28
MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Embed Size (px)

Citation preview

Page 1: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

MANE 4240 & CIVL 4240Introduction to Finite Elements

Higher order elements

Prof. Suvranu De

Page 2: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Reading assignment:

Lecture notes

Summary:

• Properties of shape functions• Higher order elements in 1D • Higher order triangular elements (using area coordinates)• Higher order rectangular elements

Lagrange familySerendipity family

Page 3: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Recall that the finite element shape functions need to satisfy the following properties

1. Kronecker delta property

nodesotherallat

inodeatN i 0

1

...2211 uNuNu

Inside an element

At node 1, N1=1, N2=N3=…=0, hence

11uu

node

Facilitates the imposition of boundary conditions

Page 4: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

2. Polynomial completeness

yyN

xxN

N

ii

i

ii

i

ii

1

yxuIf 321

Then

Page 5: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Higher order elements in 1D

2-noded (linear) element:

1 2

x2x1

12

12

21

21

xx

xxN

xx

xxN

In “local” coordinate system (shifted to center of element)

1 2

x

a a a

xaN

a

xaN

2

2

2

1

x

Page 6: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

3-noded (quadratic) element:

1 2

x2x1

2313

213

3212

312

3121

321

xxxx

xxxxN

xxxx

xxxxN

xxxx

xxxxN

In “local” coordinate system (shifted to center of element)

1 2

x

a a

2

22

3

22

21

2

2

a

xaN

a

xaxN

a

xaxN

3

x3

x

axxax 321 ;0;

3

Page 7: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

4-noded (cubic) element:

1 2

x2x1

342414

3214

432313

4213

423212

4312

413121

4321

xxxxxx

xxxxxxN

xxxxxx

xxxxxxN

xxxxxx

xxxxxxN

xxxxxx

xxxxxxN

In “local” coordinate system (shifted to center of element)

1 2

2a/3x

a a

)3/)(3/)((16

27

))(3/)((16

27

)3/)(3/)((16

9

)3/)(3/)((16

9

34

33

32

31

axaxaxa

N

xaxaxaa

N

axaxaxa

N

axaxaxa

N

3

x3

xx4

4

3 4

2a/32a/3

Page 8: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Polynomial completeness

4

3

2

1

x

x

x

x 2 node; k=1; p=2

3 node; k=2; p=3

4 node; k=3; p=4

Convergence rate (displacement)

1;0

kpChuu ph

Recall that the convergence in displacements

k=order of complete polynomial

Page 9: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Triangular elements

Area coordinates (L1, L2, L3)1

A=A1+A2+A3Total area of the triangle

At any point P(x,y) inside the triangle, we define

A

AL

A

AL

A

AL

33

22

11

Note: Only 2 of the three area coordinates are independent, since

x

y

2

3

PA1

A2A3

L1+L2+L3=1

Page 10: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

A

ycxbaL iiii 2

12321312213

31213231132

23132123321

33

22

11

x1

x1

x1

det2

1

xxcyybyxyxa

xxcyybyxyxa

xxcyybyxyxa

y

y

y

triangleofareaA

Page 11: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Check that

yyLyLyL

xxLxLxL

LLL

332211

332211

321 1

Page 12: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

x

y

2

3

PA1

1

L1= constantP’

Lines parallel to the base of the triangle are lines of constant ‘L’

Page 13: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

We will develop the shape functions of triangular elements in terms of the area coordinates

x

y

2

3

PA1

1

L1= 0

L1= 1

L2= 0

L2= 1L3= 0

L3= 1

Page 14: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

For a 3-noded triangle

33

22

11

LN

LN

LN

Page 15: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

x

y

2

3

1

L1= 0

L1= 1L2= 0

L2= 1

L3= 0 L3= 1

For a 6-noded triangle

L1= 1/2L2= 1/2

L3= 1/2

4

5

6

Page 16: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

How to write down the expression for N1?

Realize the N1 must be zero along edge 2-3 (i.e., L1=0) and at nodes 4&6 (which lie on L1=1/2)

2/10 111 LLcN

Determine the constant ‘c’ from the condition that N1=1 at node 1 (i.e., L1=1)

2/12

2

12/111)1(

111

11

LLN

c

cLatN

Page 17: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

136

235

214

333

222

111

4

4

4

)2/1(2

)2/1(2

)2/1(2

LLN

LLN

LLN

LLN

LLN

LLN

Page 18: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

x

y

2

3

1

L1= 0

L1= 1L2= 0

L2= 1

L3= 0 L3= 1

For a 10-noded triangle

L1= 2/3

L2= 2/3

L3= 1/3 L3= 2/3

L2= 1/3

L1= 1/3

5

4

67

89

10

Page 19: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

32110

3327

2326

2215

1214

3333

2222

1111

27

:

)3/1(2

27

)3/1(2

27

)3/1(2

27

)3/1(2

27

)3/2)(3/1(2

9

)3/2)(3/1(2

9

)3/2)(3/1(2

9

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

LLLN

Page 20: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

NOTES:1. Polynomial completeness

3 node; k=1; p=2

6 node; k=2; p=3

10 node; k=3; p=4

Convergence rate (displacement)

3223

22

1

yxyyxx

yxyx

yx

Page 21: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

2. Integration on triangular domain

)!1(

!!.2

)!2(

!!!2.1

2121 21

321

mk

mkldSLL

nmk

nmkAdALLL

edge

mk

A

nmk

1

x

y

2

3

l1-2

Page 22: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

3. Computation of derivatives of shape functions: use chain rule

x

L

L

N

x

L

L

N

x

L

L

N

x

N iiii

3

3

2

2

1

1

e.g.,

ButA

b

x

L

A

b

x

L

A

b

x

L

2;

2;

2332211

e.g., for the 6-noded triangle

A

bL

A

bL

x

N

LLN

24

24

4

12

21

4

214

Page 23: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Rectangular elements

Lagrange familySerendipity family

Lagrange family

4-noded rectangle

x

ya a 12

3 4

b

b

In local coordinate system

ab

ybxaN

ab

ybxaN

ab

ybxaN

ab

ybxaN

4

))((4

))((4

))((4

))((

4

3

2

1

Page 24: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

9-noded quadratic

x

ya a 12

3 4

b

b

Corner nodes

224223

222221

2

)(

2

)(

2

)(

2

)(

2

)(

2

)(

2

)(

2

)(

b

yby

a

xaxN

b

yby

a

xaxN

b

yby

a

xaxN

b

yby

a

xaxN5

6

7

89

Midside nodes

2

22

2822

22

7

2

22

2622

22

5

2

)(

2

)(

2

)(

2

)(

b

yb

a

xaxN

b

yby

a

xaN

b

yb

a

xaxN

b

yby

a

xaN

Center node

2

22

2

22

9 b

yb

a

xaN

Page 25: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

54322345

432234

3223

22

1

yxyyxyxyxx

yxyyxyxx

yxyyxx

yxyx

yx

NOTES:1. Polynomial completeness

4 node; p=2

9 node; p=3

Convergence rate (displacement)

Lagrange shape functions contain higher order terms but miss out lower order terms

Page 26: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Serendipity family

Then go to the corner nodes. At each corner node, first assume a bilinear shape function as in a 4-noded element and then modify:

22ˆ

4

))((ˆ

8511

1

NNNN

ab

ybxaN

x

ya a 12

3 4

b

b

5

6

7

8

First generate the shape functions of the midside nodes as appropriate products of 1D shape functions, e.g.,

2

22

82

22

5 2

)(;

2

)(

b

yb

a

xaN

b

yb

a

xaN

4-noded same as Lagrange

8-noded rectangle: how to generate the shape functions?

“bilinear” shape fn at node 1:

actual shape fn at node 1:

Page 27: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

Corner nodes

224

))((

224

))((224

))((

224

))((

784

763

652

851

NN

ab

ybxaN

NN

ab

ybxaN

NN

ab

ybxaN

NN

ab

ybxaN

x

ya a 12

3 4

b

b

5

6

7

8

Midside nodes

2

22

82

22

7

2

22

62

22

5

2

)(

2

)(

2

)(

2

)(

b

yb

a

xaN

b

yb

a

xaN

b

yb

a

xaN

b

yb

a

xaN

8-noded rectangle

Page 28: MANE 4240 & CIVL 4240 Introduction to Finite Elements Higher order elements Prof. Suvranu De

54322345

432234

3223

22

1

yxyyxyxyxx

yxyyxyxx

yxyyxx

yxyx

yx

NOTES:1. Polynomial completeness

4 node; p=2

8 node; p=3

Convergence rate (displacement)

12 node; p=4

16 node; p=4

More even distribution of polynomial terms than Lagrange shape functions but ‘p’ cannot exceed 4!