25
DNA damage, protein expression and migration of melanoma cells irradiated with proton beam M. Elas 1 , S. Kędracka-Krok 1 , U. Jankowska 1 , Ł. Skalniak 1 , J. Jura 1 , E.Zuba-Surma 1 , K. Jasińska 1 , A. Pawlak 1 , U. Sowa 2 , P. Olko 2 , B. Romanowska-Dixon 3 , K. Urbańska 1 1 Faculty of Biochemistry, Biophysics and Biotechnology, JU 2 Institute of Nuclear Physics, PAS 3 Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College

M. Elas 1, S. Kędracka-Krok 1, U. Jankowska 1, Ł. Skalniak 1, J. Jura 1, E.Zuba-Surma 1, K. Jasińska 1, A. Pawlak 1, U. Sowa 2, P. Olko 2, B. Romanowska-Dixon

Embed Size (px)

Citation preview

  • Slide 1

M. Elas 1, S. Kdracka-Krok 1, U. Jankowska 1, . Skalniak 1, J. Jura 1, E.Zuba-Surma 1, K. Jasiska 1, A. Pawlak 1, U. Sowa 2, P. Olko 2, B. Romanowska-Dixon 3, K. Urbaska 1 1 Faculty of Biochemistry, Biophysics and Biotechnology, JU 2 Institute of Nuclear Physics, PAS 3 Department of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College Slide 2 BLM cells irradiated with 1-7 Gy of proton beam 58 MeV proton beam AIC-144 cyclotron at Institute of Nuclear Physics, Polish Academy of Sciences, Krakw LETSlide 3 Dose-dependent slowing down of the proliferation rate 5 & 7 Gy lethal damage 1-3 Gy repair Slide 4 G0&G1/G2&M Increase in G2/M >2n present Cell cycle redistribution: Increase in G2/M with dose, day 6 Slide 5 dose-dependent DNA damage 2 days after irradiation: no difference 5 days after: 11% more for 3 Gy, 14% for 5 Gy, 17% for 7 Gy => delayed DNA damage DNA damage Slide 6 increase in caspases 3 and 7 activity with time Caspases activity increases with time day 5 Slide 7 Apoptotic Cells Healthy Cells S91 S91 day 9-10 S91 day 5 3 Gy Slide 8 Proteomics 2DE and mass spectroscopy to identify proteins influenced by 3 Gy proton beam irradiation ctrl3 Gy Kdracka-Krok et al., Plos One, 2014 Slide 9 > 1.5 x VCP MVP STRAP FAB-2 Lamine A/C GAPDH P-body PDCD6 Stress granule Caprin-1 STRAP MCM7 Annexin 7 MVP Caprin-1 PDCD6 VCP HSP70 TIM, GAPDH VCP Moesin Actinin 4 FAB-2 Vimentin Annexin 7 Lamine A/C Lamine B Nucleus Mitochodrium Cytoplasm upregulated downregulated 13 up, 4 down Kdracka-Krok et al., Plos One, 2014 Slide 10 VCP MVP STRAP FAB-2 Lamine A/C GAPDH P-body PDCD6 Stress granule Caprin-1 STRAP MCM7 Annexin 7 MVP Caprin-1 PDCD6 VCP TIM, GAPDH VCP Moesin Actinin 4 FAB-2 Vimentin Annexin 7 Lamine A/C Lamine B Nucleus Mitochodrium Cytoplasm MVP (1.9 ), Lamine A/C (1.8 ), GAPDH (2.4 ) DNA repair VCP (1.9 ) chromatin associated degradation MVP PTEN translocation regulation MVP, VCP transcription regulation STRAP (4.1 ), FAB-2 (1.9 ) mRNA regulation Caprin-1 (1.9 ), PDCD6 (1.5 ) mRNA regulation HSP70 & G3BP1 (1.8 ) stress & mRNA stability and stress granule formation DNA repair, RNA regulation Kdracka-Krok et al., Plos One, 2014 Slide 11 VCP MVP STRAP FAB-2 Lamine A/C GAPDH P-body PDCD6 Stress granule Caprin-1 STRAP MCM7 Annexin 7 MVP Caprin-1 PDCD6 VCP TIM, GAPDH VCP Moesin Actinin 4 FAB-2 Vimentin Annexin 7 Lamine A/C Lamine B Nucleus Mitochodrium Cytoplasm STRAP (4.1 ) survival - apoptosis balance MCM7 (1.6 ) proliferation balance Annexin 7 (2.5 ) proliferation inhibition MVP survival enhancement Caprin-1 (1.9 ) proliferation PDCD6 (1.5 ) apoptosis, ubiquitination regulation VCP (1.9 ) aggregates management, lysosomal degradation Cell survival Kdracka-Krok et al., Plos One, 2014 Slide 12 VCP MVP STRAP FAB-2 Lamine A/C GAPDH P-body PDCD6 Stress granule Caprin-1 STRAP MCM7 Annexin 7 MVP Caprin-1 PDCD6 VCP TIM, GAPDH VCP Moesin Actinin 4 FAB-2 Vimentin Annexin 7 Lamine A/C Lamine B Nucleus Mitochodrium Cytoplasm TIM (2.4 ), GAPDH (2.4 ) glycolysis VCP (1.9 ) mitochondria associated degradation Cell metabolism Kdracka-Krok et al., Plos One, 2014 Slide 13 VCP MVP STRAP FAB-2 Lamine A/C GAPDH P-body PDCD6 Stress granule Caprin-1 STRAP MCM7 Annexin 7 MVP Caprin-1 PDCD6 VCP TIM, GAPDH VCP Moesin Actinin 4 Fab-2 Vimentin Annexin 7 Lamine A/C Lamine B Nucleus Mitochodrium Cytoplasm Cytoskeleton and motility Moesin (2.4 ) actin remodelling, motility Actinin 4 (1.9 ) migration and metastasis FAB-2 (1.9 ) migration, microtubule destabilizer Vimentin (2.0, 2.1, 3.4, 1.6 ) metastasis, EMT marker Annexin 7 (2.5 ) motility Lamine A/C (1.6, 2,4, 1,5 ) PI3K/AKT/PTEN, adhesion, motility Lamine B (1.4 ) - motility Kdracka-Krok et al., Plos One, 2014 Slide 14 Proteomics 4 groups: DNA repair & mRNA regulation Survival and apoptosis Glycolytic metabolism Cytoskeleton and migration Signaling pathways: p53 TGF PTEN AKT BAX, Bcl-2 Kdracka-Krok et al., Plos One, 2014 Slide 15 Interaction with tumor microenvironment Heavy ions shown to inhibit metastasis (Takahashi, 2003; Tsuboi, 2005) After proton beam irradiation: strongly inhibited matrix metaloproteinase-2 activity in highly aggressive HT1080 human fibrosarcoma cells in vitro, and significantly decreased the number of pulmonary metastasis in mouse osteosarcoma in vivo (Ogata et al. 2005). the expression level or activity of molecules related to metastasis such as V3, 1 integrin, and MMP-2 (Takahashi, 2003) Slide 16 Real-time PCR analysis using human angiogenesis TaqMan Array Plates Blm cells, 3 Gy, 48 hr culture Genes with 1.5 change vs control shown Angiogenesis gene activation Slide 17 Blm, speed Migration properties of melanoma cells after protonotherapy Omm1.3, speed Blm, distance Omm 1.3, distance Slide 18 Inhibition of metastases of eye-implanted BHM melanoma 10 Gy Romanowska et al., ABP, 2013 Slide 19 Inhibition of metastases of eye-implanted BHM melanoma Time [days] Rel mean diameter [mm] Slide 20 WYNIKI Inhibition of metastases of eye-implanted BHM melanoma x 4.4 p=0.0052 -irradiation Romanowska et al., ABP, 2013 Slide 21 1-3 Gy sublethal, 5-7 Gy lethal damage of BLM cells Delayed DNA damage, leading to apoptosis, resulting from endogenous ROS generation due to cell signalling Upregulation of proteins involved in DNA repair and stress, apoptosis and survival, glycolytic metabolism and migration and cytoskeleton In the latter group, vimentin was heavily suppressed, together with Annexin 7, whereas expression of Moesin 7, Lamins A/C and B, Actinin 4 and FAB-2 were increased Interaction with tumor microenvironment: Upregulation of angiogenic genes, in vivo inhibition of metastases in BHM eye model Conclusions Slide 22 Obrazowanie mysich guzw: mechanizm odpowiedzi na radio- i fototerapi MRI, angiografia ToFMRI, perfuzja ASL Slide 23 Dept of Ophthalmology and Ophthalmic Oncology, Jagiellonian University Medical College Boena Romanowska-Dixon Institute of Nuclear Physics, PAS Pawe Olko Jan Swako Urszula Sowa Marta Ptaszkiewicz Dept of General Biochemistry Jolanta Jura ukasz Skalniak Agnieszka Cierniak Dept Cell Biology Ewa Zuba-Surma Marta Michalik Dept Biophysics Krystyna Urbaska Katarzyna Jasiska Magorzata Szczygie Martyna Krzykawska-Serda Micha Gonet Agnieszka Drza Dept Physical Biochemistry Sylwia Kdracka-Krok Urszula Jankowska Slide 24 ODLEGE PRZERZUTY CZERNIAKA Przerzuty do puc s inicjowane u czci zwierzt (37%) gdy guz pierwotny zajmuje zaledwie 0,10 powierzchni PK (ju po 2 dniach wzrostu guza) Slide 25 WCZESNE I PNE EFEKTY RADIOTERAPII Cakowitej regresji guza po 10 Gy 125 I (4,2,2,2) towarzyszy brak przerzutw w pucach u 50% leczonych chomikw nawet po 70 dniach od enukleacji rednica guza (mm) Czas (dni) 29 34 dni po ENU 100% zwierzt 70 dni po ENU 50 % zwierzt (Sawow Aneta, 2001)