframe #0

Slot #0 Slot #1

Central 6 RBsPDCCH

PDSCH

OFDM Symbols

frequency

PBCHS-

SCH P

-SCH

Subframe #0

Slot #0 Slot #1

Central 6 RBsPDCCH

PDSCH

Normal CP case

Extended CP case

Location of PBCH for FS1 (normal CP, extended CP):

FDD:

Page 66: LTE Overview

Page 66

DL Data trasmission:

User 1

User 2

PDCCH

PBCH

SSS

PSS

Used forReferenceSignals

f

1 ms t

Page 67: LTE Overview

Page 67

DL Control Information (DCI):

• DCI format 0 is used for the scheduling of PUSCH.• DCI format 1 is used for the scheduling of one PDSCH codeword.• DCI format 1A is used for the compact scheduling of one PDSCH codeword. • DCI format 1B is used for the compact scheduling of one PDSCH codeword

with precoding information.• DCI format 1C is used for very compact scheduling of one PDSCH codeword.• DCI format 1D is used for the compact scheduling of one PDSCH codeword

with precoding and power offset information.• DCI format 2 is used for scheduling PDSCH to UEs configured in closed-loop

spatial multiplexing mode.• DCI format 2A is used for scheduling PDSCH to UEs configured in open loop

spatial multiplexing mode.• DCI format 3 is used for the transmission of TPC commands for PUCCH and

PUSCH with 2-bit power adjustments.• DCI format 3A is used for the transmission of TPC commands for PUCCH and

PUSCH with single bit power adjustments.

The Cyclic Redundancy Check (CRC) of the DCI is scrambled with the UE Identity (RNTI) of that UE which will use the information.

Page 68: LTE Overview

Page 68

Transmission mode: DCI Format:

1. Single-antenna port; port 0 1, 1A2. Transmit diversity 1, 1A3. Open-loop spatial multiplexing 2A4. Closed-loop spatial multiplexing 25. Multi-user MIMO 1D6. Closed-loop Rank=1 precoding 1B7. Single-antenna port; port 5 1, 1A

Transmission mode & DCI:

Page 69: LTE Overview

Page 69

DL/GP/ULDepending on cfg

DL/GP/ULDepending on cfg

0 1 2 3 4 5 6 7 8 9

Subframe

P-BCH

S-SS

P-SS

PDCCH/PHICH/PCFICH

Available or PDCCH/PHICH/PCFICH

Unavailable in all configurations

0

N -1DLRB

Reso

urce

bloc

k

Physical channel mapping (DL, TDD, SF2):

Page 70: LTE Overview

Page 70

PBCH S-

SCH

DwPTS GP UpPTS

P-

SCH

Symbols

frequency

Subframe #0

Slot #0 Slot #1

Special subframe

S-

SCH

Symbols

frequency

PDCCH PDSCH

PDSCH

Central 6 RBs

PDCCH PBCH

DwPTS GP UpPTS

P-

SCH

Central 6 RBs

Normal CP case

Extended CP case

Slot #0Subframe #0

Slot #1

Special subframe

Location of PBCH for FS2 (normal CP, exteded CP):

TDD:

Page 71: LTE Overview

Page 71

DL-SCH physical-layer model:

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource mapping

Coding + RM

QPSK, 16QAM, 64QAMData modulation

Interleaving

HARQ

MA

C s

ched

uler

N Transport blocks(dynamic size S1..., SN)

Node B

Redundancy fordata detection

Redundancy forerror detection

Multi-antennaprocessing

Resource/powerassignment

Modulationscheme

Redundancyversion

Antennamapping

HARQ info

ACK/NACK

Channel-stateinformation, etc.

Antenna mapping

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource demapping

Decoding + RM

Data demodulation

Deinterleaving

HARQ

UE

HARQ info

ACK/NACK

Antenna demapping

Errorindications

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource mapping

Coding + RM

QPSK, 16QAM, 64QAMData modulation

Interleaving

HARQ

MA

C s

ched

uler

N Transport blocks(dynamic size S1..., SN)

Node B

Redundancy fordata detection

Redundancy forerror detection

Multi-antennaprocessing

Resource/powerassignment

Modulationscheme

Redundancyversion

Antennamapping

HARQ info

ACK/NACK

Channel-stateinformation, etc.

Antenna mapping

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource demapping

Decoding + RM

Data demodulation

Deinterleaving

HARQ

UE

HARQ info

ACK/NACK

Antenna demapping

Errorindications

Page 72: LTE Overview

Page 72

BCH physical-layer model:

CRC

Resourcemapping

Coding + RM

Data modulation

Interleaving

Single Transport blocks

(fixed size S)

NB

Antenna mapping

CRC

Resourcedemapping

Decoding + RM

Data demodulation

Deinterleaving

UE

Antennademapping

Errorindication

CRC

Resourcemapping

Coding + RM

QPSK only

Data modulation

Interleaving

(

e

Antenna mapping

CRC

Resourcedemapping

Decoding + RM

Data demodulation

Deinterleaving

UE

Antennademapping

Errorindication

Page 73: LTE Overview

Page 73

REL.8: Lte (Long term evolution):

Mapping between logical channels, transport channels and physical channels UL:

CCCH DCCH DTCH “Logical Channels”

RACH UL-SCH “Transport Channels”

PUCCH PRACH PUSCH “Physical Channels”

Page 74: LTE Overview

Page 74

Mapping between uplink logical channels and uplink transport channels:

CCCH DCCH DTCH

UL-SCHRACH

UplinkLogical channels

UplinkTransport channels

Page 75: LTE Overview

Page 75

REL.8: Lte (Long term evolution):

Mapping between transport channels and physical channels UL:

UplinkPhysical channels

UplinkTransport channels

UL-SCH

PUSCH

RACH

PUCCHPRACH

UCI

Page 76: LTE Overview

Page 76

Definition of Channel Bandwidth and Transmission Bandwidth Configuration:

TransmissionBandwidth [RB]

Transmission Bandwidth Configuration [RB]

Channel Bandwidth [MHz]

Res

ou

rce b

loc

k

Ch

an

nel e

dg

e

Ch

an

nel e

dg

e

DC carrier (downlink only)Active Resource Blocks

Page 77: LTE Overview

Page 77

UL Structure with SRS, PUSCH and PUCCH:

PUCCH (no transmission)

PUCCH (no transmission)

Subframe 1 ms

SRSPUSCH (no transmission)

f

Last symbol

Page 78: LTE Overview

Page 78

UL 10 ms

0 1 2 3 4 5 6 7 8 9

1 ms

Uplink frame structure:

f 1 ms

1 Frame

Slot 0,5 ms

Subframe

0 1 2 3 4 5 6Symbol

CP Cyclic Prefix

Demodulation Reference Signal

Page 79: LTE Overview

Page 79

t

f

Demodulation Reference Signal DRS (for PUSCH and PUCCH)

PUCCHFormat 2

PUCCHFormat 1

PUSCH

Uplink frame structure:

1 ms

Res

ou

rce

for

PU

CC

H

Res

ourc

e fo

r P

UC

CH

Page 80: LTE Overview

Page 80

Uplink frame structure:PUSCH Intra subframe hopping

0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 1 2 3 4 5 6 0 slots

PRB

0,5 1 1,5 ms

= DRS

Offset

PUSCH

Startpoint

BW

f

Page 81: LTE Overview

Page 81

PUCCH format: Modulation: bits: Content:

1 NA NA Scheduling Request

1a BPSK 1 ACK/NACK, ACK/NACK+SR

1b QPSK 2 ACK/NACK, ACK/NACK+SR

2 QPSK 20 (CQI/TPMI or TRI (any CP)) or (CQI/TPMI or TRI) + ACK/NACK

(ext. CP only)

2a QPSK+BPSK 21 CQI/TPMI or TRI) + ACK/NACK (normal CP only)

2b QPSK+QPSK 22 CQI/TPMI or TRI) + ACK/NACK (normal CP only)

PUCCH:

Page 82: LTE Overview

Page 82

UL Acknowledgement (ACK/NACK):

1 slot

1 SC-FDMA symbol

Symbol0 Symbol1 Reference Signal

Reference Signal

Reference Signal

Symbol2 Symbol3

ACK/ NACK(1 symbol)

IFFT IFFT IFFT IFFT

CG sequences (length 12)

W0 W1 W2 W3

IFFT

F2F1F0

RS

PUCCH format 1, 1a, 1b:

PUCCH Format 1, 1a, 1b

Page 83: LTE Overview

Page 83

UL Acknowledgement (ACK/NACK):

Page 84: LTE Overview

Page 84

Reference Signal

Reference Signal

IFFT IFFT IFFT IFFT

1 slot

1 Long Block

IFFT

ZC(length=12)

CQI

IFFT IFFT

UL Cell Quality Indicator (CQI):

PUCCH Format 2, 2a, 2b

Page 85: LTE Overview

Page 85

UL Cell Quality Indicator (CQI):

Page 86: LTE Overview

Page 86

Freq

UL ACK Structure – 3 Pilots

11 1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

12

12

12

12

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

11

11

11

1112

1112

1112

1112

11

11

11

11

1112

1112

1112

1112

pilot data

15

15

15

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

1112

1415

0.5 ms 0.5 ms

0 1 2 3 4 5 6 7 8 9 10 11 12 13

others

. . . . . .

Ch

u sh

ift sep

ara

tion

DFT separation

Walsh cover

Ch

u sh

ift sep

ara

tion

ACK/NACK Channel Structure:

Page 87: LTE Overview

Page 87

0m

0m1m

1m

2m

2m3m

3m

One Subframe

0PRB n

1ULRBPRB Nn

Mapping to physical resource blocks for PUCCH:

Maximum 6 PRBs can be allocated for PUCCH!

Page 88: LTE Overview

Page 88

Scheduling Request Indicator

Uplink Scheduling Grant

Scheduling Request + Data

UE eNB

1

3

2

asynchronous

Scheduling Request Procedure (SR):

Scheduling RequestIndicator in PUCCH

Page 89: LTE Overview

Page 89

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource demapping

Decoding + RM

Data demodulation

Deinterleaving

MA

C s

ched

ule

r

Node B

Resourceassignment

Modulationscheme

Redundancyversion

Antennamapping

HARQ info

ACK/NACK

Antenna demapping

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource mapping

Coding + RM

Data modulation

Interleaving

HARQ

UE

HARQ info

ACK/NACK

Antenna mapping

N Transport blocks(dynamic size S1..., SN)

Errorindications

Resource/powerassignment

Modulationscheme

Antennamapping

HARQ

Up

link

tran

smis

sio

n c

on

tro

l

Channel-state information, etc.

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource demapping

Decoding + RM

Data demodulation

Deinterleaving

MA

C s

ched

ule

r

Node B

Resourceassignment

Modulationscheme

Redundancyversion

Antennamapping

HARQ info

ACK/NACK

Antenna demapping

CRC

RB mapping

Coding + RM

Data modulation

Interl.

CRC

Resource mapping

Coding + RM

Data modulation

Interleaving

HARQ

UE

HARQ info

ACK/NACK

Antenna mapping

N Transport blocks(dynamic size S1..., SN)

Errorindications

Resource/powerassignment

Modulationscheme

Antennamapping

HARQ

Up

link

tran

smis

sio

n c

on

tro

l

Channel-state information, etc.

UL-SCH physical-layer model:

QPSK, 16QAM, 64QAM

Page 90: LTE Overview

Page 90

UL 10 ms

Cyclic Prefix

Subframe PRACH

1 ms

Preamble 800 μs

CP 0,1ms

Guard TimeLong Zadoff-Chu Sequence

Random Access:

0,1ms

f 1 ms

Page 91: LTE Overview

Page 91

800 μs

1

0

800 μs120 km

1

0 200 μs30 km

UE sends PRACH Preamble with 0 TA, eNB receives with x TA.

Usage of PRACH Preamble:

tPRACH PRACH PRACH PDCCH PUSCH PDSCH

RACH Data (RRC)

Noise

Long Zadoff-Chu Sequence

x

RACH Preamble

RACH Response

Page 92: LTE Overview

Page 92

1ms

Downlink transmission

Uplink reception from UE1

Uplink reception from UE2

UE1(close to eNB)

UE2(far from eNB)

eNB

Downlink reception

Downlink reception

Uplink transmission

Uplink transmission

Timing Advance:

Page 93: LTE Overview

Page 93

Random access procedure:

1 ms sub frameT

RA - REP(20 ms radio frame )

T RA

Data transmission

BW

RA

(Scheduled) Data transmission

Random Access Preamble-

Guard Period

Can be used for other random access

channels or data transmission .

t

Page 94: LTE Overview

Page 94

PRACH “minimum” FH pattern for 20ms period

PRACH Frequency Hopping:

Page 95: LTE Overview

Page 95

MIMO Multiple Input Multiple Output antennas

Page 96: LTE Overview

Page 96

SISO

MISO

SIMO

MIMO

Multiple antenna techniques:

Page 97: LTE Overview

Page 97

MIMO: (Multiple Input Multiple Output antennas)

MIMO creates multiple parallel channels between transmitter and receiver. MIMO is using time and space to transmit data (space time coding).

MIMO is a family of techniques:

•Use multiple channels to send the same information stream to achieve diversity (transmit diversity) improve coverage and robustness of data transmission

•Use multiple channels to send multiple information streams (spatial multiplexing) increase throughput

Page 98: LTE Overview

Page 98

Downlink MIMO:

Spatial Multiplexing:Spatial multiplexing allows to transmit different streams of datasimultaneously on the same downlink resource block(s). These datastreams can belong to one single user (single user MIMO / SU-MIMO) or todifferent users (multi user MIMO / MU-MIMO). While SU-MIMO increasesthe data rate of one user, MU-MIMO allows to increase the overall capacity. Spatial multiplexing is only possible if the mobile radio channel allows it!Transmit Diversity:Instead of increasing data rate or capacity, MIMO can be used to exploitdiversity. Transmit diversity schemes are already known from WCDMArelease 99 and will also form part of LTE as one MIMO mode. In case thechannel conditions do not allow spatial multiplexing, a transmit diversityscheme will be used instead, so switching between these two MIMO modes is possible depending on channel conditions. Transmit diversity is used when the selected number of streams (rank) is one.

Page 99: LTE Overview

Page 99

Uplink MIMO:

Uplink MIMO schemes for LTE will differ from downlink MIMO schemes totake into account terminal complexity issues. For the uplink, MU-MIMO (Virtual MIMO) can be used. Multiple user terminals may transmit simultaneously on the same resource block. This is also referred to as Spatial Domain Multiple Access (SDMA). The scheme requires only one transmit antenna at UE side which is a big advantage. The UE’s sharing the same resource block have to apply mutually orthogonal pilot patterns.To exploit the benefit of two or more transmit antennas, but still keep the UEcost low, antenna subset selection can be used. In the beginning, thistechnique will be used, e.g. a UE will have two transmit antennas but onlyone transmit chain and amplifier. A switch will then choose the antenna thatprovides the best channel to the eNB.MU-MIMO will be the first LTE uplink implementation.

Page 100: LTE Overview

Page 100

MIMO Spatial Multiplexing:

Tx Rx101010

101

010

101010

Page 101: LTE Overview

Page 101

In operation, multiple mobile terminals may transmit simultaneously on the same channel or channels, but they do not cause interference to each other because mutually orthogonal pilot patterns are used. This techniques is also referred to as Spatial Domain Multiple Access (SDMA).

OFDM symbol

Time

Frequency

sub-carrier

Control or data, maximum up to 4 symbols for control

Common pilot symbols for 2nd TX antenna

subframe 0 subframe 01 TTI = 1 ms

Common pilotsymbols for 3rd and 4th

antenna

Common pilot symbolsFor 1st antenna

Spatial Domain Multiple Access:

Page 102: LTE Overview

Page 102

Mapping of downlink reference signalsper PRB (normal CP):

0l

0R

0R

0R

0R

6l 0l

0R

0R

0R

0R

6l

One

ant

enna

por

tT

wo

ante

nna

port

s

Resource element (k,l)

Not used for transmission on this antenan port

Reference symbols on this antenna port

0l

0R

0R

0R

0R

6l 0l

0R

0R

0R

0R

6l 0l

1R

1R

1R

1R

6l 0l

1R

1R

1R

1R

6l

0l

0R

0R

0R

0R

6l 0l

0R

0R

0R

0R

6l 0l

1R

1R

1R

1R

6l 0l

1R

1R

1R

1R

6l

Four

ant

enna

por

ts

0l 6l 0l

2R

6l 0l 6l 0l 6l

2R

2R

2R

3R

3R

3R

3R

even-numbered slots odd-numbered slots

Antenna port 0

even-numbered slots odd-numbered slots

Antenna port 1

even-numbered slots odd-numbered slots

Antenna port 2

even-numbered slots odd-numbered slots

Antenna port 3

Page 103: LTE Overview

Page 103

MCW SU-MIMO:

Data CRCCodeword 1

Data CRCCodeword 2

MIMO Data CRC Codeword 1

Data CRC Codeword 2

MIMO

UE1 UE1

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Round trip time

8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

Tx

Rx

8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

UE1

UE1

UE1

The HARQ processing of MCW SU-MIMO

Page 104: LTE Overview

Page 104

Codebook:

No 1 2 3 4 5 6 weightfor:

Codebook 1 0 1 1 1 1 Ant.1Entry 0 1 1 -1 j -j Ant.2

Phase

UE receives only only same opposite Ant. Ant.from from phase phase phase phaseAnt1 Ant2 from from is 900 is 900

both both less moreAnt. Ant. than than

Ant.1 Ant.1

Page 105: LTE Overview

Page 105

Detector

BeamFormingbased on

EBB

One Stream

Spread/ScrambleDetection

Detection

Antenna 1

Antenna 2

Antenna 8

One Stream

Beam 1

Beamforming:

Page 106: LTE Overview

Page 106

MultiUser-MIMO:

Data CRCUE 1

Data CRCUE 2

MIMO

Data CRC UE 1MIMO

Data CRCUE 3

Data CRCUE 4 Data CRC UE 2MIMO

Data CRC UE 3MIMO

Data CRC UE 4MIMO

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

Round trip time

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

Tx

Rx

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

ACK/NAK

UE 1

UE 2

UE 3

UE 4

UE 1

UE 2

UE 3

UE 4

UE 1

UE 2

UE 3

UE 4

HARQ processing for 4Tx MU-MIMO

Page 107: LTE Overview

Page 107

Bandwidths

Page 108: LTE Overview

Page 108

LTE offers system flexibility by supporting systems and UE’s of multiple bandwidths:

BCH/SCH

10-MHz bandwidth

20-MHz bandwidth

5-MHz bandwidth

1.4 -MHz bandwidth

3.0-MHz bandwidth

Page 109: LTE Overview

Page 109

LTE offers system flexibility by supporting systems and UE’s of multiple bandwidths:

Cell site with 20 -MHz transmission bandwidth

SCH

Center carrier frequency

Step 1:Cell search using synchronization channelè detect center 1.4 spectrum of entire 20-MHz spectrum

Example: 10 -MHz UE in 20 -MHz cell site, SCH bandwidth = 1.4 MHz and BCH bandwidth = 1.4MHz

Step 2:BCH reception

BCH

BCHreception

Initiate data transmission using assigned spectrumStep 3:

UE shifts to the center carrier frequency assigned by the system and initiates data transmission

Page 110: LTE Overview

Page 110

REL.8: Lte (Long term evolution):

Variable bandwidth scenarios:

UE´s with different frequencies and bandwidth assigned to e. g. cell A:

Cell A

eNB

TX

CCH

TX

Cell B

UE1

RX

UE4RX

UE2

RXeNB

TX

BS

TXCCHTX

BS

TX

Cell DCell C

UE5RX

UE6

RX

20 MHzCCH

TX

CCH

TXBS

TX

UE7RXCCH

TX

Cell E

UE3

RX

Page 111: LTE Overview

Page 111

current cell UE target cell

fcfc

Scenario C

current cell UE target cell

fcfc

Scenario A

current cell UE target cell

fcfc

Scenario B

current cell UE target cell

fcfc

current cell UE target cell

fcfc

Scenario D Scenario E

current cell UE target cell

fc

fc

Scenario F

Depending on whether the UE needs transmission/reception gaps to perform the relevant measurements, measurements are classified as gap assisted or non gap assisted.

NonGAP

GAP

Inter and Intra-frequency measurements scenarios:

Page 112: LTE Overview

Page 112

System and UE parameter

Page 113: LTE Overview

Page 113

E-UTRA FDD and E-UTRA TDD reference eNB and UE parameters:

Parameter Value

Maximum BS power FDD 43 dBm for 1.4, 3 and 5 MHz carrier46 dBm for 10, 15 and 20 MHz carrier

Max. power per DL traffic channel FDD 32 dBm

Min. BS power per user 15 dBm

Maximum BS power TDD 43 dBm for 1.4, 3 and 5 MHz carrier46 dBm for 10, 15 and 20 MHz carrier

Max. power per DL traffic channel TDD 32 dBm

Maximum UE power 24 dBm (Class 3)21 dBm (Class 4)

Minimum UE power -30 dBm

Page 114: LTE Overview

Page 114

Lte UE Categories:UE classes

Num. of MIMO streams

Max. num. of RBs

Peak data rate(Mbps)

Soft buffer size

1 1 25 DL 5 FFS

UL 2

2 2 25 DL 43.2 FFS

UL 14.4

3 2 50 DL 86.4 FFS

UL 28.8

4 2 100 DL 172.8 FFS

UL 57.6

5 4 100 DL 326.4 FFS

UL 86.4

Page 115: LTE Overview

Page 115

Lte UE Classes:

UEClasses

:

Numberof MIMO streams

:

Max. number of resource blocks:

Peak data rate (Mbps):

DL UL

1 1 25 (*1) 5.0 2.0

2 2 43.2 (*2) 14.4 (*2)

3 50 86.4 (*2) 28.8 (*2)

4 100 172.8 (*2) 57.6 (*2)

5 4 326.4 (*2) 86.4 (*3)

Page 116: LTE Overview

Page 116

UE Category Maximum number of DL-SCH transport

block bits received within a TTI

Maximum number of bits of a DL-SCH transport block received

within a TTI

Total number of

soft channel

bits

Maximum number of supported

layers for spatial multiplexing in

DL

Category 1 10296 10296 250368 1

Category 2 51024 51024 1237248 2

Category 3 102048 75376 1237248 2

Category 4 150752 75376 1827072 2

Category 5 302752 151376 3667200 4

Lte UE Categories:

UE Category Maximum number of bits of an UL-SCH transport block transmitted within a TTI

Support for 64QAM in UL

Category 1 5160 No

Category 2 25456 No

Category 3 51024 No

Category 4 51024 No

Category 5 75376 Yes

Page 117: LTE Overview

Page 117

Interfaces and Nodes

Page 118: LTE Overview

Page 118

REL.8: Lte (Long term evolution):

SGi

S12

S3 S1-MME

PCRF

Gx

S6a

HSS

Operator's IP Services

(e.g. IMS, PSS etc.)

Rx

S10

UE

SGSN

LTE-Uu

E-UTRAN

MME

S11

S5 Serving Gateway

PDN Gateway

S1-U

S4

UTRAN

GERAN

Page 119: LTE Overview

Page 119

REL.8: Lte (Long term evolution):

Roaming Configuration:

S6a

HSS

S 5

S3 S1 - MME

S10

GERAN

UTRAN

S G SN

MME

S11

Serving G ateway UE

" LTE - Uu" E - UTRAN

S4

HPLMN

VPLMN

V - PCRF

Gx

SGi

PDN G ateway

S1 - U

H - PCRF

S9

Home Operator’s IP

Services

Rx

Visited Oper ator PDN

S12

Page 120: LTE Overview

Page 120

REL.8: Lte (Long term evolution):

• Air interface is OFDMA (DL) / SC-FDMA (UL) in TDD and FDD modes not TD-CDMA or W-CDMA as in 3G.• No macro diversity (no soft handover).• LTE is exclusively packet-switched and IP-based.• Voice and other services previously delivered over the CS Core network in UMTS are provided via a packet switched IP core and IMS.• CS Core network does not exist.• A key target of SAE is the interworking of multiple access networks under the same packet-switched core network (GERAN, UTRAN, WLAN). So the SAE has two major goals:

• Become the Core Network for LTE.• Integrate legacy 3GPP and non-3GPP access network in

the same architecture.

Page 121: LTE Overview

Page 121

The RAN network elements are compressed and pushed to the network edge:

The NodeB and most of the RNC functions are combined to create an element known as the eNB.

The Iu-PS interface in UMTS becomes the S1 interface in LTE.

The S-GW takes the UP core network functions.

The MME takes the Mobility management functions.

REL.8: Lte (Long term evolution):

Page 122: LTE Overview

Page 122

REL.8: Lte (SAE):

In the System Architecture Evolution (SAE) network architecture, the Core network elements of SGSN and GGSN are replaced by a number of entities:

• The SGSN control-plane functions become the ‘Mobility Management Entity’ (MME).

• Some RNC functions, the SGSN user plane functions and the GGSN are incorporated into the ‘Serving Gateway’ (S-GW) and ‘3GPP Anchor’.

• The split of functionality between S-GW and 3GPP anchor is not decided.

• In addition there is an ‘SAE Anchor’, which provides the S2 interface for non-3GPP access systems such as WLAN, etc..

Page 123: LTE Overview

Page 123

The eNB hosts the following functions: • Functions for Radio Resource Management: Radio Bearer Control, Radio Admission

Control, Connection Mobility Control, Dynamic allocation of resources to UEs in both uplink and downlink (scheduling);

• IP header compression and encryption of user data stream;• Selection of an MME at UE attachment when no routing to an MME can be determined from

the information provided by the UE;• Routing of User Plane data towards Serving Gateway;• Scheduling and transmission of paging messages (originated from the MME);• Scheduling and transmission of broadcast information (originated from the MME or O&M);• Measurement and measurement reporting configuration for mobility and scheduling.

The MME hosts the following functions (see 3GPP TS 23.401):- NAS signalling; - NAS signalling security; - AS Security control;- Inter CN node signalling for mobility between 3GPP access networks;- Idle mode UE reach ability (including control and execution of paging retransmission);- Tracking Area list management (for UE in idle and active mode);- PDN GW and Serving GW selection;- MME selection for handovers with MME change;- SGSN selection for handovers to 2G or 3G 3GPP access networks;- Roaming;- Authentication;- Bearer management functions including dedicated bearer establishment.

eNB, MME:

Page 124: LTE Overview

Page 124

The Serving Gateway (S-GW) hosts the following functions (see 3GPP TS 23.401):- The local Mobility Anchor point for inter-eNB handover;- Mobility anchoring for inter-3GPP mobility;- E-UTRAN idle mode downlink packet buffering and initiation of

network triggered service request procedure;- Lawful Interception;- Packet routeing and forwarding;- Transport level packet marking in the uplink and the downlink;- Accounting on user and QCI granularity for inter-operator

charging;- UL and DL charging per UE, PDN, and QCI.

The PDN Gateway (P-GW) hosts the following functions (see 3GPP TS 23.401):- Per-user based packet filtering (by e.g. deep packet inspection);- Lawful Interception;- UE IP address allocation;- Transport level packet marking in the downlink;- UL and DL service level charging, gating and rate enforcement;- DL rate enforcement based on AMBR;

S-GW, PDN-GW:

Page 125: LTE Overview

Page 125

REL.8: Lte (Long term evolution):

Roaming Configuration

EPC

MME

EPCS

1-c

( S1-

AP

)

eNB

eNB

MME

S -GW

PDN GW

S1 GTP -U data tunnel

X2-

U d

ata

S1-c

(S1-

AP)

S11(GTP-C)

X2-

c(X

2-A

P)

S1-uGTP -P

Page 126: LTE Overview

Page 126

E-UTRAN UTRAN GERANNon-3GPP

access

Initial Cell Search

Power-up

REL.8: Lte (Long term evolution):

Initial Cell search:

Page 127: LTE Overview

Page 127

Idle Active

Initial Cell Search

Cell association C_RNTI]Release C_RNTI

Associate C_RNTI

Power-Up

E-UTRAN UTRAN GERAN Non 3GPP

Initial Cell search:

Page 128: LTE Overview

Page 128

QoS concept and bearer service architecture:

P -GWS-GW Peer

Entity

UE eNB

EPS Bearer

Radio Bearer S1 Bearer

End-to-end Service

External Bearer

Radio S5/ S8

Internet

S1

E- UTRAN EPC

Gi

S 5/S 8 BearerE-RAB

Page 129: LTE Overview

Page 129

UE S-GW

eNB

Policy based QoS

handling and IP packet

mux and demux above bearer level

Policy based QoS

handling and IP packet

mux and demux above bearer level

Radio Bearers S1 Bearers

Signaling Radio Bearers

S1

Aggregated IP Flows Aggregated IP Flows

Best Effort1 … n

VoIP

VideoStreamingUu

QoSFlow 1

QoSFlow 1

QoSFlow 2

QoSFlow 2

QoSFlow 3

QoSFlow 3

Prio 1-Q

Prio 3-Q

Prio 2-Q

MAC Mux

MAC Scheduler

SAE Bearer Service

C-PlaneSignalling

SAE Bearer and QoS Concept for a Single UE:

Page 130: LTE Overview

Page 130

Serving GW PDN GW eNB

Radio Bearer S5/S8 Bearer

Application / Service Layer

UL - TFT RB - ID

DL Service Data Flows

DL - TFT DL - TFT S5/S8a - TEID

RB - ID S1 - TEID

S1 Bearer

S1 - TEID S5/S8a - TEID

UE

UL Service Data Flows

UL - TFT

Serving GW PDN GW eNodeB

- -

- - - - - -

UE

-

Two unicast EPS bearers (GTP-U based S5/S8):

Page 131: LTE Overview

Page 131

Standardized QCI / Label Characteristics:

QCI (QoS Class

Identifier)

ResourceType

Priority

PacketDelay

Budget(NOTE 1)

PacketLossRate

(NOTE 2)

Example Services

1(NOTE 3)

GBR

2 100 ms 10-2 Conversational Voice

2(NOTE 3)

4 150 ms 10-3 Conversational Video (Live Streaming)

3(NOTE 3)

3 50 ms 10-3 Real Time Gaming

4(NOTE 3)

5 300 ms 10-6 Non-Conversational Video (Buffered Streaming)

5(NOTE 3)

Non-GBR

1 100 ms 10-6 IMS Signaling

6(NOTE 3)

6 300 ms 10-6

Video (Buffered Streaming) TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)

7(NOTE 3)

7 100 ms 10-3 Voice, Video (Live Streaming), Interactive Gaming

8(NOTE 5)

Non-GBR

8

300 ms 10-6

Video (Buffered Streaming)TCP-based (e.g., www, e-mail, chat, ftp, p2p file sharing, progressive video, etc.)

9(NOTE 6)

9

Page 132: LTE Overview

Page 132

QCI TrafficClass

TrafficHandlingPriority

SignalingIndication

SourceStatisticsDescriptor

1 Conversational N/A N/A Speech

2 Conversational N/A N/A Unknown

FFS Streaming N/A N/A Speech

3 Streaming N/A N/A Unknown

5 Interactive 1 Yes N/A

7 Interactive 1 No N/A

6 Interactive 2 No N/A

8 Interactive 3 No N/A

9 Background N/A N/A N/A

Mapping between standardized QCI’s and pre-Rel-8 QoS parameter values:

Page 133: LTE Overview

Page 133

UE aGW PCRF AFeNB

Subscriber ID + Service Flow InformationQoS ProfileQoS Profile + Bearer IDQoS Profile + Bearer ID

Session Authorisation

Apply PolicyActivate or

Modify Access Bearer

Activate or Modify Radio

Bearer

Subscriber ID + Service Flow Information

QoS ARCHITECTURE:

Page 134: LTE Overview

Page 134

eUE

SAE

Core

2G BSENode

BS

2G Security

3G RAN

LTE RAN

RNC

2G Radio

3G Radio

LTE Radio

higher layers

lower layers

UP security anchor

NAS security anchor eNB

3G Security

UP handler

NAS handler

LTE RRC Security

SAE NAS Security

SAE UP Security

SGSN

inter-working

Security in 2G, 3G, Lte:

Page 135: LTE Overview

Page 135

Home

stratum/ Serving

Stratum

Transport stratum

ME

Application

stratum User Application Provider Application

(IV)

(III)

(II)

(I)

(I)

(I)

(I)

(I)

SN

AN

(I)

USIM

(II)

HE

Lte Security Architecture:

Page 136: LTE Overview

Page 136

Security in Lte:

USIM / AuC

UE / MME

UE / ASME

KASME

K

CK, IK

KeNB-UP-enc KeNB-RRC- int

KeNBKNAS int

UE / HSS

UE / eNB

KNAS enc

KeNB-RRC-encK : Permanent stored in USIM & AuCCK : Cipher Key IK : Integrity KeyKASME : Access Security Management EntityKNAS enc : NAS Encryption KNAS int : NAS IntegrityKeNB : eNB Master KeyKeNB-UP-enc : eNB User Plane EncryptionKeNB-RRC-int : eNB RRC IntegrityKeNB-RRC-enc : eNB RRC Encryption

Page 137: LTE Overview

Page 137

Security in Lte: (Network nodes)

HSSKs

KDF

256

256

network-ID

MME KeNB

KASME

256

KDF

KDF

KDF KDF

256-bitkeys KNASenc KNASint

128-bitkeys KNASenc KNASint

Trunc Trunc

256 256

128 128

256

256256

NAS-enc-alg,Alg-ID

NAS-int-alg,Alg-ID

NAS COUNT

KDF KDF

256-bitkeys KRRCenc KRRCint

128-bitkeys KRRCenc KRRCint

Trunc Trunc

256 256

128 128

256256

RRC-enc-alg,Alg-ID

RRC-int-alg,Alg-ID

UP-enc-alg,Alg-ID

256

256Physical cell ID

256

256KeNB

eNB

eNB

KeNB*

KDF

KUPenc

KUPenc

256

256

128

Trunc

Page 138: LTE Overview

Page 138

Security in Lte: (UE)

256

Ks

KDF

256

256

network-ID

KeNB

KASME

256

KDF

KDF

KDF KDF

256-bitkeys KNASenc KNASint

128-bitkeys KNASenc KNASint

Trunc Trunc

256 256

128 128

256

256256

NAS-enc-alg,Alg-ID

NAS-int-alg,Alg-ID

NAS COUNT

KDF KDF

256-bitkeys KRRCenc KRRCint

128-bitkeys KRRCenc KRRCint

Trunc Trunc

256 256

128 128

256256

RRC-enc-alg,Alg-ID

RRC-int-alg,Alg-ID

UP-enc-alg,Alg-ID

256

256Physical cell ID

256

KeNB*

KDF

KUPenc

KUPenc

Trunc

256

128

256

ME

Page 139: LTE Overview

Page 139

Security termination points:

MME

eNBeNB

S-GW

S1-CP, Xu-C:NAS Ciphering &Integrity Protection

Xu-CP/UP:RRC, UP Ciphering &RRC Integrity Protection

X2-CP/UP:UP, CP Ciphering &CP Integrity Protection

X2

S1-C S1-U

UE

Page 140: LTE Overview

Page 140

Security Termination Points:

Ciphering Integrity Protection

NAS Signalling

Required and terminated in MME

Required and terminated in MME

U-Plane Data Required and terminated in eNB

Not Required

RRC Signalling

Required and terminated in eNB

Required and terminated in eNB

MAC Signalling

Not required Not required

Page 141: LTE Overview

Page 141

Protocols and Procedures

Page 142: LTE Overview

Page 142

S6a

HSS

S3

S1-MME

S10

UTRAN

GSN

MME

S11

Serving Gateway

S5

UE

LTE-Uu

E-UTRAN

S4

HPLMN

VPLMN

V-PCRF

Gx

SGi PDN

Gateway S1-U

H-PCRF

S9

Visited Operator's IP

Services

Rx

GERAN

S12

Page 143: LTE Overview

Page 143

Lte C-Plane

Radio

MAC

RLC

RRC

Radio

MAC

RLC

RRC

IP4/6

SCTP

S1-AP

NAS

IP4/6

SCTP

S1-AP

UE eNB MME/S-GW

NAS

Ethernet Ethernet Ethernet

IP4/6

UDP

GTP-C

Ethernet

IP4/6

UDP

GTP-C

S-GWXu S1

Red indicates modifications!

*

* MAC and RLC may be simplified

PDCPPDCP

Page 144: LTE Overview

Page 144

Lte U-Plane

Red indicates modifications!

Radio

MAC

RLC

PDCP

Radio

MAC

RLC

Ethernet

IP4/6

UDP

GTP-U

IP4/6

Ethernet

IP4/6

UDP

GTP-UPDCP

UE eNB S-GW

IP4/6

Xu S1

Page 145: LTE Overview

Page 145

REL.8: Lte:

Protocol Stack user plane: GTP-U

eNB

PHY

UE

PHY

MAC

RLC

MAC

S-GW

PDCPPDCP

RLC

GTP-U

UDP

IPIP

UDP

GTP-U

IP

S1-U

Page 146: LTE Overview

Page 146

Protocol Stack UE:

CRLC

MAC-u SAP

RRC SAP

PHY SAP

RLC-u SAP

Physical layer

Radio link layer

IP layer

Radio network layer

NAS_SEC

IP

RRC

RLC

PHY

MAC

RLC-c SAP

MAC-c SAP

CPHY

NAS

NAS_SEC-c SAP

PDCP-u SAP

CMAC

PDCP CPDCP

Mobility & Bearer control layer

PDCP-c SAP

Page 147: LTE Overview

Page 147

REL.8: Lte:

Protocol Stack signaling plane:

eNB

PHY

UE

PHY

MAC

RLC

MAC

MME

RLC

NAS NAS

RRC RRC S1-APS1-AP

IPIP

PDCP PDCP

SCTP SCTP

Page 148: LTE Overview

Page 148

REL.8: Lte (Functional split):

SAE Core Network

eNB

RB Control

Connection Mobility Cont.

eNBMeasurement

Configuration & Provision

Dynamic Resource Allocation

(Scheduler)

RRC

PHY

MME

S-GW

User Plane

MM Entity

SAE Bearer Control

S1MAC

PDCP

Inter Cell RRM

Radio Admission

Control

RLC

Ciphering

UE

PHY

MAC

RLC

User Plane

PDCP

Ciphering

MM Entity

SAE Bearer Control

S1

Page 149: LTE Overview

Page 149

Functional Split between E-UTRAN and EPC:

internet

eNB

RB Control

Connection Mobility Cont.

eNB MeasurementConfiguration & Provision

Dynamic Resource Allocation (Scheduler)

PDCP

PHY

MME

S-GW

S1MAC

Inter Cell RRM

Radio Admission Control

RLC

E-UTRAN EPC

RRC

Mobility Anchoring

SAE Bearer Control

Idle State Mobility Handling

NAS Security

P-GW

UE IP address allocation

Packet Filtering

Page 150: LTE Overview

Page 150

REL.8: Lte (E-UTRAN architecture):

Many to many configuration!

eNB

MME / S-GW MME / S-GW

eNB

eNB

S1 S1

X2 E-UTRAN

EPC

Page 151: LTE Overview

Page 151

Control Plane for S3, S4, S5 S8a, S10, S11 Interfaces (SGSN – MME, SGSN – Serving GW, Serving GW - PDN GW,

MME – MME, MME - Serving GW ):

Ethernet

IP4/6

UDP

GTP-C

*

Ethernet

IP4/6

UDP

GTP-C

*

* IPSec optional, possible IP4

S3, S4, S5, S8a, S10, S11

Page 152: LTE Overview

Page 152

Ethernet

IP4/6

UDP

GTP-U

* IPSec optional, possible IP4

S1-U

UE – PDN GW user plane:

Ethernet

IP4/6

UDP

GTP-U

Ethernet

IP4/6

UDP

GTP-U

Ethernet

IP4/6

UDP

GTP-U

Radio

MAC

RLC

PDCP

Radio

MAC

RLC

PDCP

S5, S8aXuUE eNB S-GW PDN-GW

IP IP

Appl.

SGi

Page 153: LTE Overview

Page 153

* IPsec optional, possible IP4

Gb

UE – PDN GW user plane with 2G/3G access via S4 interface:

S5UmUE BSS SGSN PDN-GW

Radio

MAC

RLC

LLC

SNDCP

IP

L1

NS

BSSGP

Radio

MAC

RLC

Ethernet

IP4/6

UDP

GTP-U

L1

NS

BSSGP

LLC

SNDCP

Appl.

Ethernet

IP4/6

UDP

GTP-U

Ethernet

IP4/6

UDP

GTP-U

Ethernet

IP4/6

UDP

GTP-U

IP

S4Serving-GW

SGi

* *

*

Page 154: LTE Overview

Page 154

Iu

User Plane for UTRAN mode and Direct Tunnel on S4-U:

S5UuUE UTRAN SGSN PDN-GW

Radio

MAC

RLC

PDCP

IP

L1

IP4/6

UDP

Radio

MAC

RLC

Appl.

L1

IP4/6

UDP

GTP-U

IP

L1

IP4/6

UDP

GTP-U

L1

IP4/6

UDP

GTP-U

S4Serving-GW

Direct tunnel between UTRAN and S-GW

PDCP GTP-U

L1

IP4/6

UDP

GTP-U

L1

IP4/6

UDP

GTP-U

SGi

Page 155: LTE Overview

Page 155

An EP (Elementary Procedure) consists of an initiating message and possibly a response message. Two kinds of EP’s are used:

- Class 1: Elementary Procedures with response (success and/or failure).- Class 2: Elementary Procedures without response.

For Class 1 EP’s, the types of responses can be as follows:Successful:

- A signalling message explicitly indicates that the elementary procedure successfully completed with the receipt of the response.

Unsuccessful:- A signalling message explicitly indicates that the EP failed.- On time supervision expiry (i.e. absence of expected response).

Successful and Unsuccessful:- One signalling message reports both successful and

unsuccessful outcome for the different included requests. The response message used is the one defined for successful outcome.

Class 2 EP’s are considered always successful.

S1-AP (S1 Application Protocol) (TS 36.413):

Page 156: LTE Overview

Page 156

Elementary Procedure:

Initiating Message: Successful Outcome: Unsuccessful Outcome:

Response message: Response message:

Handover Preparation HANDOVER REQUIRED HANDOVER COMMAND HANDOVER PREPARATION FAILURE

Handover Resource Allocation

HANDOVER REQUEST HANDOVER REQUEST ACKNOWLEDGE

HANDOVER FAILURE

Path Switch Request PATH SWITCH REQUEST PATH SWITCH REQUEST ACKNOWLEDGE

PATH SWITCH REQUEST FAILURE

Handover Cancellation

HANDOVER CANCEL HANDOVER CANCEL ACKNOWLEDGE

E-RAB Setup E-RAB SETUP REQUEST E-RAB SETUP RESPONSE

E-RAB Modify E-RAB MODIFY REQUEST E-RAB MODIFY RESPONSE

E-RAB Release E-RAB RELEASE COMMAND E-RAB RELEASE COMPLETE

Initial Context Setup INITIAL CONTEXT SETUP REQUEST INITIAL CONTEXT SETUP RESPONSE

INITIAL CONTEXT SETUP FAILURE

Reset RESET RESET ACKNOWLEDGE

S1 Setup S1 SETUP REQUEST S1 SETUP RESPONSE S1 SETUP FAILURE

UE Context Release UE CONTEXT RELEASE COMMAND UE CONTEXT RELEASE COMPLETE

UE Context Modification

UE CONTEXT MODIFICATION REQUEST

UE CONTEXT MODIFICATION RESPONSE

UE CONTEXT MODIFICATION FAILURE

eNB Configuration Update

ENB CONFIGURATION UPDATE ENB UPDATE CONFIGURATION ACKNOWLEDGE

ENB CONFIGURATION UPDATE FAILURE

MME Configuration Update

MME CONFIGURATION UPDATE MME CONFIGURATION UPDATE ACKNOWLEDGE

MME CONFIGURATION UPDATE FAILURE

Write-Replace Warning

WRITE-REPLACE WARNING REQUEST

WRITE-REPLACE WARNING RESPONSE

S1-AP Class 1 Procedures:

Page 157: LTE Overview

Page 157

S1-AP Class 2 Procedures:

Elementary Procedure: Message:

Handover Notification HANDOVER NOTIFY

E-RAB Release Request E-RAB RELEASE REQUEST

Paging PAGING

Initial UE Message INITIAL UE MESSAGE

Downlink NAS Transport DOWNLINK NAS TRANSPORT

Uplink NAS Transport UPLINK NAS TRANSPORT

NAS non delivery indication NAS NON DELIVERY INDICATION

Error Indication ERROR INDICATION

UE Context Release Request UE CONTEXT RELEASE REQUEST

DownlinkS1 CDMA2000 Tunneling DOWNLINK S1 CDMA2000 TUNNELING

Uplink S1 CDMA2000 Tunneling UPLINK S1 CDMA2000 TUNNELING

UE Capability Info Indication UE CAPABILITY INFO INDICATION

eNB Status Transfer eNB STATUS TRANSFER

MME Status Transfer MME STATUS TRANSFER

Deactivate Trace DEACTIVATE TRACE

Trace Start TRACE START

Trace Failure Indication TRACE FAILURE INDICATION

Location Reporting Control LOCATION REPORTING CONTROL

Location Reporting Failure Indication LOCATION REPORTING FAILURE INDICATION

Location Report LOCATION REPORT

Overload Start OVERLOAD START

Overload Stop OVERLOAD STOP

eNB Direct Information Transfer eNB DIRECT INFORMATION TRANSFER

MME Direct Information Transfer MME DIRECT INFORMATION TRANSFER

Page 158: LTE Overview

Page 158

eNBUEServing

GW

eNBUE

Per bearer Mobility tunnels:

Single Mobility tunnel per UE-PDN

ServingGW

It is proposed that a single mobility tunnel is utilized between eNB and S-GW for each active UE-PDN connection. All SAE bearers associated with the same UE-PDN connection are mapped to this single Mobility tunnel over the S1-u interface.

S1 Tunneling GTP:

Page 159: LTE Overview

Page 159

Lte X2-Planes

eNBX2

Red indicates modifications!

IP4/6

SCTP

X2-AP

eNB

Ethernet Ethernet

IP4/6

UDP

GTP-U

IP4/6

SCTP

X2-AP

Ethernet Ethernet

IP4/6

UDP

GTP-U

* IPsec optional

**

Page 160: LTE Overview

Page 160

X2 Procedures and Messages Class 1 (TS 36.423):X2-AP:

Elementary Procedure

Initiating Message Successful Outcome

Unsuccessful Outcome

Response message Response message

Handover Preparation

HANDOVER REQUEST

HANDOVER REQUEST ACKNOWLEDGE

HANDOVER PREPARATION FAILURE

 

Reset RESET REQUEST RESET RESPONSE  

X2 Setup X2 SETUP REQUEST

X2 SETUP RESPONSE

X2 SETUP FAILURE 

eNB Configuration Update

ENB CONFIGURATION UPDATE

ENB CONFIGURATION UPDATE ACKNOWLEDGE

ENB CONFIGURATION UPDATE FAILURE

 

Resource Status Reporting Initiation

RESOURCE STATUS REQUEST

RESOURCE STATUS RESPONSE

RESOURCE STATUS FAILURE

 

Page 161: LTE Overview

Page 161

X2 Procedures and Messages Class 2 (TS 36.423):

Elementary Procedure: Initiating Message:

Load Indication LOAD INFORMATION

Handover Cancel HANDOVER CANCEL

SN Status Transfer SN STATUS TRANSFER

UE Context Release UE CONTEXT RELEASE

Resource Status Reporting RESOURCE STATUS UPDATE

Error Indication ERROR INDICATION

X2-AP:

Page 162: LTE Overview

Page 162

U-Plane Xu

RLC

Release 6 E-UTRA

MAC-hs/e E-MAC

MAC-d simplified

RLC Transparentor simplified

PDCP E-PDCP

PHY E-PHY

Page 163: LTE Overview

Page 163

Header compression and decompression of IP data streams

Buffering of transmitted PDCP SDU Maintenance of transmitted and

received PDCP SDU

Segmentation and reassembly Concatenation / Padding Error correction (ARQ) In-sequence delivery Flow control Sequence number check SDU discard Duplicate detection Ciphering

HARQ Flow control Scheduling/priority handling TFRC selection

Segmentation and reassembly Concatenation / Padding Mux. of logical channels Ciphering HARQ (including in-sequence delivery,

SN check, SDU discard, duplicate detection)

Flow control Scheduling/priority handling Transport format selection

Header compression and decompression of IP data streams

Buffering of transmitted E-PDCP SDU Maintenance of transmitted and

received E-PDCP SDU

PD

CP

MA

C-h

s/e

~ Rel.6 (HSxPA)

Some functions are integrated, others are added.

Null or Transparent operation

RL

CE-UTRAN

E-P

DC

PE

-MA

CE

-RL

C

Page 164: LTE Overview

Page 164

De-multiplexingReorderingDisassembly C/T MUXPriority settingTCTF MUXUE id MUXCiphering / DecipheringScheduling/priority handlingHARQTransport format selectionReordering Queue Distribution

E-M

AC

Transport Channel type switching C/T MUX Priority setting Ciphering (for RLC-TM) Deciphering (for RLC-TM) DL scheduling/priority handling Flow control

Flow control Scheduling/priority handling HARQ TFRC selection

Scheduling/priority handling TCTF MUX UE id MUX MBMS Id Mux TFC selection Demultiplex DL code allocation Flow control

MA

C-d

MA

C-c

/sh

/mM

AC

-hs

Reordering Queue Distribution Reordering Macro diversity selection DisassemblyM

AC

-es

MA

C-e

E-DCH Scheduling E-DCH Control De-multiplexing HARQ

UMTS Lte

Page 165: LTE Overview

Page 165

CELL

UE1

eNB1 MMESignalling may be

received by all UEs in the Cell

BCCH

PCCH

DCCH1

UE1 NAS Signalling(Actually carried over UE1 [S1-AP + RRC DCCH2])

DCCH2UE1 RRC

UE1 NAS

UE1 S1-AP

UE1 NAS

UE2

DCCH1

DCCH2UE2 RRC

UE2 NAS

UE2 S1-AP

UE2 NAS

UEn

DCCH1

DCCH2UEn RRC

UEn NAS

UEn S1-AP

UEn NAS

UE2 NAS Signalling(Actually carried over UE2 [S1-AP + RRC DCCH2])

UEn NAS Signalling(Actually carried over UEn [S1AP + RRC DCCH2])

eNB2

S1-APConnectionless Signalling

X2-AP(eNB1 ↔ eNB2)

UE1 S1-APConnection Oriented

Signalling

UEn S1-APConnection Oriented

Signalling

UE2 S1-APConnection Oriented

Signalling

Lte Signalling Connections:

Page 166: LTE Overview

Page 166

Call Setup Procedure in UTRAN Call Setup Procedure in E-UTRAN

RRC Connection Request

RRC Connection Setup Complete

Initial Direct Transfer(GMM)

RRC Connection Setup

Radio Bearer Setup

UE RAN

Security Mode Command

UL Direct Transfer(SM)

Security Mode Complete

Radio Bearer Setup Complete

DL Direct Transfer(SM)

C-plane Establishment

Service Request(GMM)

CN

Security Mode Command

L2 STAT

Active PDP Context Request(SM)

RAB Assignment Request

U-plane Establishment

RAB Assignment Response

Active PDP Context Accept(SM)

Security Mode Complete

U-plane Establishment

UE eNB CN

U-plane Establishment

Enhanced RRC + NAS connection request

Enhanced RRC + NAS connection response

Concatenation or parallel execution of RRC procedures:

Page 167: LTE Overview

Page 167

REL.8: Lte (Attach and PDP Activation (one step access)):

IASA

S10

HSS Xu eNB

S-GW

UE

8. Bearer Request

2. Authentication

1. Attach Request (APN)

S1c S6

10. Bearer Response

14. Attach Accept (IP configuration)

3. Update Location

5. Insert Subscriber Data Ack

4. Insert Subscriber Data

6. Update Location Ack

16. Attach Complete

MME

S1u S5/S8

7. Attach Request (APN, UPE + RRC keys)

15. Attach Accept (IP configuration)

11. Radio Bearer Request (QoS, RRC keys)

13. Radio Bearer Confirm

12. RRC (radio resource info, QoS info)

9. PCRF Interaction

Page 168: LTE Overview

Page 168

ATTACH PROCEDURE:

3. Identification Request

1. Attach Request

new MME Old MME/SGSN

Serving GW PCRF HSS

3. Identification Response

PDN GW

2. Attach Request

eNodeB UE

4. Identity Request

4. Identity Response 5a. Authentication / Security

17. Initial Context Setup Request / Attach Accept

First Uplink Data

19. RRC Connection Reconfiguration Complete

18. RRC Connection Reconfiguration

20. Initial Context Setup Response

24. Update Bearer Response

23. Update Bearer Request

First Downlink Data

25. Notify Request

26. Notify Response

(B)

(A)

16. Create Default Bearer Response

12. Create Default Bearer Request

8. Update Location Request

9. Cancel Location

11. Update Location Ack

9. Cancel Location Ack

10. Delete Bearer Request

10. Delete Bearer Response

13. Create Default Bearer Request

15. Create Default Bearer Response

7. Delete Bearer Response

7. Delete Bearer Request

First Downlink Data (if not handover)

(C)

EIR

5b. ME Identity Check

5b. Identity Request/Response

10. PCEF Initiated IP-CAN Session Termination

7. PCEF Initiated IP-CAN Session Termination

14. PCEF Initiated IP-CAN Session Establishment

6. PCO and/or APN Request

6. PCO and/or APN Response

23a. Update Bearer Request

23b. Update Bearer Response

(D)

21. Direct Transfer 22. Attach Complete

Page 169: LTE Overview

Page 169

Tracking Area Update procedure with Serving GW change:

(A)

4. Context Request

2. TAU Request

new MME old MME/ old S4 SGSN

new Serving GW PDN GW HSS

1. UE changes to a new Tracking

Area

5. Context Response 6. Authentication

12. Update Location

13. Cancel Location

14. Cancel Location Ack

16. Delete Bearer Request

17. Delete Bearer Response 18. TAU Accept

19. TAU Complete

7. Context Acknowledge

old Serving GW

3. TAU Request

eNodeB UE

11. Create Bearer Response

8. Create Bearer Request 9. Update Bearer Request 10. Update Bearer Response

15. Update Location Ack

(B)

Page 170: LTE Overview

Page 170

(A)

4. Context Request

2. TAU Request

new MME old MME new Serving

GW PDN GW HSS

1. UE changes to a new Tracking

Area

5. Context Response

6. Authentication

12. Update Location

13. Cancel Location

15. Insert Subscriber Data 14. Cancel Location Ack

17. Delete Bearer Request

18. Delete Bearer Response 19. TAU Accept

20. TAU Complete

7. Context Acknowledge

old Serving GW

3. TAU Request

eNodeB UE

11. Create Bearer Response

8. Create Bearer Request

9. Update Bearer Request

10. Update Bearer Response

16. Update Location Ack

(B)

15. Insert Subscriber Data Ack

Tracking Area Update procedure with MME and Serving GW change:

Page 171: LTE Overview

Page 171

MTC:

UE eNB MME

S1-AP: INITIAL CONTEXT SETUP COMPLETE+ eNB UE S1AP ID+ MME UE S1AP ID+ Bearer Setup Confirm (eNB TEID)

S1-AP: INITIAL UE MESSAGE (FFS)+ NAS: Service Request+ eNB UE S1AP ID

S1-AP: INITIAL CONTEXT SETUP REQUEST+ (NAS message)+ eNB UE S1AP ID+ MME UE S1AP ID+ Security Context+ UE Capability Information (FFS)+ Bearer Setup (Serving SAE-GW TEID, QoS profile)

RRC: Connection Setup(NAS Message)

RRC: Connection Setup Complete

Random Access Procedure

NAS: Service Request

PagingPaging

Page 172: LTE Overview

Page 172

REL.8: Lte:

Call Release:

RRC: RRC Conection Release (DL-SCH)

eNBUE MME

S1-AP: S1 Relase Complete

RRC: Uplink Direct Transfer (SIP-signalling) S1-AP: Direct Transfer (SIP signaling)

S-GW

S1-AP: S1 Release Command

Remove UPE UE tunnel

Set UE to LTE_IDLE or LTE_DETACHED

Release all UE resources Set UE to

LTE_IDLE or LTE_DETACHED

Page 173: LTE Overview

Page 173

Inter eNB handover without MME and without Serving GW relocation:

Handover completion

UE Source

eNB Serving

GW PDN GW MME Target eNB

Handover execution

Downlink and uplink data

Handover preparation

Forwarding of data

Downlink data Uplink data

1 Path Switch Request 2 User Plane Update Request

3 User Plane Update Response

5 Path Switch Request Ack

6 Release Resource

Downlink data

4. End marker

4. End marker

7. Tracking Area Update procedure

Page 174: LTE Overview

Page 174

REL.8: Lte:

HandOver:

Legend

packet data packet data

UL allocation

2. Measurement Reports

3. HO decision

4. Handover Request

5. Admission Control

6. Handover Request Ack

7.RRC Conn. Reconf. incl.

mobilityControlinformation

DL allocation

Data Forwarding

11. RRC Conn. Reconf. Complete

17. UE Context Release

12. Path Switch Request

UE Source eNB Target eNB Serving Gateway

Detach from old cell and

synchronize to new cell

Deliver buffered and in transit packets to target eNB

Buffer packets from Source eNB

9. Synchronisation

10. UL allocation + TA for UE

packet data

Data Forwarding

Flush DL buffer, continue delivering in -transit packets

packet data

L3 signalling

L1/L2 signalling

User Data

1.

16.Path Switch Request Ack

18. Release Resources

Han

dove

r Com

plet

ion

Hand

over

Exe

cutio

nH

ando

ver P

repa

ratio

n

MME

0. Area Restriction Provided

13. User Plane update request

15.User Plane update response

14. Switch DL path

SN Status Transfer8.

End Marker

End Marker

RRC Conn. Reconf. incl. mobilityControl information

Page 175: LTE Overview

Page 175

UE

Source eNB

Source MME

Source Serving GW PDN GW

Target MME

Target Serving GW

Target eNB

Detach from old cell and synchronize to new cell

HSS

16. Update Bearer Request

17. Update Bearer Response

15. Update Bearer Request

Downlink User Plane data

2. Handover Required

Downlink User Plane data

1. Decision to trigger a relocation via S1

3. Forward Relocation Request

5. Handover Request

5 a . Handover Request Acknowledge

7. Forward Relocation Response

9. Handover Command

10. Handover Command 11a. Only for Direct forwarding of data

12. Handover Confirm Downlink data

13. Handover Notify

14. Forward Relocation Complete

14b. Forward Relocation Complete Acknowledge

16a. Update Bearer Response

.

8a. Create Bearer Response

(A)

11b. Only for Indirect forwarding of data

18. Tracking Area Update procedure

19b. Delete Bearer Request

19c. Delete Bearer Response (B)

19a. Release Resources

Uplink User Plane data

8. Create Bearer Request

6a. Create Bearer Response

6. Create Bearer Request

4a. Create Bearer Response

4. Create Bearer Request

Inter-eNB Handover with CN Node re-location:

Page 176: LTE Overview

Page 176

UE eNB MME SGSN TargetRAN

1. Reloc. Required

4. Forwd Reloation. req.5. Reloation. req.

6. Allocation ofRadio resources

7. Reloation. req Ack

8. Forwd Reloc. Resp

9. Reloc. Command10. HO Command

12. Relocation Compl.

15. Forwd Reloc Compl

16.Reloc. Complete

SAEGW

13 Update PDP Context Request

14 Update PDP Context Resp

17. Mobility tunnel release

[SAE bearer info...] 2. Create PDP Context Request

3. Create PDP Context Response

11. Data forwarding (opt.) (one tunnel per UMTS RAB)

[PDP Context info...]

EUTRAN to UTRAN/GERAN Handover:

Page 177: LTE Overview

Page 177

Inter RAT handover:

UE Source eNodeB Target RNC Source MME Target SGSN Serving GW HSS

1. Handover Initiation

2. Handover Required 3. Forward Relocation Request

5. Relocation Request

5a. Relocation Request Acknowledge

8. Create Bearer Request

7. Forward Relocation Response

PDN GW

8a. Create Bearer Response

Uplink and Downlink User Plane PDUs

6. Create PDP Context Request 6a. Create PDP Context Response

Target Serving GW

4. Create PDP Context Request

4a. Create PDP Context Response

E-UTRAN to UTRAN Iu mode Inter RAT HO, preparation phase

Page 178: LTE Overview

Page 178

UE

Source eNB Target RNC Source MME Target SGSN Serving GW HSS PDN GW

Uplink and Downlink User Plane PDUs

1. Handover Command

2. HO from E-UTRAN Command -

Sending of uplink data possible

4. UTRAN Iu Access Procedures

3a. Forward SRNS Context

3b. Forward SRNS Context

3c. Forward SRNS Context Ack

3d. Forward SRNS Context Ack

5. Relocation Complete

6. Forward Relocation Complete

6a. Forward Relocation Complete Acknowledge

7. Update PDP Context Request

8a. Update Bearer Response

9. Update PDP Context Response

Uplink and Downlink User Plane PDUs (Via Target SGSN in case Direct Tunnel is not used)

3. Forward SRNS Context

4a. Handover to UTRAN Complete

Downlink User Plane PDUs

Only if Direct Forwarding is applicable Only if Indirect Forwarding is applicable. For "Indirect Forwarding", Serving GW Forwarding" and Serving GW relocation the PDUs will be forwarded by the source Serving GW to target Serving GW and then to Target RNC when Direct Tunnel is used, Target SGSN when Direct Tunnel is not used.

Target Serving GW

(A) 8. Update Bearer Request

Via Target SGSN in case Direct Tunnel is not used

10. Routing Area Update procedure

11. Delete Bearer Request

(B) 11a. Delete Bearer Response

11b. Release Resources

In case of Serving GW relocation Step 7, 8 and 9, and the following User Plane path, will be handled by Target Serving GW

E-UTRAN to UTRAN Iu mode Inter RAT HO, execution phase:

Page 179: LTE Overview

Page 179

UE

Source RNC

Target eNodeB Source SGSN Target MME Serving GW HSS

1. Handover Initiation

2. Relocation Required 3. Forward Relocation Request

5. Handover Request

5a. Handover Request Acknowledge

8. Create Bearer Request

7. Forward Relocation Response

PDN GW

8a. Create Bearer Response

Uplink and Downlink User Plane PDUs (via Source SGSN in case Direct Tunnel is not used)

6. Create Bearer Request 6a. Create Bearer Response

Target Serving GW

4. Create Bearer Request 4a. Create Bearer Response

UTRAN Iu mode to E-UTRAN Inter RAT HO, preparation phase:

Page 180: LTE Overview

Page 180

UE

Source RNC

Target eNodeB Source SGSN Target MME Serving GW HSS

PDN GW

Uplink and Downlink User Plane PDUs (via Source SGSN in case Direct Tunnel is not used)

1. Relocation Command

2. HO from UTRAN Command

Sending of uplink data possible

4. E-UTRAN Access Procedures 3a. Forward SRNS Context

3b. Forward SRNS Context Ack

5. HO to E-UTRAN Complete

6. Handover Notify

7. Forward Relocation Complete

7a. Forward Relocation Complete Acknowledge

15. Iu Release Procedure

11. Tracking Area Update Request

8. Update Bearer Request

9a. Update Bearer Response

10. Update Bearer Response

Uplink and Downlink User Plane PDUs

TAU Procedure

Downlink Payload User Plane PDUs (via Source SGSN in case Direct Tunnel is not used)

Only if Direct Forwarding is applicable Only if Indirect Forwarding is applicable. For "Indirect Forwarding" and Serving GW relocation the PDUs will be forwarded by the source Serving GW to target Serving GW and then to Target eNodeB

12. Security functions

19. Tracking Area Update Accept

12. Security functions

13. Update Location

14. Cancel Location

14a. Cancel Location Ack

18. Update Location Ack

20. Tracking Area Update Complete

Target Serving GW

In case of Serving GW relocation Step 8, 9 and 10, and the following User Plane path, will be handled by Target Serving GW

3. Forward SRNS Context

3c. Forward SRNS Context

(A)

17. Insert Subscriber Data

17a. Insert Subscriber Data Ack

16. Delete PDP Context Request

16a. Delete PDP Context Response

Only in case of Serving GW relocation (B)

9. Update Bearer Request

Via Source SGSN in case Direct Tunnel is not used

UTRAN Iu mode to E-UTRAN Inter RAT HO, execution phase:

Page 181: LTE Overview

Page 181

UE

Source eNodeB Target BSS Source MME Target SGSN Serving GW HSS

1. Handover Initiation

2. Handover Required 3. Forward Relocation Request

5. PS Handover Request

5a. PS Handover Request Acknowledge

8. Create Bearer Request

7. Forward Relocation Response

PDN GW

8a. Create Bearer Response

Uplink and Downlink User Plane PDUs

6. Create PDP Context Request 6a. Create PDP Context Response

Target Serving GW

4. Create PDP Context Request

4a. Create PDP Context Response

E-UTRAN to GERAN A/Gb Inter RAT HO, preparation phase:

Page 182: LTE Overview

Page 182

UE

Source eNodeB Target BSS Source MME Target SGSN Serving GW HSS

PDN GW

Uplink and Downlink User Plane PDUs

1. Handover Command

2. HO from E-UTRAN Command

Sending of uplink data

possible

4. GERAN A/Gb Access Procedures

3a. Forward SRNS Context

3b. Forward SRNS Context Ack 5. XID Response

6. PS Handover Complete

8. Forward Relocation Complete

8a. Forward Relocation Complete Acknowledge

13. Routeing Area Update Request

9. Update PDP Context Request

11. Update PDP Context Response

Uplink and Downlink User Plane PDUs

3. Forward SRNS Context

7. XID Response

RAU Procedure

17. Release Resource

12. XID Negotioation for LLC ADM

12a. SABM UA exchange (re-establishment and XID negotiation for LLC ABM)

Downlink User Plane PDUs

Only if ”Direct Forwarding” is applicable

Only if ”Indirect Forwarding” is applicable. For “Indirect Forwarding” and Serving GW relocation the PDUs will be forwarded by the source Serving GW to target Serving GW and then to Target SGSN

14. Security functions

21. Routing Area Update Accept

14. Security functions

15. Update Location

16. Cancel Location

16a. Cancel Location Ack

20. Update Location Ack

22. Routing Area Update Complete

Target Serving GW

In case of Serving GW relocation Step 9, 10 and 11, and the following User Plane path, will be handled by Target Serving GW

(A)

19 Insert Subscriber Data

19a Insert Subscriber Data Ack

18. Delete Bearer Request

18a. Delete Bearer Response

Only in case of Serving GW relocation

10. Update Bearer Request

10a. Update Bearer Response

(B)

E-UTRAN to GERAN A/Gb mode Inter RAT HO, execution phase:

Page 183: LTE Overview

Page 183

UE

Source BSS

Target eNodeB

Source SGSN

Target MME Serving GW HSS

1. Handover Initiation

2. PS Handover Required 3. Forward Relocation Request

5. Handover Request

5a. Handover Request Acknowledge

8. Create Bearer Request

7. Forward Relocation Response

PDN GW

8a. Create Bearer Response

Uplink and Downlink User Plane PDUs

6. Create Bearer Request

6a. Create Bearer Response

Target Serving GW

4. Create Bearer Request

4a. Create Bearer Response

GERAN A/Gb mode to E-UTRAN inter RAT HO, preparation phase:

Page 184: LTE Overview

Page 184

UE

Source BSS

Target eNodeB Source SGSN Target MME Serving GW HSS

PDN GW

Uplink and Downlink User Plane PDUs

1. PS HO Required Acknowledge 2. PS Handover Command

Sending of uplink data

possible

4. E - UTRAN Access Procedures

3. Forward SRNS Context

3 a . Forward SRNS C ontext Ack

5. HO to E - UTRAN Complete 6. Handover Notify

7. Forward Relocation Complete 7a. Forward Relocation Complete Acknowledge

11. BSS Packet Flow Delete Procedure

12. Tracking Area Update Request

Uplink and Downlink User Plane PDUs

TAU Procedure

13. Security functions

19. Tracking Area Update Accept

13. Security functions 14. Update Location

15. Cancel Location 15a. Cancel Location Ack

18. Update Location Ack

20. Tracking Area Update Complete

Only if ”Direct Forwarding” is applicable

3b. Forward SRNS Context

Target Serving GW

In case of Serving GW relocation Step 8, 9 and 10, and the following User Plane path, will be handled by Target Serving GW"

17 Inse rt Subscriber Data 17a Insert Subscriber Data Ack

16. Delete PDP Context Request 16a. Delete PDP Context Response

Only in case of Serving GW relocation

Only if ”Indirect Forwarding” is applicable In case of “Indir ect Forwarding” and Serving GW relocation the PDUs will be forwarded by the source Serving GW to target Serving GW and then to Target eNodeB

8. Update PDP Context Request

10. Update PDP Context Response

(A) 9. Update Bearer Request

9a. Update Bearer Response

GERAN A/Gb mode to E-UTRAN Inter RAT HO, execution phase:

Page 185: LTE Overview

Page 185

CSProxy

MME, Serving GWG,PDN Gateway

SourceeNB

Source MSC UE VCC Application

Source BSS

MGCF/MGW

EPC 2G CS domain IMS

HSS

Call 1b

Call 1a

B2BUA

Call 1bCall 1b

Initial state - UE in PSTN Call while in CS domain

15. Release 2G CS resources

2 Handover Required (info)

9. ISUP ACM

1 Measurements Reports

Vo

ice

ga

p

3 MAP Prepare Handover Req (CS Proxy DN, Target MME, IMSI)

7. SIP INVITE (HO#) 6. ISUP IAM (HO#)

8. SIP Progress

4. MAP Prepare Handover Req (VCC AS DN, CS Proxy DN, Target MME)

5a. MAP Prepare Handover Resp (CS Proxy DN, HO#, Ref #, HO_CMD)

10. Handover CMD (Ref #)

12. SIP INVITE (Ref #)

13. SIP 200 OK

5b MAP Prepare Handover Resp (CS Proxy DN, HO#, HO_CMD)

11 . LTE attach procedure as defined in TS 23.401, 5.3.2

3a CS Proxy via S6a: Lookup VCC AS DN using UE’s IMSI

3b return VCC AS DN

14. ISUP ANM

BasicHandover

13a. SIP 200 OK

Basic CS to LTE Handover Call Flow:

Page 186: LTE Overview

Page 186

REL.8: Lte:Initial Attach WLAN:

UE ePDG Serving GW

1

2

3

5

6

7

HSS/AAA

Proxy BU (MN-ID, IP Addr Request )

Proxy Binding Ack(IP Addr

Proxy BU ( MN-ID,IP Addr Req)

Proxy Binding AckIP Addr)

3GPP AAA Proxy

IKE_AUTH Authentication Authentication and Authorization Authentication and Authorization

IPsec tunnel setup completion

IKEv2 (IP Address Configuration)8

9

PDN GW

PMIP Tunnel PMIP TunnelIPsec Tunnel

4Update PDN GW

Address

Page 187: LTE Overview

Page 187

REL.8: Lte:

Initial Attach WLAN:

UE ePDGSAEGW

1

2

3

4

5

6

IKEv2 (IP Addr)

IPsec Tunnel

HSS/AAA

Binding Update

Binding Ack

CMIP Tunnel

IKEv2 authentication and tunnel setup Authentication and Authorization

7

IPsec Tunnel

MIPv6 Security Association Setup and Home Address Configuration

8

Page 188: LTE Overview

Page 188

PDN GW

S1-MME

S10

MME

S11

UE E-UTRAN

S7

SGiS1-U

PCRF

Operator’s IP services

Rx+

S2aS101

BS WiMAX ASNHRPD AN

Serving GW

S5

WiMax Interworking over S101

Page 189: LTE Overview

Page 189

UDP

IPv4 / IPv6

L2/L1

MME

S101AP

UDP

IPv4 / IPv6

L2/L1

HRPD AN

S101AP

S101

WiMax Interface S101

Page 190: LTE Overview

Page 190

UESource

eNBSourceMME WIMAX

Access

Serving GWPDN GW

E-UTRAN radio Tunnel

Decision of WIMAX handover

User DL/UL Data

MME <-> WIMAX TunnelS1 Tunnel

Initiate WIMAX handover

WiMAX signalling

UE leaves E-UTRAN radio

Update UE location

System Information

Measurement Report

User DL/UL Data

WiMAX handover signalling

WiMAX handover signalling

WiMAX handover signalling

WiMax Handover

Page 191: LTE Overview

Page 191

UE

WiMAXASN

EUTRANMMEMIHF

ServingGW

PDNGW

AAAMIHFMIHF

1.UE detects WiMAX Access

3. MIH_Resource Query

2.MIH_Scan Req/Rsp

4. Access Authentication

5.MIH_HO_Commit Req

6.Detach from 3G and Synchronize to WiMAX

7.WiMAX Entry

9. Proxy BU

11.Release EPS Bearer

10. MIH_HO_Complete

8. Radio and Access Bearer Establishment

Access Bearer PMIPv6

4. MIH Relay of Authentication 4. MIH Relay

LTE to WiMax Handover with MIH:

Page 192: LTE Overview

Page 192

S1AP succesfulOutcome RESET ACKNOWLEDGE

S1AP initiatingMessage RESET

S1AP initiatingMessage S1 SETUP REQUESTS1AP succesfulOutcome S1 SETUP RESPONSE

S1 Setup & Reset:

UE MMEeNB

S1AP succesfulOutcome RESET ACKNOWLEDGE

S1AP initiatingMessage RESET

Page 193: LTE Overview

Page 193

S1AP succesfulOutcome RESET ACKNOWLEDGE

S1AP initiatingMessage RESET

S1AP initiatingMessage S1 ERROR INDICATION

S1AP initiatingMessage S1 ERROR INDICATION

S1 Error Indication & Reset:

UE MMEeNB

S1AP succesfulOutcome RESET ACKNOWLEDGE

S1AP initiatingMessage RESET

Page 194: LTE Overview

Page 194

Random Access Procedure (Contention based) over RACH and SCH:

UE MME

1 PRACH MAC Random Access Preamble

2 PDSCH MAC Random Access Response

DL-SCH RLC TM RRC-ConnectionSetup

3 UL-SCH RLC TMRRC-ConnectionRequest()

eNB

UL-SCH RLC AMRRC-ConnectionSetupComplete(NAS)

2 PDCCH MAC RA-RNTI

4 PDSCH MAC Contention Resolution

S1AP: initiatingMessage INITIAL UE MESSAGENAS

Page 195: LTE Overview

Page 195

Attach and default bearer/context setup:

UE MME

UL-SCH RLC TM RRC-ConnectionRequest

S1AP: initiatingMessage INITIAL UE MESSAGENAS (Attach Request (ESM))

S1AP: initiatingMessage INITIAL CONTEXT SETUP REQUEST NAS (Attach Accept (ESM))

UL-SCH RLC AM RRC-ConnectionReconfigurationComplete

IP up and downlink traffic

eNB

DL-SCH RLC AM RRC-ConnectionReconfiguration NAS (Attach Accept (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST))

DL-SCH RLC TM RRC-ConnectionSetup

S1AP: initiatingMessage UL DIRECT TRANSPORT NAS (Attach Complete (ESM))

UL-SCH RLC AM RRCConnectionSetupComplete NAS (Attach Request (PDN CONNECTIVITY REQUEST))

S1AP: succesfulOutcome INITIAL CONTEXTSETUP RESPONSE

UL-SCH RLC AM RRC-ULInformationTransfer NAS (Attach Complete (ACTIVATE DEFAULT EPS BEARERCONTEXT COMPLETE))

Page 196: LTE Overview

Page 196

In the case of DHCP IP address allocation:

UE MME

IP up and downlink traffic

eNB

DL-SCH RLC UM IP DHCP Offer

UL-SCH RLC UM IP DHCP DiscoverS1-U GTP IP DHCP Discover

S1-U GTP IP DHCP Offer (IP address)

DL-SCH RLC UM IP DHCP Ack

UL-SCH RLC UM IP DHCP RequestS1-U GTP IP DHCP Request

S1-U GTP IP DHCP Ack

Page 197: LTE Overview

Page 197

Attach and default bearer/context setup UE ESM failure:

UE MME

UL-SCH RLC TM RRC-ConnectionRequest

S1AP: initiatingMessage INITIAL UE MESSAGENAS (Attach Request (ESM))

S1AP: initiatingMessage INITIAL CONTEXT SETUP REQUEST NAS (Attach Accept (ESM))

UL-SCH RLC AM RRC-ConnectionReconfigurationComplete

eNB

DL-SCH RLC AM RRC-ConnectionReconfiguration NAS (Attach Accept (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST))

DL-SCH RLC TM RRC-ConnectionSetup

S1AP: initiatingMessage UL DIRECT TRANSPORT NAS (Detach Request)

UL-SCH RLC AM RRCConnectionSetupComplete NAS (Attach Request (PDN CONNECTIVITY REQUEST))

S1AP: succesfulOutcome INITIAL CONTEXTSETUP RESPONSE

UL-SCH RLC AM RRC-ULInformationTransfer NAS (Detach Request)

Detach procedure continues!Context Release follows

Page 198: LTE Overview

Page 198

Attach failure:

UE MME

UL-SCH RLC TM RRC-ConnectionRequest

S1AP: initiatingMessage INITIAL UE MESSAGENAS (Attach Request (ESM))

S1AP: initiatingMessage DL DIRECTTRANSFER NAS (Attach Reject)

eNB

DL-SCH RLC AM RRC-DLInformationTransfer NAS (Attach Reject)

DL-SCH RLC TM RRC-ConnectionSetup

UL-SCH RLC AM RRCConnectionSetupComplete NAS (Attach Request ESM (PDN CONNECTIVITY REQUEST))

Page 199: LTE Overview

Page 199

Attach and default bearer/context setup CORE ESM failure:

UE MME

UL-SCH RLC TM RRC-ConnectionRequest

S1AP: initiatingMessage INITIAL UE MESSAGENAS (Attach Request (ESM))

S1AP: initiatingMessage DL DIRECTTRANSFER NAS (Attach Reject (ESM))

eNB

DL-SCH RLC AM RRC-DLInformationTransfer NAS (Attach Reject ESM (PDN CONNECTIVITY REJECT)

DL-SCH RLC TM RRC-ConnectionSetup

UL-SCH RLC AM RRCConnectionSetupComplete NAS (Attach Request ESM (PDN CONNECTIVITY REQUEST))

Page 200: LTE Overview

Page 200

Service Request (EMM REGISTERED):

UE MME

1 PRACH MAC Random Access Preamble

2 PDSCH MAC Random Access Response

DL-SCH RLC TM RRC-ConnectionSetup

3 UL-SCH RLC TMRRC-ConnectionRequest()

eNB

UL-SCH RLC AMRRC-ConnectionSetupComplete(NASSERVICE REQUEST)

2 PDCCH MAC RA-RNTI

4 PDSCH MAC Contention Resolution

S1AP: initiatingMessage INITIAL UE MESSAGENAS (Service Request)

Page 201: LTE Overview

Page 201

Service Request (FAILURE):

UE MME

1 PRACH MAC Random Access Preamble

2 PDSCH MAC Random Access Response

DL-SCH RLC TM RRC-ConnectionSetup

3 UL-SCH RLC TMRRC-ConnectionRequest()

eNB

UL-SCH RLC AMRRC-ConnectionSetupComplete(NASSERVICE REQUEST)

2 PDCCH MAC RA-RNTI

4 PDSCH MAC Contention Resolution

S1AP: initiatingMessage INITIAL UE MESSAGENAS (SERVICE REQUEST)

S1AP: initiatingMessage DL DIRECTTRANSFER NAS (SERVICE REJECT)

DL-SCH RLC AM RRC-DLInformationTransfer NAS (SERVICE REJECT)

Page 202: LTE Overview

Page 202

Paging (EMM REGISTERED):

UE MME

1 PRACH MAC Random Access Preamble

2 PDSCH MAC Random Access Response

DL-SCH RLC TM RRC-ConnectionSetup

3 UL-SCH RLC TMRRC-ConnectionRequest()

eNB

UL-SCH RLC AMRRC-ConnectionSetupComplete(NASService Request)

2 PDCCH MAC RA-RNTI

4 PDSCH MAC Contention Resolution

S1AP: initiatingMessage INITIAL UE MESSAGENAS (Service Request)

S1AP: initiatingMessage Paging0 DL-SCH PCH RLC TM RRC Paging

Page 203: LTE Overview

Page 203

Activate Default bearer:

UE MME

S1AP initiatingMessage DOWNLINK NAS TRANSPORT NAS (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST)

eNB

OPT. DL-SCH RLC AM RRC-Downlink Information Transfer NAS (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST)

S1AP: initiatingMessageUPLINK NAS TRANSPORT NAS (PDN CONNECTIVITY REQUEST)

UL-SCH RLC AM RRC-Uplink Information TransferNAS (PDN CONNECTIVITY REQUEST)

S1AP: initiatingMessageUPLINK NAS TRANSPORT NAS (ACTIVATE DEFAULT EPS BEARER CONTEXT COMPLETE)

UL-SCH RLC AM RRC-Uplink Information TransferNAS (ACTIVATE DEFAULT EPS BEARER CONTEXT COMPLETE)

IP up and downlink traffic

Page 204: LTE Overview

Page 204

Activate Default bearer failure CORE:

UE MME

OPT. S1AP initiatingMessage DOWNLINK NAS TRANSPORT NAS (PDN CONNECTIVITY REJECT)

eNB

OPT. DL-SCH RLC AM RRC-Downlink Information Transfer NAS (PDN CONNECTIVITY REJECT)

S1AP: initiatingMessageUPLINK NAS TRANSPORT NAS (PDN CONNECTIVITY REQUEST)

UL-SCH RLC AM RRC-Uplink Information TransferNAS (PDN CONNECTIVITY REQUEST)

Page 205: LTE Overview

Page 205

Activate Default bearer failure UE:

UE MME

OPT. S1AP initiatingMessage DOWNLINK NAS TRANSPORT NAS (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST)

eNB

OPT. DL-SCH RLC AM RRC-Downlink Information Transfer NAS (ACTIVATE DEFAULT EPS BEARER CONTEXT REQUEST)

S1AP: initiatingMessageUPLINK NAS TRANSPORT NAS (PDN CONNECTIVITY REQUEST)

UL-SCH RLC AM RRC-Uplink Information TransferNAS (PDN CONNECTIVITY REQUEST)

S1AP: initiatingMessageUPLINK NAS TRANSPORT NAS (ACTIVATE DEFAULT EPS BEARER CONTEXT FAILURE)

UL-SCH RLC AM RRC-Uplink Information TransferNAS (ACTIVATE DEFAULT EPS BEARER CONTEXT FAILURE)

Page 206: LTE Overview

Page 206

eNB initiated CONTEXT RELEASE:

UE MME

S1AP initiatingMessage UE CONTEXT RELEASE COMMAND

eNB

DL-SCH RLC UM RRC-ConnectionRelease

S1AP succesfulOutcomeUE CONTEXT RELEASE COMPLETE

S1AP initiatingMessageUE CONTEXT RELEASE REQUEST

Page 207: LTE Overview

Page 207

MME initiated CONTEXT RELEASE:

UE MME

S1AP initiatingMessage UE CONTEXT RELEASE COMMAND

eNB

DL-SCH RLC UM RRC-ConnectionRelease

S1AP succesfulOutcomeUE CONTEXT RELEASE COMPLETE

Page 208: LTE Overview

Page 208

Detach (Active State, UE initiated):

UE MME

OPT. S1AP initiatingMessage DOWNLINK NAS TRANSPORT NAS (Detach Accept)

eNB

OPT. DL-SCH RLC AM RRC-Downlink Information Transfer NAS (Detach Accept)

S1AP: initiatingMessageUPLINK NAS TRANSPORT NAS (Detach Request)

UL-SCH RLC AM RRC-Uplink Information TransferNAS (Detach Request)

Note: The MME initiated Context Release procedure has to follow

Page 209: LTE Overview

Page 209

Detach (Idle state, UE initiated):

UE MME

UL-SCH RLC TM RRC-ConnectionRequest

OPT. S1AP: initiatingMessage DOWNLINK NAS TRANSPORT NAS (Detach Accept)

eNB

OPT. DL-SCH RLC AM RRC-DownlinkInformation Transfer NAS (Detach Accept)

DL-SCH RLC TM RRC-ConnectionSetup

UL-SCH RLC AM RRCConnectionSetupComplete NAS (Detach Request)

S1AP: initiatingMessage INITIAL UE MESSAGENAS (Detach Request)

Page 210: LTE Overview

Page 210

Detach (Active State, NWK initiated):

UE MME

S1AP initiatingMessage DOWNLINK NAS TRANSPORT NAS (Detach Request)

eNB

DL-SCH RLC AM RRC-Downlink Information Transfer NAS (Detach Request)

S1AP: initiatingMessageUPLINK NAS TRANSPORT NAS (Detach Accept)

UL-SCH RLC AM RRC-Uplink Information TransferNAS (Detach Accept)

Note: The MME Context Release procedure has to follow

Page 211: LTE Overview

Page 211

Intra eNB, Handover procedure

UE S-GW

RRC-ConnectionReconfiguration

eNB

Handover decision

MME

UL/DL Data

RRC-Measurement Report

RRC-ConnectionReconfiguration

PDSCH (Random Access Resp. (TA, UL Grand, Temp. C-RNTI)

RRC-ConnectionReconfigurationComplete

PRACH (RACH Preamble)

UL/DL Data

PDCCH (RA-RNTI)

Non contention based RA

PHICH (HARQ ACK/NACK)

Page 212: LTE Overview

Page 212

Inter eNB X2, Intra MME/Serving GW Handover procedure

UE S-GWSource eNB Target eNB

Handover decision

MME

X2AP HO Request

UL/DL Data

RRC-Measurement Report

X2AP HO Request ACK

RRC-ConnectionReconfiguration

S1AP Path Switch Req. UP Update Req.

S1AP Path Switch Req. Ack.

UP Update Resp.

X2AP UE Context Release

End marker

UL/DL Data

Forwarding of Data (continues)

End marker

RRC-ConnectionReconfiguration Procedure

PRACH (RACH Preamble)PDCCH (RA-RNTI)

PDSCH (Random Access Resp., (TA, UL Grand, Temp. C-RNTI)) RRC-ConnectionReconfigurationComplete PHICH (HARQ ACK/NACK)

X2AP SN Status Transfer

Page 213: LTE Overview

Page 213

Tracking Area Update:

UE MME

S1AP initiatingMessage INITIAL UE MESSAGENAS (Tracking Area Update Request)

DL-SCH RLC TM RRC-ConnectionSetup

eNB

UL-SCH RLC TM RRC-ConnectionRequest

UL-SCH RLC AM RRC-ConnectionSetupCompleteNAS (Tracking Area Update Request)

DL-SCH RLC AM RRC-DownlinkDirectTransferNAS (Tracking Area Update Accept)

S1AP initiatingMessage DOWNLINK NAS TRANSPORT (Tracking Area Update Accept)

Page 214: LTE Overview

Page 214

Dedicated bearer setup:

UE MME

S1AP: initiatingMessage SAE BEARER SETUP REQUEST NAS (ACTIVATEDEDICATED EPS BEARER CONTEXT REQUEST)

eNB

DL-SCH RLC AM RRC-ConnectionReconfiguration

S1AP: succesfulOutcomeSAE BEARER SETUP RESPONSE NAS(ACTIVATE DEDICATED EPS BEARER CONTEXTACCEPT)

UL-SCH RLC AM RRC-ConnectionReconfigurationComplete

UL-SCH RLC AM RRC-Uplink Information TransferNAS

Page 215: LTE Overview

Page 215

Dedicated bearer release:

UE MME

S1AP: initiatingMessage SAE BEARER RELEASE COMMAND

eNB

DL-SCH RLC AM RRC-ConnectionReconfiguration

S1AP: succesfulOutcomeSAE BEARER RELEASE RESPONSE

UL-SCH RLC AM RRC-Connection Reconfiguration Complete

Page 216: LTE Overview

Page 216

UE eNB

Random Access Preamble1

Random Access Response 2

Scheduled Transmission3

Contention Resolution 4

Contention based Random Access Procedure:

Page 217: LTE Overview

Page 217

Random Access Procedure (non Contention based) HO case:UE eNB

RA Preamble assignment0

Random Access Preamble 1

Random Access Response2

Page 218: LTE Overview

Page 218

Handover 1xRTT CS Active

1xRTT Dormant

E-UTRA RRC_CONNECTED

E-UTRA RRC_IDLE

HRPD Idle

Handover

Reselection Reselection

Connection establishment/release

HRPD Dormant HRPD Active

Mobility procedures between E-UTRA and CDMA2000:

Page 219: LTE Overview

Page 219

1. CDMA measurements

3. Handover from E-UTRA preparation request

7. A11 Signalling

11. Data Forwarding

13. HRPD TCC

16. E-UTRAN Bearer Release

15a. HO Complete

0. UE connected via E-UTRAN

2. Handover decision

6. Direct Transfer Request

9a. Create forwarding tunnels Request (UL

9b. Create forwarding tunnels Response

10. Downlink S1 CDMA2000 Tunneling

11. Mobility from E-UTRA

17a. Delete Bearer Request

17b. Delete Bearer Response

4. UL information transfer

5. Uplink S1 CDMA2000 Tunneling

8. Direct Transfer Request

UE MME HRPD Access

Network AAA HSGW E-UTRAN PCRF S-GW PDN GW

14b. Proxy Binding Update 14a. A11 Request Signalling

14c. Proxy Binding Acknowledge

15b. HO Complete

12. HRPD AN acquires UE

14d. A11 Response Signalling

18. P-GW initiates resource allocation deactivation procedure at E-UTRAN

14e. PCEF Initiated IP-CAN Session Modification Procedure

E-UTRAN to CDMA2000 HRPD handover:

Page 220: LTE Overview

Page 220

REL.8: Lte (S1 Flex):

LTE - RAN Entity 1

LTE - RAN Entity 2

LTE - RAN Entity 3

MME/UPE MME/UPE

I.AS Anchor I.AS Anchor

LTE - RAN Entity 4

LTE - RAN Entity 5

MME/UPE

MME/UPE Service Area 1

UE1 UE1 UE1 UE1 UE1

MME/UPE Service Area 2

S1-flex

UE switches to LTE_IDLE mode

Page 221: LTE Overview

Page 221

REL.8: Lte (S1 Flex):

Many to many configuration!

S1

MME sGW

MME sGW

MME sGW

eNB eNB eNB

S1

MME sGW

Operator A

Operator B

RAN Operator

Page 222: LTE Overview

Page 222

S1

X2 X2

MMEOperator A

S-GWOperator A

MMEOperator B

S-GWOperator B

Customer of operator A

Customer of operator B

Non-shared LTE

Non-shared LTEX2 X2

Radio access network sharing configuration:

Up to 6 PLMN ID’s can be broadcasted per cell!

Page 223: LTE Overview

Page 223

Pool Area, Tracking Area and S1 Flex Concepts:

eNodeBs Tracking

Areas

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TA1 TA2 TA3 TA4 TA5 TA6TA7 TA8

MME Pool Area 1 MME Pool Area 2 MME Pool Area 3MMEMMEMME MMEMMEMME MMEMMEMME

SAE-GW PoolArea A

SAE-GWSAE-GWSAE-GW

SAE-GWSAE-GWSAE-GW

SAE-GW PoolArea B

Cell’s

Page 224: LTE Overview

Page 224

MMEMME

MME Pool Area 1 MME Pool Area 2

Cell 2

eNB-1

SAE GW

Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9 Cell 10 Cell 11Cell 1Cell 12

eNB-2 eNB-3

MMEMMEMME

MME

TA-1

TA-2TA-3

SAE GW, MME, eNB, Cell’s, Pool Area, Tracking Area:

Page 225: LTE Overview

Page 225

Structures and Layers

Page 226: LTE Overview

Page 226

CRLC

MAC-u SAP

RRC SAP

PHY SAP

RLC-u SAP

Physical layer

Radio link layer

IP layer

Radio network layer

NAS_SEC

IP

RRC

RLC

PHY

MAC

RLC-c SAP

MAC-c SAP

CPHY

NAS

NAS_SEC-c SAP

PDCP-u SAP

CMAC

PDCP CPDCP

Mobility & Bearer control layer

PDCP-c SAP

Protocol layer and SAP’s UE - eNB:

TS 24.301EMM/ESM

TS 36.331

TS 36.323

TS 36.322

TS 36.321

TS 36.2xx

Page 227: LTE Overview

Page 227

Header Payload Header Payload Header Payload

SAE Bearer 1 SAE Bearer 2 SAE Bearer 3

PDCPHeader

PDCP Header

PDCPHeaderPDCP SDU PDCP SDU PDCP SDU

RLC Header

RLC Header

RLC Header

RLC SDU RLC SDU RLC SDU RLC SDU

MAC Header

MAC HeaderMAC SDU MAC SDU

Transport Block CRC Transport Block CRC

PDCP headerCompression,Ciphering

RLC segmentation,Concatenation

MACMultiplexing

PHY

Lte Layer Data flow:

Page 228: LTE Overview

Page 228

REL.8: Lte (Layer 2 Structure for DL):

Segm.ARQ etc

Multiplexing UE1

Segm.ARQ etc

...

HARQ

Multiplexing UEn

HARQ

BCCH PCCH

Scheduling / Priority Handling

Logical Channels

Transport Channels

MAC

RLCSegm.

ARQ etcSegm.

ARQ etc

PDCPROHC ROHC ROHC ROHC

Radio Bearers

Security Security Security Security

...CCCH

Page 229: LTE Overview

Page 229

REL.8: Lte (Layer 2 Structure for UL):

Multiplexing

...

HARQ

Scheduling / Priority Handling

Transport Channels

MAC

RLC

PDCP

Segm.ARQ etc

Segm.ARQ etc

Logical Channels

ROHC ROHC

Radio Bearers

Security Security

CCCH

Page 230: LTE Overview

Page 230

• Mapping between logical channels and transport channels;• Multiplexing of MAC SDU’s from one or different logical channels onto transport blocks (TB) to be

delivered to the physical layer on transport channels;• Demultiplexing of MAC SDU’s from one or different logical channels from transport blocks (TB)

delivered from the physical layer on transport channels;• Scheduling information reporting;• Error correction through HARQ (up to 8 FDD(15 TDD) processes parallel);• Priority handling between UE’s by means of dynamic scheduling;• Priority handling between logical channels of one UE;• Logical Channel prioritisation;• Transport format selection;

Functions of the MAC sub layer:

MAC function UE eNB Downlink Uplink

Mapping between logical channels and transport channels X X X

X X X

Multiplexing X X

X X

Demultiplexing X X

X X

Error correction through HARQ X X X

X X X

Transport Format Selection X X X

Priority handling between UEs X X X

Priority handling between logical channels of one UE X X X

Logical Channel prioritisation X X

Scheduling information reporting X X

Page 231: LTE Overview

Page 231

LCID = Logical Channel IDL = LengthE = End field

MAC PDU:

MAC Control element 1

...

R/R/E/LCID sub-header

MAC header

MAC payload

R/R/E/LCIDsub-header

R/R/E/LCID/F/L sub-header

R/R/E/LCID/F/L sub-header

... R/R/E/LCID/F/L sub-header

R/R/E/LCID padding sub-header

MAC Control element 2

MAC SDU MAC SDU Padding

(opt)

MAC PDU consisting of MAC header, MAC control elements, MAC SDUs and padding:

Page 232: LTE Overview

Page 232

MAC Sub Header:

LCIDR

F L

R/R/E/LCID/F/L sub-header with 7-bits L field

R/R/E/LCID/F/L sub-header with 15-bits L field

R E LCIDR

F L

R E

L

Oct 1

Oct 2

Oct 1

Oct 2

Oct 3

LCIDR

R/R/E/LCID sub-header

R E Oct 1

Page 233: LTE Overview

Page 233

Values of LCID for DL-SCH: Values of LCID for UL-SCH:Index: LCID-values: Index: LCID-values:00000 CCCH 00000 CCCH00001 - ID of logical channel 00001 - ID of logical channel01010 0101001011 - reserved 01011 - reserved11011 1100111100 UE Contention Res. ID 11010 Power Headroom Report11101 Timing Advance Com. 11011 C-RNTI11110 DRX 11100 Truncated BSR11111 Padding 11101 Short BSR

11110 Long BSRValue of the F-field: 11111 PaddingIndex: Size of the Length field:0 7 bit1 15 bit

MAC:

SRB1 = LCID 1, SRB2 = LCID 2

Page 234: LTE Overview

Page 234

MAC Control Elements:

Buffer SizeLCG ID Oct 1

MAC Buffer Status control element:

C-RNTI Oct 1

C-RNTI Oct 2

C-RNTI MAC control element:

DRX Command MAC Control Element:

The DRX Command MAC control element isidentified by a MAC PDU subheader with LCID.It has a fixed size of zero bits.

UE Contention Resolution Identity Oct 1

UE Contention Resolution Identity Oct 2

UE Contention Resolution Identity Oct 3

UE Contention Resolution Identity Oct 4

UE Contention Resolution Identity Oct 5

UE Contention Resolution Identity Oct 6

UE Contention Resolution Identity MAC control element:

Buffer Size #0Buffer

Size #1

Buffer Size #1 Buffer Size #2

Buffer Size #2

Buffer Size #3

Oct 1

Oct 2

Oct 3

Page 235: LTE Overview

Page 235

Power Headroom MAC control element:

Timing Advance Command MAC control element:

Power Headroom Oct 1RR

MAC Control Elements:

MAC PDU (transparent MAC):

MAC SDU

MAC PDU

Timing Advance CommandR R Oct 1

Page 236: LTE Overview

Page 236

MAC PDU (Random Access Response) DL:

MAC RAR:

E/T/RAPID MAC sub-header (Random Access Preamble ID):

RAPIDE T Oct 1BIE R Oct 1RT

E/T/R/R/BI MAC sub-header (Backoff Indicator):

Index Backoff Parameter value (ms)

0 0

1 10

2 20

3 30

4 40

5 60

6 80

7 120

8 160

9 240

10 320

11 480

12 960

Timing Advance Command Oct 1

Timing Advance Command

UL Grant

UL Grant

Temporary C-RNTI

Temporary C-RNTI

UL Grant Oct 2

Oct 3

Oct 4

Oct 5

Oct 6

R

Page 237: LTE Overview

Page 237

MAC PDU consisting of a MAC header and MAC RARs:

MAC PDU (Random Access Response) DL:

MAC RAR 1 ...

E/T/R/R/BI subheader

MAC header

MAC payload

...

MAC RAR 2 MAC RAR n

E/T/RAPID subheader 2

E/T/RAPID subheader n

E/T/RAPID subheader 1

Padding (opt)

Page 238: LTE Overview

Page 238

RNTI values:

Value (hexa-decimal) RNTI

FDD TDD

0000-0009 0000-003B RA-RNTI

000A-FFF2 003C-FFF2 C-RNTI, Semi-Persistent

Scheduling C-RNTI, Temporary

C-RNTI, TPC-PUCCH-RNTI

and TPC-PUSCH-RNTI

FFF3-FFFC Reserved for future use

FFFE P-RNTI

FFFF SI-RNTI

Page 239: LTE Overview

Page 239

Functions:The following functions are supported by the RLC sub layer:

• transfer of upper layer PDUs;• error correction through ARQ (only for AM data transfer);• concatenation, segmentation and reassembly of RLC SDUs

(only for UM and AM data transfer);• re-segmentation of RLC data PDUs (only for AM data transfer);• in sequence delivery of upper layer PDUs (only for UM and

AM data transfer);• duplicate detection (only for UM and AM data transfer);• RLC SDU discard (only for UM and AM data transfer);• RLC re-establishment;• Protocol error detection and recovery

RLC Functions:

Page 240: LTE Overview

Page 240

RLC:

radio interface

lower layers(i.e. MAC sub layer and physical layer)

transmittingTM RLC entity

transmittingUM RLC entity

AM RLC entityreceiving

TM RLC entityreceiving

UM RLC entity

receivingTM RLC entity

receivingUM RLC entity

AM RLC entitytransmitting

TM RLC entitytransmitting

UM RLC entity

lower layers(i.e. MAC sub layer and physical layer)

upper layer (i.e. RRC layer or PDCP sub layer)

upper layer (i.e. RRC layer or PDCP sub layer)

eNB

UE

SAP betweenupper layers

logical channel

logical channel

SAP betweenupper layers

Page 241: LTE Overview

Page 241

Transmissionbuffer

Transmitting TM-RLC entity

TM-SAP

radio interface

Receiving TM-RLC

entity

TM-SAP

UE/ENB ENB/UE

BCCH/PCCH/CCCH BCCH/PCCH/CCCH

RLC Transparent Mode:

Page 242: LTE Overview

Page 242

RLC Unacknowledged Mode:

Transmissionbuffer

Segmentation &Concatenation

Add RLC header

Transmitting UM-RLC entity

UM-SAP

radio interface

Receiving UM-RLC

entity

UM-SAP

UE/ENB ENB/UE

DCCH/DTCH/MCCH/MTCH DCCH/DTCH/MCCH/MTCH

Receptionbuffer & HARQ

reordering

SDU reassembly

Remove RLC header

Page 243: LTE Overview

Page 243

RLC Acknowledged Mode:

Transmissionbuffer

Segmentation &Concatenation

Add RLC header

Retransmission buffer

RLC control

Routing

Receptionbuffer & HARQ

reordering

SDU reassembly

DCCH/DTCH DCCH/DTCH

AM-SAP

Remove RLC header

Page 244: LTE Overview

Page 244

RLC header

RLC PDU

......

n n+1 n+2 n+3RLC SDU

RLC header

RLC PDU Structure:

Page 245: LTE Overview

Page 245

RLC PDU:

TMD PDU: UMD PDU with 5 bit SN (No LI):(Window size 16)

UMD PDU with 10 bit SN (No LI):(Window size 512)

AMD PDU (No LI):(Window size 512)

Oct 1

Oct N

Data...

EFI SNData...

Oct N

Oct 1Oct 2

R1 R1 R1 FI E SNSN

Data...

Oct 3

Oct N

Oct 1Oct 2

D/ C RF P FI E SNSN

Data...

Oct 3

Oct N

Oct 1Oct 2

Page 246: LTE Overview

Page 246

RLC PDU:

AMD PDU (Odd number of LI’s, i.e. K = 1, 3, 5, …)

AMD PDU (Even number of LI’s, i.e. K = 2, 4, 6, …)

LI2

E LI2 (if K>=3)E LI1

LI1

D/ C RF P FI E SNSN

Data

Oct N

Oct 1Oct 2Oct 3Oct 4Oct 5

...

LIK-1

E LIK-1

E LIK-2

LIK-2

...

PaddingE LIK

LIK Oct [2.5+1.5*K]Oct [2.5+1.5*K-1]Oct [2.5+1.5*K-2]Oct [2.5+1.5*K-3]Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K+1]

Present if K >= 3

LI2

E LI2

E LI1LI1

D/ C RF P FI E SNSN

Data

Oct N

Oct 1Oct 2Oct 3Oct 4Oct 5

...

LIK

E LIK

E LIK-1

LIK-1

Oct [2+1.5*K]

...

Oct [2+1.5*K-1]Oct [2+1.5*K-2]

Oct [2+1.5*K+1]

Page 247: LTE Overview

Page 247

AMD PDU segment (No LI)

RLC PDU:

AMD PDU segment (Even number of LI’s, i.e. K = 2, 4, 6, …)

SOSOLSF Oct 3

Oct 4

D/ C RF P FI E SNSN

Data...

Oct 5

Oct N

Oct 1Oct 2

SOSOLSF Oct 3

Oct 4

LI2

E LI2

E LI1LI1

D/ C RF P FI E SNSN

Data

Oct N

Oct 1Oct 2

Oct 5Oct 6Oct 7

...

LIK

E LIK

E LIK-1

LIK-1

Oct [4+1.5*K]

...

Oct [4+1.5*K-1]Oct [4+1.5*K-2]

Oct [4+1.5*K+1]

Page 248: LTE Overview

Page 248

AMD PDU segment (Odd number of LIs,i.e. K = 1, 3, 5, …)

RLC PDU:

STATUS PDU:

SOSOLSF Oct 3

Oct 4

LI2

E LI2 (if K>=3)E LI1

LI1

D/ C RF P FI E SNSN

Data

Oct N

Oct 1Oct 2

Oct 5Oct 6Oct 7

...

LIK-1

E LIK-1

E LIK-2

LIK-2

...

PaddingE LIK

LIK Oct [4.5+1.5*K]Oct [4.5+1.5*K-1]Oct [4.5+1.5*K-2]Oct [4.5+1.5*K-3]Oct [4.5+1.5*K-4]

Oct [4.5+1.5*K+1]

Present if K >= 3

NACK_SN

D/ C CPTE1

ACK_SNACK_SN

Oct 1Oct 2

NACK_SNE1 E2 NACK_SN

NACK_SNSOstart

SOstart

SOendSOend

E1 E2

SOend

...

Oct 3Oct 4Oct 5Oct 6Oct 7Oct 8Oct 9

Page 249: LTE Overview

Page 249

payload

payload

payload

1st AMD PDU segment 2nd AMD PDU segment

PDU SNSI=01R=1E=0

PDU SN

P

offsetLSF0

Offset=0

LI

LI (cont.)

PDU SNSI=10R=1

PDU SN

P

LSF1

E=0

E=1

offset

Offset=8

8 octet

D/C=0

D/C=0

Reserved

RLC PDU segmented:

Page 250: LTE Overview

Page 250

LI2

E LI2 (if K>=3)E LI1

LI1

EFI SN

Data

Oct N

Oct 1Oct 2Oct 3Oct 4

...

LIK-1

E LIK-1

E LIK-2

LIK-2

...

PaddingE LIK

LIK Oct [2.5+1.5*K-1]Oct [2.5+1.5*K-2]Oct [2.5+1.5*K-3]Oct [2.5+1.5*K-4]Oct [2.5+1.5*K-5]

Oct [2.5+1.5*K]

Present if K >= 3

LI2

E LI2

E LI1LI1

EFI SN

Data

Oct N

Oct 1Oct 2Oct 3Oct 4

...

LIK

E LIK

E LIK-1

LIK-1

Oct [2+1.5*K-1]

...

Oct [2+1.5*K-2]Oct [2+1.5*K-3]

Oct [2+1.5*K]

UMD PDU with 5 bit SN (Odd number of LIs, i.e. K = 1, 3, 5, …):

UMD PDU with 5 bit SN (Even number of LIs, i.e. K = 2, 4, 6, …):

UMD PDU with 5 bit SN:

Page 251: LTE Overview

Page 251

LI2

E LI2 (if K>=3)E LI1

LI1

R1 R1 R1 FI E SNSN

Data

Oct N

Oct 1Oct 2Oct 3Oct 4Oct 5

...

LIK-1

E LIK-1

E LIK-2

LIK-2

...

PaddingE LIK

LIK Oct [2.5+1.5*K]Oct [2.5+1.5*K-1]Oct [2.5+1.5*K-2]Oct [2.5+1.5*K-3]Oct [2.5+1.5*K-4]

Oct [2.5+1.5*K+1]

Present if K >= 3

LI2

E LI2

E LI1LI1

R1 R1 R1 FI E SNSN

Data

Oct N

Oct 1Oct 2Oct 3Oct 4Oct 5

...

LIK

E LIK

E LIK-1

LIK-1

Oct [2+1.5*K]

...

Oct [2+1.5*K-1]Oct [2+1.5*K-2]

Oct [2+1.5*K+1]

UMD PDU with 10 bit SN (Odd number of LIs, i.e. K = 1, 3, 5, …)

UMD PDU with 10 bit SN (Even number of LIs, i.e. K = 2, 4, 6, …)

UMD PDU with 10 bit SN:

Page 252: LTE Overview

Page 252

The Packet Data Convergence Protocol supports the following functions:

- header compression and decompression of IP data flows using the ROHC protocol, at the transmitting and receiving entity, respectively;

- transfer of data (user plane or control plane). This function is used for conveyance of data between users of PDCP services;

- maintenance of PDCP sequence numbers for radio bearers mapped on RLC AM;- in-sequence delivery of upper layer PDUs at handover;- duplicate elimination of lower layer SDUs at handover for radio bearers

mapped on RLC AM;- ciphering and deciphering of user plane data and control plane data;- integrity protection and integrity verification of control plane data;- timer based discard.

PDCP Functions:

Page 253: LTE Overview

Page 253

PDCP Structure:

Radio BearersUE/E-UTRAN

PDCP sublayer

...

RLC sublayer

PDCP entiy

PDCP - PDU

RLC - SDU

C-SAP

PDCP-SAP PDCP-SAP

RLC UM-SAP RLC AM-SAP

...

PDCP entity PDCP entity

Page 254: LTE Overview

Page 254

PDCP Layer, Functional View CP:

Radio Interface (Uu)

UE/E-UTRAN E-UTRAN/UE

Transmitting PDCP entity

Integrity protection

Receiving PDCP entity

Add PDCP header with SN

Ciphering Deciphering

Remove PDCP Header

Integrity Verification

Page 255: LTE Overview

Page 255

PDCP Layer, Functional View UP:

Radio Interface (Uu)

UE/E-UTRAN E-UTRAN/UE

Transmitting PDCP entity

Ciphering

Header Compression (u-plane only)

Receiving PDCP entity

Sequence numbering

Integrity Protection (c-plane only)

Add PDCP header

Header Decompression (u-plane only)

Deciphering

Remove PDCP Header

In order delivery and duplicate detection (u-plane only)

Integrity Verification (c-plane only)

Packets associated to a PDCP SDU

Packets associated to a PDCP SDU

Packets not

associated to a P

DC

P S

DU

Packets not

associated to a P

DC

P S

DU

Page 256: LTE Overview

Page 256

PDCP:

PDCP Data PDU for signalling radio bearersUsing 5 bit sequence number:

PDCP Data PDU for user plane radio bearers using 12 bit sequence number (RLC AM, UM):

Oct 1

Oct 2

Oct N

Oct N-1

Oct N-2

Oct N-3

...

Data

PDCP SNR R R

MAC-I

MAC-I (cont.)

MAC-I (cont.)

MAC-I (cont.)

...

PDCP SN (cont.)

Data

D/C PDCP SNR R R Oct 1

Oct 2

Oct 3

Page 257: LTE Overview

Page 257

PDCP Data PDU for user plane radio bearers using 7 bit sequence number (RLC UM):

PDCP Control PDU for ROHC feedback packet:

PDCP Control PDU for PDCP status report:

PDCP:

...

Interspersed ROHC feedback packet

D/C PDU Type R RR R Oct 1

Oct 2

...

Bitmap1 (optional)

D/C PDU Type

BitmapN (optional)

FMS (cont.)

FMS Oct 1

Oct 2

Oct 3

Oct 2+N

...

D/C PDCP SN Oct 1

Oct 2Data

Page 258: LTE Overview

Page 258

Power-Up

LTE_DETACHED

RRC: NULL

RRC Context in network:- Does not exist

Allocated UE-Id(s):- IMSI

UE position:- Not known by network

Mobility- PLMN/Cell selection

DL/UL activity:- None

LTE_ACTIVE

RRC: RRC_CONNECTED

RRC Context in network:- Includes all information necessary forcommunication

Allocated UE-Id(s): - IMSI- ID unique in Tracking Area (TA-ID)- ID unique in cell (C-RNTI)- 1 or more IP addresses

UE position: - Known by network at cell level

Mobility:- Handover

DL/UL activity: - UE may be configured with DRX/DTXperiods

LTE_IDLE

RRC: RRC_IDLE

Context in network:- Includes information to enable fasttransition to LTE_ACTIVE (e.g.security key information)

Allocated UE-Id(s): - IMSI - ID unique in Tracking Area (TA-ID)- 1 or more IP addresses

UE position:- Known by network at Tracking Area(TA) level

Mobility:- Cell reselection

DL activity: - UE is configured with DRX period

Perform “Registration”- Allocate C-RNTI, TA-ID, IP addr- Perform Authentication- Establish security relation

Change of PLMN/deregistration- Deallocate C-RNTI, TA-ID, IP address

New traffic- Allocate C-RNTI

Inactivity- Release C-RNTI- Allocate DRX for PCH

Timeout of periodic TA-update- Deallocate TA-ID, IP address

Reduced number of RRC protocol states:

LTE_ActiveLTE_Idle

LTE_Detached

LTE_ActiveLTE_Idle

LTE_Detached

Page 259: LTE Overview

Page 259

E-UTRA states and inter RAT mobility procedures:

Handover

CELL_PCH

URA_PCH

CELL_DCH

UTRA_Idle

E-UTRA RRC_CONNECTED

E-UTRA RRC_IDLE

GSM_Idle/GPRS Packet_Idle

GPRS Packet transfer mode

GSM_Connected

Handover

Reselection Reselection

Reselection

Connection establishment/release

Connection establishment/release

Connection establishment/release

CCO, Reselection

CCO with optional

NACC

CELL_FACH

CCO, Reselection

Page 260: LTE Overview

Page 260

BCCH-BCH-Message ::= SEQUENCE {

message BCCH-BCH-MessageType}

BCCH-BCH-MessageType ::= MasterInformationBlock

BCCH-DL-SCH-Message ::= SEQUENCE {

message BCCH-DL-SCH-MessageType}

BCCH-DL-SCH-MessageType ::= CHOICE {

c1 CHOICE {

systemInformation SystemInformation, --SIB 2-11

systemInformationBlockType1 SystemInformationBlockType1},

messageClassExtension SEQUENCE {}}

PCCH-Message ::= SEQUENCE {

message PCCH-MessageType}

PCCH-MessageType ::= CHOICE {

c1 CHOICE {

paging Paging},

messageClassExtension SEQUENCE {}}

DL-CCCH-Message ::= SEQUENCE {

message DL-CCCH-MessageType}

DL-CCCH-MessageType ::= CHOICE {

c1 CHOICE {

rrcConnectionReestablishment RRCConnectionReestablishment,

rrcConnectionReestablishmentReject RRCConnectionReestablishmentReject,

rrcConnectionReject RRCConnectionReject,

rrcConnectionSetup RRCConnectionSetup},

messageClassExtension SEQUENCE {}}

RRC Messages:

Page 261: LTE Overview

Page 261

RRC Messages:DL-DCCH-Message ::= SEQUENCE { message DL-DCCH-MessageType}

DL-DCCH-MessageType ::= CHOICE { c1 CHOICE {

cdma2000-CSFBParametersResponse CDMA2000-CSFBParametersResponse,

dlInformationTransfer DLInformationTransfer,

handoverFromEUTRAPreparationRequest HandoverFromEUTRAPreparationRequest,

mobilityFromEUTRACommand MobilityFromEUTRACommand,

rrcConnectionReconfiguration RRCConnectionReconfiguration,

rrcConnectionRelease RRCConnectionRelease,

securityModeCommand SecurityModeCommand,

ueCapabilityEnquiry UECapabilityEnquiry},

messageClassExtension SEQUENCE {}}

UL-CCCH-Message ::= SEQUENCE { message UL-CCCH-MessageType}

UL-CCCH-MessageType ::= CHOICE { c1 CHOICE {

rrcConnectionReestablishmentRequest RRCConnectionReestablishmentRequest,

rrcConnectionRequest RRCConnectionRequest},

messageClassExtension SEQUENCE {}}

UL-DCCH-Message ::= SEQUENCE { message UL-DCCH-MessageType}

UL-DCCH-MessageType ::= CHOICE { c1 CHOICE {

cdma2000-CSFBParametersRequest CDMA2000-CSFBParametersRequest,

measurementReport MeasurementReport,

rrcConnectionReconfigurationComplete RRCConnectionReconfigurationComplete,

rrcConnectionReestablishmentComplete RRCConnectionReestablishmentComplete,

rrcConnectionSetupComplete RRCConnectionSetupComplete,

securityModeComplete SecurityModeComplete,

securityModeFailure SecurityModeFailure,

ueCapabilityInformation UECapabilityInformation,

ulHandoverPreparationTransfer ULHandoverPreparationTransfer,

ulInformationTransfer ULInformationTransfer,

spare5 NULL, spare4 NULL,

spare3 NULL, spare2 NULL, spare1 NULL},

messageClassExtension SEQUENCE {}}

Page 262: LTE Overview

Page 262

MBMS

Multimedia Broadcast Multicast Service

Page 263: LTE Overview

Page 263

REL.8: MBMS (1 – 3 (62) Mbps):

Mapped over the (Rel. 6 FACH) DL-SCH or MCH

MBMS cell

MSCH

MCCH

MTCH

MTCH mapped over (FACH) DL-SCH or MCHMCCH mapped over (FACH) DL-SCH or MCHMSCH mapped over (FACH) DL-SCH or MCHMICH new physical Channel (not used in Lte)

New channels:

MICH

Page 264: LTE Overview

Page 264

0l 5l 0l 5l

even-numbered slots odd-numbered slots

Antenna port 4

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

4R

Mapping of MBSFN reference signals (extended cyclic prefix, f = 15 kHz):

)

0l 2l 0l 2leven-numbered

slots

Antenna port 4

4R

4R

4R

4R

4R

4R

4R

4R

4R

odd-numberedslots

4R

4R

4R

4R

4R

4R

4R

4R

4R

Mapping of MBSFN reference signals (extended cyclic prefix, f = 7,5 kHz):

MBMS Reference Signals:

Page 265: LTE Overview

Page 265

REL.8: Lte:

MBMS:

MC

H o

rD

L-S

CH

MC

H o

r D

L-S

CH

single cell transmission

on MCH or DL-SCH from MBMS dedicated

cell

mutlicell transmissionon MCH

from MBMS dedicated cells

multicell transmissionon MCH

from mixed cells

single cell transmission

on MCH or DL-SCHfrom a mixed cell

Page 266: LTE Overview

Page 266

MBMS logical Architecture:

MBMS CP

MBMS UP

eBMSC PDN Gateway

Contents Provider

eNB eNB

M1

M2

M3

MBMS CP

MBMS UP

eBMSC PDN Gateway

Contents Provider

eNB eNB

M1 M3

SGmb SGimb SGmb SGimb

MCE F4 F2

MBMS MBMS

eBMSC PDN Gateway

Contents Provider

eNB eNB

M1

M2

M3

MBMS MBMS

eBMSC PDN Gateway

Contents Provider

eNB eNB

M1

SGmb SGimb SGmb SGimb

MCE

MCE MCE

E- MBMS GW

Signaling

User Plane

Page 267: LTE Overview

Page 267

MBMS logical Architecture:

E-UTRAN

eNB eNB eNB

EPC

C-plane

U-plane

IP multicast capable TNL

For Rel-6/7 MBMSFor LTE/SAE MBMS

MCE

Red lines indicate I/F that are used when SFN operation is required

MME SGSN

RNC

Node B

BM-SC

mSAE GW

M1

M2

M3

Page 268: LTE Overview

Page 268

MBSFN AreaTransmitting-Only Cell

MBMS Service Area

MBSFN Area

MBSFN Area

MBSFN Area

MBSFN Area Transmitting and Advertising CellMBSFN Area

Transmitting-Only Cell

MBSFN Area Reserved Cell

MBMS Definitions:

Page 269: LTE Overview

Page 269

MBMS eNB Synchronization:

RLC

MAC

PHY

UEE- MBMS Gateway

eNB

M1

RLC

MAC

PHY

eBM-SC

MBMS packet

MBMS packet

TNL

TNL

TNLSYNC SYNC

SYNC: Protocol to synchronize data used to generate a certain radio frame

PDCP PDCPm-Sgmm-Sgm

SYNCM1-AP M1-AP

Page 270: LTE Overview

Page 270

MBMS message flow:

UE eNB

Random Access Preamble

Random Access Response

Scheduled Transmission [ RR MBMS Request – TMGI ]

Contention Resolution[ RR Assignment ]

MBMS

UPDATE

MBMS Co-ord Entitiy

UPDATE ACK

IGMP Join message [ IP Multicast ]

MBMS Data

MBMS Data

Page 271: LTE Overview

Page 271

REL.8: Lte (MBMS):

Service 1 Session 2

subscription to service1

User service join

service leave

subscription to service1

UE1 events

Transfer of data

Subscription can be at any time

Start Service 1 announcement

1st Session start

Data transfer

1st session stop

Service 1 events

Service 1 session1

UE2 events

Announcement

time

Stop Service 1 announcement

Idle period of seconds

Data transfer

Data transfer

Service join by the user can be at any time

Data sent to UE1

Data sent to UE1 and UE2

Data sent to UE1 and UE2

Data sent to UE2

RB setup RB setup

MBMS phase in UTRAN

Phase 1 Phase 2

Phase 3 Phase 1 Phase 1 Phase 3

Phase 2

Page 272: LTE Overview

Page 272

Miscellaneous

Page 273: LTE Overview

Page 273

REL.8: Lte (C-Plane processing in UE, eNB and MME):

UE eNB MME

5. RRC Connection Request

3. TA + Scheduling Grant

2. RACH Preamble

8. Connection Request

10. Connection Setup

12. RRC Connection Setup

15. RRC Connection Complete

9. Processing

delay in MME

1. Delay for RACH

Scheduling period

4. Processing delay

in UE

3. Processing delay

in eNB

7. Processing delay

in eNB

11. Processing

delay in eNB

14. Processing

delay in UE

13. H-ARQ Retransmission

16. H-ARQ Retransmission

6. H-ARQ Retransmission

RRC Contention Resolution

Page 274: LTE Overview

Page 274

REL.8: Lte C-Plane latencyStep Description Duration

0 UE wakeup time Implementation dependent – Not included

1 Average delay due to RACH scheduling period 5ms

2 RACH Preamble 1ms

3 Preamble detection and transmission of RA response (Time between the end RACH transmission and UE’s reception of scheduling grant and timing adjustment)

5ms

4 UE Processing Delay (decoding of scheduling grant, timing alignment and C-RNTI assignment + L1 encoding of RRC Connection Request)

2.5ms

5 TTI for transmission of RRC Connection Request 1ms

6 HARQ Retransmission (@ 30%) 0.3 * 5ms

7 Processing delay in eNB (Uu –> S1-C) 4ms

8 S1-C Transfer delay Ts1c (2ms – 15ms)

9 MME Processing Delay (including UE context retrieval of 10ms) 15ms

10 S1-C Transfer delay Ts1c (2ms – 15ms)

11 Processing delay in eNB (S1-C –> Uu) 4ms

12 TTI for transmission of RRC Connection Setup (+Average alignment) 1.5ms

13 HARQ Retransmission (@ 30%) 0.3 * 5ms

14 Processing delay in UE 3ms

15 TTI for transmission of L3 RRC Connection Complete 1ms

16 HARQ Retransmission (@ 30%) 0.3 * 5ms

Total Lte_IDLELte_ACTIVE delay (C-plane establishment)

47.5ms + 2 * Ts1c

Page 275: LTE Overview

Page 275

Step Description Duration

Lte_IDLELte_ACTIVE delay (C-plane establishment) 47.5ms + 2 * Ts1c

17 TTI for UL DATA PACKET (Piggy back scheduling information)

1ms

18 HARQ Retransmission (@ 30%) 0.3 * 5ms

19 eNB Processing Delay (Uu –> S1-U) 1ms

U-plane establishment delay (RAN edge node) 51ms + 2 * Ts1c

20 S1-U Transfer delay Ts1u (1ms – 15ms)

21 UPE Processing delay (including context retrieval) 10ms

U-plane establishment delay (Serving GW) 61ms + 2 * Ts1c + Ts1u

REL.8: Lte U-Plane latency

Page 276: LTE Overview

Page 276

REL.8: Lte (U-Plane latency components in Lte):

UE eNB

1 ms

1 ms

HARQ RTT 5 ms

1 ms

1 ms

TTI + frame alignment

1.5 ms

1.5 ms

Page 277: LTE Overview

Page 277

Home eNB Concept:

A

B

LTE MACRO CELL

OTHER 3GPP

SYSTEM

C

HIGHER NETWORK NODE

D

Page 278: LTE Overview

Page 278

eNB

MME / S-GW MME / S-GW

eNB

eNB

S1

S1

S1 S1

X2

X2X2

E-UTRAN

HeNB HeNB

HeNB GW

S1 S1

S1 S

1

HeNB

S1S1

EPC

Home eNB Concept:

Page 279: LTE Overview

Page 279

Iu based architecture:

Home eNB Concept:

DSL

Internet

3G HeNB

SGSN

MSC

Macrosite + 3G HNB

Core Network

networkIu

Page 280: LTE Overview

Page 280

MMEServing

GW

S1-US1-MME

B-NTHome

eNodeB

Home GW

FGW

E-UTRANS1 S11

PDNGW

S5

Internet

aGW

IPSEC

Local Breakout

LTE UE

Home eNB Concept:

Page 281: LTE Overview

Page 281

Home eNB Concept:

Generic IP

Access NetworkUE

HNB-GW

MSC

SGSN

Iu-h

Iu-cs

Iu-ps

HPLMN/VPLMN

3G HNB

Uu

SMLC

Iu-pc

CBC

Iu-bc

HNB Mgmt System

Iu-hm

HNB Access Network

SEGWAAA

Proxy/Server

HLR

Wm D’/Gr’

Page 282: LTE Overview

Page 282

Home eNB Concept:

Control plane for S1-MME Interface for HeNB to MME with the HeNB GW:

Remote IP Remote IP

Access Layer

Remote IP

SCTP

S1-AP

Access Layer

Access Layer

Remote IP

Access Layer

Transport IP

IPSec ESP

Remote IP

SCTP

HeNB HeNB GW MMES1-MME

S1-AP

Access Layer

Transport IP

IPSec ESP

Remote IP

Access Layer

SeGWS1-MME

SCTP

S1-AP

SCTP

S1-AP

IP

Page 283: LTE Overview

Page 283

Transport Network Control

and Data Transport Layers

(TS 25.414)

Access Layers

Transport IP

Iu UP

CS User Data

Iu-h Iu-cs

Remote IP

UDP

RTP(RFC 4867)

Access Layer

Access Layers

Transport IP

IPSec ESP

Remote IP

CS User Data

UDP

RTP (RFC 4867)

L1

MAC

RLC

L1

MAC

RLC

Uu

Generic IP Network

HNB-GWUE 3G HNB

Iu-UP

IPSEC ESP

Transport IP

Transport Network Control

and Data Transport Layers

(TS 25.414)

MSC

CS User Plane Protocol Architecture:

Home eNB Concept:

Page 284: LTE Overview

Page 284

Access Layers

Transport IP

IPSec ESP

Remote IP

Access Layers

Transport IP

IP

Iu-h Iu-ps

UDP

UEGeneric IP Network

SGSN

UDP

GTP-U

Data Transport

Lower Layers

(TS 25.414)

GTP-U

L1

MAC

PS User Data

RLC

L1

MAC

RLC

3G HNB

Uu

GGSN

PDCP PDCP

Data Transport

Lower Layers

(TS 25.414)

HNB-GW

Access Layers

Transport IP

IPSec ESP

IP

Optimized PS user plane architecture:

Home eNB Concept:

Page 285: LTE Overview

Page 285

REL.8: Lte:

UE

NodeB

RNC

SGSN

GGSNuser plane

control plane

Visited NWGTP

UE

NodeB

RNC

SGSN

GGSN

GTP

Visited NWGTP

UTRAN Rel-6 GPRS One-Tunnel Rel-7GTP

GTP

Page 286: LTE Overview

Page 286

LTE Tunnel:

REL.8: Lte:

UE

eNB

MME

S-GW

GTP

Visited NWGTP

eNBGTP

Page 287: LTE Overview

Page 287

IP

Ethernet

PHY

L2

L3

copperfibre micro-wave

mc-ml ppp

PDHSDH/SONET DSL

P2PPON

ATM

(IMA)

P2PP2MP

WiMAX

DWDM

MPLS

MEDIA

CWDMTECHNIQUE

Details of protocols used for encapsulation are not shown in this diagram

Lte: IP Transport Technology Options:

Page 288: LTE Overview

Page 288

Self configuration and self optimization:

(A) Basic setup

eNB power on(or cable connected)

a-4: Downloading eNB software(and operational parameters)

b-2: Coverage/capacity related parameter configuration

c-1: Neighbor list optimization

(B) Initial radio configuration

b-1: Neighbor list configuration

(C) Optimization/Adaptation

c-2: Coverage and capacity control

Self-Optimization(Operational state)

Self-Configuration(Pre-operational state)

a-1: Configuration of IP address and detection of OAM server

a-2: Authentication of eNB/NW

a-3: Association to aGW

Self Optimation Network (SON):

Page 289: LTE Overview

Page 289

Cell A Cell B

Cell A Cell B

Add eNodeB

Initial Configuration in New Cell:-Configure neighbours-Setup X2 interface-Configure parameter

-Add new cell in neighbour list-Configure parameter

Cell C Cell D

-Add new cell in neighbour list-Configure parameter

Self Optimization & Self Configuration (Insertion of new eNB in network):

Self Optimation Network (SON):

Page 290: LTE Overview

Page 290

Cell A Cell B

Cell A Cell B

Optimize HO parameters between Cell A and Cell C

Cell C Cell D

- Periodically exchange cell traffic load information (over X2)- Detect congestion

Cell C Cell D

- Load is balanced between Cell A and Cell C

Self Optimization & Self Configuration (Handover Parameters Optimisation):

Self Optimation Network (SON):

Page 291: LTE Overview

Page 291

Automated Configuration of Physical Cell Identity:

The physical cell identity, or L1 identity (Phy_ID), is an essential configuration parameter of a radio cell, it corresponds to a unique combination of one orthogonal sequence and one pseudo-random sequence, and 504 unique Phy_IDs are supported –leading to unavoidable reuse of the Phy_ID in different cells.When a new eNB is brought into the field, a Phy_ID needs to be selected for each of its supported cells, avoiding collision with respective neighbouring cells.

Page 292: LTE Overview

Page 292

Cell A Phy-CID=3 Global-CID =17

Cell B Phy-CID=5 Global-CID =19

1) report(Phy-CID=5, strong signal)

2) Report Global-CID Request (Target Phy-CID=5)

2b) Read BCH()

3) Report Global-CID=19

Intra-Lte/frequency Automatic Neighbor Relation Function:

Self Optimation Network (SON):

Page 293: LTE Overview

Page 293

Cell A Type = LTE Phy-CID= 3 Global-CID =17

Cell B Type = UTRAN Phy-CID=PSC=5 Global-CID =19

2) Report Neighbour Response (Phy-CID, Signal level)

3) Report Global-CID Request (Target Phy-CID=5)

3b) Read BCH (…)

4) Report Global-CID=19

1) Report Neighbour Request (RAT, Frequency)

Inter-RAT/Inter-frequency Automatic Neighbour Relation Function:

Self Optimation Network (SON):

Page 294: LTE Overview

Page 294

Neighbour Detection Function

Internal Iinformation

RRC

Mrmnt reports

Mrmnt requests

Add/

Upda

te N

eighb

or R

elatio

ns

NR re

port

ANR function

eNB

O&M

NRadd

NRTManagemnt

Function

NeighbourRemovalFunction

NRremove

NRupdate

Neighbor Relation Table

1

2

TCI

3

No Remove

TCI#1

TCI#1

No HO No X2

O&M controlledNeighbour Relation Attributes

Neighbour Relation

NR

TCl#1

Interaction between eNB and O&M due to ANR:

Page 295: LTE Overview

Page 295

SON Use Cases:

Self-Configuration Maintenance

AutomaticGeneration

of RadioParameters

Planning of SecurityNode, aGW and OMC

NetworkAuthentication

ANRConfig.

AutomatedPhy Cell ID

Config.

ANROptimization

AutonomousInventory

EnergySavings

Self-Optimization

FlexibleSpectrum

Use

LoadBalancing

RelayManagement &

Resource Partitioning

Frame Sync.and UL/DL switchingpoint coordination

Subscriber andEquipment Trace

Cell OutageDetection &

Compensation

Automatic SWDownload to eNB

TDD

FDD /TDD

Coverage HoleDetection

AdaptiveChannel

Configuration

MBMSOptimization

StandardizedDrive Tests

InterferenceReduction

ConfigurationManagement

AutomatedHW Config.

AutomatedConfig.of Interfaces

AutomaticGenerationof TransportParameters

MobilityOptimization

MIMO ModeOptimization

MajorDecisionin Rel. 8

Coverageand Capacity Optimization

QoS-relatedParameter

OptimizationPerformanceManagement

MajorDecisionin Rel. 9

BeyondRel. 9

colour

line type

Page 296: LTE Overview

Page 296

REL. 8: Lte:

Lte:

• New radio interface (DL OFDMA, UL SC-FDMA, flexible bandwidth, MIMO)

• Integration of GERAN, UTRAN, CDMA2000 and WLAN (WiMax)

• New network structure (simplified and tunneling)

• Simplified protocol stacks, combined protocol functions

• Increase of data rates, decrease of latency