10
(Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

(Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Embed Size (px)

Citation preview

Page 1: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

(Massive) Black Hole X-Ray Binaries

Roger BlandfordKIPAC, Stanford

+Jane Dai, Steven Fuerst, Peter Eggleton

(Also Hameury, J-P L)

Page 2: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

RE J1034+396•z=0.042 Seyfert galaxy

•Lbol ~ 1044.7 erg s-1

•FUV-SX

•XMM-Newton observations•1 hr QPO in ~1 d observing•Best example to date in AGN of a phenomenon quite common in stellar XRB•<Q> ~ 16 overall but much higher for section of data •~7% sinusoidal profile•Interpreted as diskoseismic mode•Could it be an EMRI mass transfer binary?•Planetars???

2 xi 2010 KIAA 2

Page 3: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Conservative Mass transfer

Transfer m -> M at constant m+M, J J ~ mMP1/3

If M>>m and gravitational radiation wins,• dJ/dt~-m2M4/3P-7/3

If m fills Roche lobe, P~-1/2 ~m0.8 =>J~m1.3

• J decreases• Orbit expands• Period lengthens

2 xi 2010 KIAA

Stable Mass Transfer

3

cf Hameury et al

Page 4: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Relativistic Roche Problem

Riemann -> local tidal tensor. Evaluate volume within critical

equipotential and evaluate• r(L1)=0.3m1/3 P2/3 Ro

• (Roche)=90P-2 g cm-3

• Good for N, ISCO (all a)• Accurate interpolation

Lose mass through L1, L22 xi 2010 KIAA

Roche Potential

L1 L2

4

Page 5: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Pre-Roche evolution Gravitational radiation dominates

• Need PPN corrections to torque

Low mass star fills Roche lobe when P=PR=8m0.8hr

[ => m < 0.1 Mo ]

Outside ISCO• P > PISCO ~ M

[=>M<3x107Mo]

Time to overflow tR-t=2x105M6

-2/3m1.3[(P/PR)8/3-1] yr

2 xi 2010 KIAA 5

Page 6: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Stellar Evolution Differs from close binary

case tdynamical << ttransfer << tKelvin S[m] will be frozen Solve:

dP/dm=-Gm/4r4

dr/dm=1/4r2[S(m),P]

=> d log </d log m = =2 for convective low mass star

2 xi 2010 KIAA

dS/dm >=0

6

Page 7: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Period vs mass

2 xi 2010 KIAA 7

Page 8: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Post-Roche Evolution After mass transfer orbit expands

• P ~ m-/2

~ m-1 for low mass star

t-tR=1400M6-2/3m-1 P8/3 [(P/PR)11/3-1] yr; [~ 5000yr]

Conservative Mass loss dm/dt = (dm/dt)R = -1.3x1020M0.7P-0.3 g s-1 [~ 1021g s-1]

~ -m8.3 eventually till ttransfer > tKelvin

Dynamical complications• Holding pattern?• Interactions, drag

KIAA2 xi 2010 8

Page 9: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Mass transfer Mass flows from L1 onto

relativistic disk forming hotspot

Gas spirals in to rms before plunging into hole

Inclined orbits are more complex as streams may not self-intersect

Disk flow may have complex gaps and resonances

Hot spot Doppler beams emission

Also spiral shocks, eccentricity

2 xi 2010 KIAA

L[Ω*,r(L1)] = LK [rout ]

9

Page 10: (Massive) Black Hole X-Ray Binaries Roger Blandford KIPAC, Stanford +Jane Dai, Steven Fuerst, Peter Eggleton (Also Hameury, J-P L)

Observed X-ray emission

2 xi 2010 KIAA

a=0 a=0.998i=5

i=30 i=45a=0 a=0.998

i=30

10