Macrostates & Microstates 1

Embed Size (px)

Citation preview

  • 8/19/2019 Macrostates & Microstates 1

    1/21

     

    Lecture 4. Macrostates and Microstates (Ch. 2 )

    The past three lectures: we have learned about thermal energy, how it is

    stored at the microscopic level, and how it can be transferred from onesystem to another. However, the energy conservation law (the first law of

    thermodynamics) tells us nothing about the directionality  of processes

    and cannot explain why so many macroscopic processes are irreversible.

    Indeed, according to the st  law, all processes that conserve energy are

    legitimate, and the reversed!in!time process would also conserve energy.

    Thus, we still cannot answer the basic "uestion of thermodynamics: why

    does the energy spontaneously flow from the hot ob#ect to the cold ob#ect

    and never the other way around$ (in other words, why does the time arrow

    exist for macroscopic processes$).

    %or the next three lectures, we will address this central problem using theideas of statistical mechanics. &tatistical mechanics is a bridge from

    microscopic states to averages. In brief, the answer will be: irreversible

    processes are not inevitable, they are just overwhelmingly probable. 

    This path will bring us to the concept of entropy and the second law of

    thermodynamics.

  • 8/19/2019 Macrostates & Microstates 1

    2/21

     

    Microstates and Macrostates

    Macrostate: the state of a macro system specified by its macroscopic

    parameters. Two systems with the same values of macroscopic parameters

    are thermodynamically indistinguishable. ' macrostate tells us nothing about a

    state of an individual particle.

    %or a given set of constraints (conservation laws), a system can be in many

    macrostates.

    Microstate: the state of a system specified by describing the "uantum state

    of each molecule in the system. %or a classical particle  parameters ( x i , y i ,

    z i , p xi , pyi , pzi ), for a macro system N parameters.

    The statistical approach: to connect the macroscopic observables

    (averages) to the probability for a certain microstate to appear along the

    systems tra#ectory in configuration space, P (σ

     !, σ  2,...,σ  "). 

    The evolution of a system can be represented by a tra#ectory

    in the multidimensional (configuration, phase) space of micro!parameters. *ach point in this space represents a microstate.

    +uring its evolution, the system will only pass through accessible microstates

      the ones that do not violate the conservation laws: e.g., for an isolated  system,

    the total internal energy must be conserved.

    σ  !

    σ  2

    σ  i

  • 8/19/2019 Macrostates & Microstates 1

    3/21

     

    #he $hase %pace vs. the %pace o& Macroparameters

    σ  !

    σ  2

    σ  ithe surface

    defined by ane"uation of

    states

    some macrostate

    σ  !

    σ  2

    σ  i

    σ  !

    σ  2

    σ  i

    σ  !

    σ  2

    σ  i

    numerous microstates

    in a multi!dimensional

    configuration (phase)

    space that correspond

    the same macrostate

    etc., etc., etc. ...

  • 8/19/2019 Macrostates & Microstates 1

    4/21

     

    'amples #wo*+imensional Con&iguration %pace

    motion of a particle in a

    one!dimensional box

    -L L

    -L L x 

     p x 

    -p x 

    -acrostates are characteri/ed by a

    single parameter: the 0inetic energy K 

    *ach macrostate corresponds to a continuum of

    microstates, which are characteri/ed by specifying the

    position and momentum

    K=K 

     'nother example: one!dimensional

    harmonic oscillator 

     x 

     p x 

    K + U =const 

     x 

    U (r )

  • 8/19/2019 Macrostates & Microstates 1

    5/21

     

    #he -undamental ssumption o& %tatistical Mechanics

    The ergodic hypothesis  an isolated   system in an

    e"uilibrium state, evolving in time, will pass through all the

    accessible  microstates at the same recurrence rate, i.e.all accessible microstates are e!"ally probable.

    The average over long times will e"ual the average over the ensemble of all e"ui!

    energetic microstates: if we ta0e a snapshot of a system with N  microstates, we will find

    the system in any  of these microstates with the sa#e probability.

    1robability for a

    stationary system

    many identical measurements

    on a single system

    a single measurement on

    many copies of the system

    The ensemble of all e"ui!energetic states

    ⇒ a #irocanonical ense#ble.

    2ote that the assumption that a system is isolated is important. If a system is co"pled  to

    a heat reservoir and is able to exchange energy, in order to replace the systems

    tra#ectory by an ensemble, we must determine the relative occurrence of states with

    di$$erent  energies. %or example, an ensemble whose states recurrence rate is given by

    their 3olt/mann factor (e-E/kBT ) is called a canonical ensemble.

    σ  !

    σ  2

    σ  i

    microstates which correspond

    to the same energy

  • 8/19/2019 Macrostates & Microstates 1

    6/21

     

    $robability o& a Macrostate, Multiplicity

    ( )

    smicrostateaccessibleallof 

    macrostategivenatocorrespondthatsmicrostateof 

     macrostateparticular aof y1robabilit

    #

    #Ω=

    =

    The probability of a certain macrostate is determined by how many

    microstates correspond to this macrostate the multiplicity o& a given

    macrostate .

    This approach will help us to understand why some of the macrostates are

    more probable than the other, and, eventually, by considering the interacting

    systems, we will understand irreversibility of processes in macroscopic

    systems.

     smicrostateaccessibleallof 4

     ensembleicalmicrocanonaof microstateparticular aof y1robabilit

    =

    =

  • 8/19/2019 Macrostates & Microstates 1

    7/21

     

    $robability

    %"ltiplication r"le for independent events: P (i  and j ) 5 P (i ) x P ( j )

    1robability theory is nothing but common sense

    reduced to calculations 6aplace (78)

    &xa#ple: 9hat is the probability of the same face appearing on two successive

     throws of a dice$

    The probability of any specific combination, e.g., (,): ;x;5,>) =...= P (;,;) 5 ;x

  • 8/19/2019 Macrostates & Microstates 1

    8/21

     

    #wo model systems with &ied positions o& particles

    and discrete energy levels

    ! the models are attractive because they can be described in terms ofdiscrete microstates which can be easily counted (for a continuum of

    microstates, as in the example with a freely moving particle, we still need

    to learn how to do this). This si#pli$ies calc"lation o$   . @n the other

    hand, the results will be applicable to many other, more complicated

    models.

    +espite the simplicity of the models, they describe a number ofexperimental systems in a surprisingly precise manner.

    ! two!state paramagnet ↑↓↓↑↓↑↑↓↓↓↑↓↑.... 

    (limited energy spectrum)

    ! the *instein model of a solid

    (unlimited energy spectrum)

  • 8/19/2019 Macrostates & Microstates 1

    9/21

     

    #he #wo*%tate $aramagnet

    The energy of a macrostate:

    ↑↓ +=   N  N  N 

     B

    N ↑

     ! the number of up spins

    N ↓

     ! the number of down spins

    ! a system of non!interacting magnetic dipoles in an external magnetic field (, each dipole

    can have only two possible orientations along the field, either parallel or any!parallel to this

    axis (e.g., a particle with spin A ). 2o "uadratic degrees of freedom (unli0e in an ideal gas,

    where the 0inetic energies of molecules are unlimited), the energy spectrum of the particlesis con$ined )ithin a $inite interval o$  & (#ust two allowed energy levels).

     µ ! the magnetic moment of an individual dipole (spin)

    & ! / * µ(

    & 2 / 0 µ(

    an arbitrary choiceof /ero energy

    ! µB  for µ parallel to (,

    =µB  for µ anti!parallel to (

    The total magnetic moment:(a macroscopic observable)

    The energy of a single dipole in the

    external magnetic field:  Bii   ⋅−=   µ ε 

     ' particular #icrostate  (↑↓↓↑↓↑↑↓↓↓↑↓↑....)

    is  specified if the directions of all spins are

    specified. ' #acrostate is specified by the total

    4 of dipoles that point up, N ↑ (the 4 of dipoles

    that point down, N  ↓ 5 N - N ↑ ).

    ( ) ( )↑↑↓   −=−=⋅−=   N  N  B N  N  B B M U  2 µ  µ 

    ( )   [ ]   ( ) N  N  N  N  N  N  N  M    −=−==−=   ↑↑↓↓↑ 2 µ  µ 

  • 8/19/2019 Macrostates & Microstates 1

    10/21

     

    'ample

    Bonsider two spins. There are four possible configurations of microstates:

    %  / 2µ

      * 2µ

     

    In /ero field, all these microstates have the same energy (degeneracy). 2ote

    that the two microstates with % 5C have the same energy even when (≠C:

    they belong to the same macrostate, which has multiplicity 5>. Themacrostates can be classified by their moment %  and multiplicity

    %  / 2µ

      * 2µ

     

    / ! 2 !

    %or three spins:

    %  / 1µ  µ  µ  µ  *µ  *µ  *µ  *1µ 

    %  / 1µ

     µ

      *µ

      *1µ

     

    / ! 1 1 !macrostates:

  • 8/19/2019 Macrostates & Microstates 1

    11/21

     

    #he Multiplicity o& #wo*%tate $aramagnet

    *ach of the microstates is characteri/ed by N  numbers, the number of

    e"ually probable microstates 2N , the probability to be in a particular

    microstate !2N .

      n 3≡

     n &actorial / !2....n

      3≡

     ! (exactly one way toarrange /ero ob#ects)

    )!(!

    !

    !!

    !),(

    ↑↑↓↑↑ −

    ==Ω N  N  N 

     N 

     N  N 

     N  N  N 

    %or a two!state paramagnet in /ero field, the energy of all macrostates is

    the same (C). ' macrostate is  specified by (N , N ↑). Its multiplicity ! the

    number of ways of choosing N ↑ ob#ects out of N :

    1)0,(   =Ω   N    N  N    =Ω )1,(   ( )2

    1)2,(   −×=Ω   N  N  N    ( ) ( )23

    21)3,(× −×−×=Ω

      N  N  N  N 

    ( ) ( )[ ]( )!1!

    !

    123...

    1...1),(

    −=

    ××××−−××−×=Ω

    nn

     N 

    n

    n N  N  N n N 

    The multiplicity of a

    macrostate of a two!state

    paramagnet with (N , N ↑):

  • 8/19/2019 Macrostates & Microstates 1

    12/21

     

    Math re5uired to bridge the gap between ! and !21

    Typically, N  is h"ge for macroscopic systems, and the multiplicity is

    unmanageably large for an *instein solid with C>

  • 8/19/2019 Macrostates & Microstates 1

    13/21

     

    %tirling6s pproimation &or N 3 (N 77!)

     N e

     N  N e N  N 

     N 

     N  N  π π  22!      

      =≈   −

     -ultiplicity depends on N F, and we need an approximation for ln(N F):

     N  N  N  N    −≈ ln!ln

     Bhec0:

    ( )   [ ]   N  N  N  x x x x x   N  N 

    −≈−=≈++++= ∫  lnlndlnlnN···ln3ln2ln1lnN! 11

    -ore accurately:

    because ln N ?? N  for large N 

    ( ) ( ) ( )   N  N  N  N  N  N  N  N    −≈++−= ln2ln2

    1ln

    2

    1ln!ln   π 

     N 

    e

     N  N     

     

     

     

     ≈!or 

  • 8/19/2019 Macrostates & Microstates 1

    14/21

     

    #he $robability o& Macrostates o& a #wo*%tate $M ((/)

    (http:stat!www.ber0eley.eduGstar0ava3inHist.htm4controls)

    ! as the system becomes larger, the

    P (N,N ↑) graph becomes moresharply pea0ed:

    N 5 ⇒ Ω(,N ↑) 5, >25>, P (,N ↑)5C.

     N 

     N  N 

     N  N 

     N  N  N  N  N  N  P 

    2

    ),(

    ),(

    ),(

    #

    ),(),(   ↑

    ↑↑↑

    Ω=

    Ω=

    Ω=

    allsmicrostateallof 

    ( )   ( ) ( )   ( )

    ( )( )   N  N  N  N 

     N 

     N  N  N  N  N  N  N 

     N  N 

     N 

     N  N  N 

     N 

    e N  N e N 

    e N 

     N  N  N 

     N  N  N  P 

    2

    22!!

    !),(

    ↑↑

    ↑↑↑↑

    −↑↑

    −−−↑

    −↑

    ↑↑↑

    −=

    −≈

    −=

    N ↑

    P (, N ↑)

    C.

    C nC C.JC>< C><

    N ↑ N ↑

    P (, N ↑) P (C>

  • 8/19/2019 Macrostates & Microstates 1

    15/21

     

    Multiplicity and +isorder 

    In general, we can say that small multiplicity implies order, while large multiplicity

    implies disorder. 'n arrangement with large Ω  could be achieved by a randomprocess with much greater probability than an arrangement with small Ω.

    ↑↓↓↑↓↑↑↓↓↓↑↓↑

    ↑↑↑↑↑↑↑↑↑↑↑

    large Ωsmall Ω

  • 8/19/2019 Macrostates & Microstates 1

    16/21

     

    #he 'instein Model o& a %olid

    In 8CK, *instein proposed a model that reasonably predicted the thermal

    behavior of crystalline solids (a

  • 8/19/2019 Macrostates & Microstates 1

    17/21

     

    #he 'instein Model o& a %olid (cont.)

     't high T  *ω  (the classical limit of large ni):

    moleJ/K .24

    332

    1)2(3

    3

    1

    ⋅⇒

    =⇒===∑=  B B Bi N 

    i Nk dT 

    dU T  Nk T k  N nU    ε 

    soliddU  dT ,

    89mole

    Lead 2.4

    :old 2;.4

    %ilver  2;.4

    Copper  24.;

  • 8/19/2019 Macrostates & Microstates 1

    18/21

     

    #he Multiplicity o& 'instein %olid

    ( )

    !)1(!

    !1),(

    −−+

    =Ω N q

     N qq N 

    Proo$  lets consider N  oscillators, schematically represented as follows:

    •••   •••••   ! !  dots and N *!  lines, total ! 0N *! symbols. %or given !  and N , the multiplicity is the number of ways of choosing n of the symbols

    to be dots, ".e.d.

    The multiplicity of a state of N  oscillators (N < atoms) with !  energy "uanta

    distributed among these oscillators:

    In terms of the total

    internal energy U /! 

     

    :

    ( )

    ( )   !)1(!/

    !1/),(

    −+=Ω

     N U 

     N U U  N 

    ε 

    ε 

    Example: The multiplicity of an *instein solid with three atoms and eight units of

    energy shared among them( )( ) !)1(!

    !1),(

    −−+=Ω >,7KC

  • 8/19/2019 Macrostates & Microstates 1

    19/21

     

    Multiplicity o& a Large 'instein %olid ( (T )

    ( )

    ( )

    ( )

    ( )  ( )[ ] [ ] [ ]

    ( )

    ( ) ( ) ( )

    ( ) ( ) ( )   N  N qq N q N q

     N  N  N qqq N q N q N q

    aaaa

     N q N q N q

     N q

     N q

     N qq N 

    lnlnln

    lnlnln

    ln!

    !ln!ln!ln!!

    !ln

    )!1(!

    !1ln),(ln

    −−++=

    +−+−+−++≈−≈

    −−+=

      +≈

    −−+=Ω

    ln:&tirling

    q

     N q

    q

     N q N q   +≈

       

      

     +=+ ln1ln)ln(

    ( ) N  N 

     N  N 

    q N 

    e N 

    eqeeq N    β = 

      

      =≈Ω

    ln

    ),(

    ! = U  

    N  ! the total 4 of "uanta in a solid.

      = U (  N ) ! the average 4 of "uanta (microstates) available for each molecule

    high te#perat"res

    ( (T , 77!, ! N )

    .eneral state#ent  for any system with N  "uadratic degrees of freedom

    (unlimited spectrum), the multiplicity is proportional to U  N  2.

    *instein solid:(>N  degrees

    of freedom)

     N 

     N 

    U  N  f   N 

    eU  N U  )(),(   = 

      

      ≈Ω

    ε 

    ( ) ( )

     N  N 

    q N  N  N 

    q

     N  N q N 

     N  N qqq

     N q N qq N 

    +≈−++=

    −−

    ++=Ω

    lnlnln

    lnlnln),(ln

    2

  • 8/19/2019 Macrostates & Microstates 1

    20/21

     

    Multiplicity o& a Large 'instein %olid ( (T // )

    lo) te#perat"res

    ( (T // , ==!, ! // N )

    β 

    β 

     N q

    e

    q

    eN q N    

     

      

     =  

     

      

     =Ω   ),( (Pr . >.K)

  • 8/19/2019 Macrostates & Microstates 1

    21/21

     

    Concepts o& %tatistical Mechanics

    !. #he macrostate is specified by a sufficient number of macroscopicallymeasurable parameters (for an *instein solid N  and U ).

    2. #he microstate is specified by the "uantum state of each particle in a

    system (for an *instein solid 4 of the "uanta of energy for each of N  

    oscillators)

    1. #he  multiplicity  is the number of microstates in a macrostate. %oreach macrostate, there is an extremely large number of possible

    microstates that are macroscopically indistinguishable.

    4. #he -undamental ssumption &or an isolated system, all

    accessible microstate are e5ually li>ely.

    ;. #he probability o& a macrostate is proportional to its multiplicity. Thiswill sufficient to explain irreversibility.