42
Magnetic dynamics of periodic and quasiperiodic arrays of NiFe stripes Filip Lisiecki

Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Magnetic dynamics of periodic and quasiperiodic

arrays of NiFe stripes

Filip Lisiecki

Piotrek
Stempel
Page 2: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Plan of presentation

• Introduction

• Subject of study and used methods

• Results

• Summary

2

Page 3: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

3

Introduction

Page 4: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Motivation

4

Electronic Spintronic

Information carrier:

electron charge

Information carrier:

electron spin

jc js

GMR (Nobel Prize in 2007)

TMR

STT

Magnonic

Information carrier:

magnon

*

*(c) A. V. Chumak, TU Kaiserslautern

Page 5: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Motivation

5

• Information carriers: magnons

(no electron flow, low energy

consumption)

• High operational frequency

(GHz, THz)

• Better miniaturization in

comparison to photonic

devices

• Integration with microwave

photonic and electronic devices

• Information as amplitude or

phase (parallel data

processing)

• Communication, processing and storage of information

Page 6: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Motivation

6

Logic gates Magnonic transistor

8mm1.5mm

A. V. Chumak et al., Nat. Commun. 2014

A. Khitun et al., J. Phys. D: Appl. Phys. 2010

Currently realization of these kind of devices based on YIG in mm scale

Page 7: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

𝑀 - magnetization

𝐻𝑒𝑓𝑓 - effective magnetic

field

𝛾 –gyromagnetic ratio

7

Magnetization precession

1

𝛾

𝑑𝑀

𝑑𝑡= −𝑀(t) × 𝐻𝑒𝑓𝑓(𝑡)

+𝛼

𝑀𝑀 ×𝑑𝑀

𝑑𝑡

𝛼 – damping coefficient

(Gilbert)

Landau-Lifshitz equation

*(c) D. Bozhko, AG Hillebrands, TU Kaiserslautern

*

Page 8: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

• Collective spins excitation

• Magnon - quasiparticle

• Energy

• Quasimomentum

• Mass

• Wave effects

• Much shorter wavelength

in comparison with

electromagnetic wave

8

Spin waves

𝜀 = ℏ𝜔

𝑝 = ℏ𝑘𝜆𝑘

*(c) D. Bozhko, AG Hillebrands, TU Kaiserslautern

*

Page 9: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

• Harmonic or pulsed magnetic field

• Ultrashort optical impulses

• Spin polarized current

• Coplanar waveguide (CPW)

[5]

9

Spin waves excitation

BLS spectroscopy

Microstrip antenna

*(c) D. Bozhko, AG Hillebrands, TU Kaiserslautern

*

Page 10: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

10

Magnonic crystals

a

*(c) A. Chumak, TU Kaiserslautern

*

*

Page 11: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

11

Magnonic crystals

V. L. Zhang et al., APL 2011

• Stripes array: Co(200 nm)/Py(300 nm)

H = 37 mT/μ0

Page 12: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

12

Subject of studyand used methods

Page 13: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

• Fibonacci:

quasiperiodic

structure

• 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2• A: 350 nm Py

(Ni80Fe20)

• B: 100 nm air

• Thickness 30 nm

13

Fibonacci and periodic stripes array

Page 14: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

• Poorly known in the literature

• Stripes of Co and Py (UAM)

• Rich spin waves spectra

14

Fibonacci stripes array

J. Rychły et al., PRB 2015

Fibonacci periodic

IDOS(fi) =

j=0

i

DOS fj

Page 15: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

15

Lithography process and lift-off

Page 16: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

16

Periodic and quasiperiodicstructures

Width: 349 nm Width: 352 nm (narrow)695 nm (wide)Permalloy

• 𝛼 = 0.008

• technological reasons

Page 17: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

17

Si

antenna

VNA-FMR antenna

G S G

Py

structures

Page 18: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Vector network analyzer (VNA)

• Spin excitation with magnetic field around coplanar

waveguide (CPW) lines

• Frequency sweeping 2 GHz – 13 GHz

• H = const (-440 to +440 Oe)

• Ferromagnetic resonance in relation to frequency

and magnetic field

Probe tips

T. Schwarze, PhD

Thesis, TUM 2013

Hext

18

VNA-FMR measurements

Page 19: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

19

VNA-FMR measurements

k

Hext

hrf

Page 20: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Results

20

Page 21: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

21

Fibonacci structure

VNA-FMR

Page 22: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

22

Periodic structure

VNA-FMR

Page 23: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Fibonacci structure

L-MOKE (UwB), minor loops

1

2

3

23

Page 24: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

24

Fibonacci structureVNA-FMR, MFM (UwB), minor loops

Hmin=-147 Oe1

Hmin=-99 Oe2

Page 25: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

25

Fibonacci structureVNA-FMR, MFM (UwB), minor loops

Hmin=-67 Oe3

Page 26: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Periodic structure

L-MOKE (UwB), minor loops

1

2

3

4

5

26

Page 27: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

27

Periodic structureVNA-FMR, MFM (UwB), minor loops

Hmin=-177 Oe Hmin=-144 Oe1 2

Page 28: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

28

Periodic structureVNA-FMR, MFM (UwB), minor loops

Hmin=-111 Oe Hmin=-88 Oe3 4

Page 29: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

29

Periodic structureVNA-FMR, MFM (UwB), minor loops

Hmin=-55 Oe5

Page 30: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Magnetization switching in stripes

30

Periodic Fibonacci

Page 31: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Magnetization switching in stripes

31

-350 -300 -250 -200 -150 -100 -50

-1,0

-0,5

0,0

0,5

1,0

M

/Ms

Field (Oe)

Periodic_5um_{xy}

Fibonacci_5um_{xy}

Simulations (M. Zelent - UAM)

Page 32: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Simulations (UAM)

• Periodic

• Fibonacci

32

Magnetization switching in stripes

Page 33: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Magnetization switching in stripes

• g = 0.76 μm, 1.50 μm,

10 μm, ∞ (single)

• s = 5 or 10 μm

• thickness: 30 or 50 nm

33

Page 34: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

-400 -300 -200 -100 0 100 200 300 400-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

M/M

s

Field (Oe)

Fibo 5um, 30nm, single

Per 5um, 30nm, single

-400 -300 -200 -100 0 100 200 300 400-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

M/M

s

Field (Oe)

Fibo 5um, 30nm, 0.76um

Per 5um, 30nm, 0.76um

L-MOKE (UwB)

Fibo/Per 5μm, 30nm, single Fibo/Per 5 μm, 30nm, gap 0.76 μm

Magnetization switching in stripes

34

Page 35: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Magnetization switching in stripes

Periodic

Fibonacci

Page 36: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

-400 -300 -200 -100 0 100 200 300 400-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

M/M

s

Field (Oe)

Fibo 5um, 50nm, single

Fibo 5um, 50nm, 10um

Fibo 5um, 50nm, 1.5um

Fibo 5um, 50nm, 0.76um

L-MOKE (UwB)

Magnetization switching in stripes

Page 37: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

Magnetization switching in stripes

-400 -300 -200 -100 0 100 200 300 400-1,2

-1,0

-0,8

-0,6

-0,4

-0,2

0,0

0,2

0,4

0,6

0,8

1,0

1,2

1,4

M/M

s

Field (Oe)

Fibo 5um, 50nm, single

Fibo 5um, 50nm, 10um

Fibo 5um, 50nm, 1.5um

Fibo 5um, 50nm, 0.76um

Page 38: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

L-MOKE (UwB)

Fibo 5um, 30nm, gap 1.5um Per 5um, 30nm, gap 1.5um

No clear switching pattern (defects?).

Magnetization switching in stripes

Page 39: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

• Periodic structures: visible acoustic mode, anti-parallel

configuration in MFM images and VNA-FMR spectra was observed

• Quasiperiodic structures: two coercive fields connected with

magnetization switching in stripes of different width (700 nm in

lower and 350 nm in higher fields), in VNA-FMR spectra acoustic

mode and additional, connected mostly with narrow stripes were

observed

• Different plateau slope in hysteresis loops for quasiperiodic and

periodic structures

• Reducing the gap between stripes array decreases interaction

between nanostripes

• Pattern in magnetization switching seen in simulations not

observed in experiment (defects?)

39

Summary

Page 40: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

[1] A. V. Chumak, A. A. Serga, and B. Hillebrands, “Magnon

transistor for all-magnon data processing,” Nat. Commun., vol. 5, p.

4700, Aug. 2014.

[2] J. Ding, M. Kostylev, and A. O. Adeyeye, “Magnetic

hysteresis of dynamic response of one-dimensional magnonic

crystals consisting of homogenous and alternating width nanowires

observed with broadband ferromagnetic resonance,” Phys. Rev. B,

vol. 84, no. 5, Aug. 2011.

[3] V. V. Kruglyak, S. O. Demokritov, and D. Grundler,

“Magnonics,” J. Phys. Appl. Phys., vol. 43, no. 26, p. 264001, 2010.

[4] M. Krawczyk and D. Grundler, “Review and prospects of

magnonic crystals and devices with reprogrammable band

structure,” J. Phys. Condens. Matter, vol. 26, no. 12, p. 123202, Mar.

2014.

40

Bibliography

Page 41: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

41

Piotr Kuświk

Hubert Głowiński

Michał Matczak

Janusz Dubowik

Feliks Stobiecki

Piotr MazalskiAndrzej Maziewski

Justyna Rychły

Mateusz ZelentMaciej Krawczyk

Page 42: Magnetic dynamics of periodic and quasiperiodic arrays of ...nanospin.agh.edu.pl/wp-content/uploads/Nanospin_Lisiecki.pdfMotivation 4 Electronic Spintronic Information carrier: electron

42

Thank you!