41
Mathematics

Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Embed Size (px)

Citation preview

Page 1: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Mathematics

Page 2: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Session

Three Dimensional Geometry–1(Straight Line)

Page 3: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Session Objectives

Class Exercise

Equation: Passing Through a Fixed Point and Parallel to a Given Vector

Equation: Passing Through Two Fixed Points

Co-linearity of Three Points

Angle Between Two Lines

Intersection of two lines, Perpendicular distance, Image of a Point

Shortest Distance Between Two Lines

Page 4: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Equation of a Line Passing Through a Fixed Point and Parallel to a Given Vector

a

OY

Z

X

,,,,,,,,,,,,,,m

r

AP,

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Let a be the position vector of a fixed point A.

Let r is the position vector of any arbitrary

point P on the line and line is parallel to m

i.e. AP = m where is any real number.

,,,,,,,,,,,,, ,r - a= m

,,,,,,,,,,,,, ,r =a+ m Vector form

Page 5: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Cartesian Form

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ,,,,,,,,,,,,, ,

1 1 1Let r = xi+yj+zk, a= x i+y j+z k and m=ai+bj+ck

1 1 1x - x y - y z - z= =

a b c

Page 6: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example-1

x - 5 y+4 z- 6If cartesian equation of a line is = = , then

3 7 2find its vector equation.

, x - 5 y+4 z - 6

Solution: Let = = = is any real number3 7 2

x =3 +5, y =7 - 4, z =2 +6

ˆˆ ˆ

I f r = xi+yj+zk is the position vector of point P(x, y, z) on line.

ˆˆ ˆ r =(3 +5) i+(7 - 4)j+(2 +6)k

ˆ ˆˆ ˆ ˆ ˆ r =5i - 4j+6k + (3i+7j+2k)

Page 7: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example –2

ˆˆ ˆ

Find the equation of a line in both vector and cartesian form,

which passes through the point 5, - 2, 4 and parallel to the

vector 2i - j+k.

ˆˆ ˆSolution: We have point : 5, - 2, 4 and parallel vector : 2i - j+k.

ˆ ˆˆ ˆ ˆ ˆ,,,,,,,,,,,,, ,a=5i - 2j+4k and m=2i - j+k

ˆ ˆˆ ˆ ˆ ˆ r =5i - 2j+4k + (2i - j+k)

,,,,,,,,,,,,, ,r =a+ m Vector form

ˆˆ ˆ r =(5+2 ) i - (2+ )j+(4+ )k Vector equation

Page 8: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

Let P(x, y, z) lie on this line and r is the position vector of P.

ˆ ˆˆ ˆ ˆ ˆ xi+yj+zk =(5+2 ) i+(-2- )j+(4+ )k

x =5+2 , y =-2- , z = 4+

x - 5 y+2

= =z- 4 (Cartesian form)2 -1

Page 9: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Passing Through Two Fixed Points

a

b

OY

Z

X

r

AB P

Let A and B be the given points with position

vectors a and b respectively. Let r be position

vector of any point P on the line AB.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,AP is collinear with AB

AP = AB, where is any scalar.

r - a= b- a

r =a b- a

Page 10: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Cartesian Form

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

1 1 1 2 2 2Let r = xi+yj+zk, a= x i+y j+z k and b= x i+y j+z k

1 1 1

2 1 2 1 2 1

x - x y - y z - z= =

x - x y - y z - z

Page 11: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example –3

Find the vector and the Cartesian equations for the line through

the points A(3, 4, -7) and B(5, 1, 6).

Solution: Let a and b be the position vectors of the points

A 3, 4, - 7 and B 5, 1, 6 .

ˆ ˆˆ ˆ ˆ ˆa=3i+ 4j - 7k and b=5i+ j+6k

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆb- a= 5i+ j+6k - 3i+ 4j - 7k =2i - 3j+13k

Page 12: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

Let r be the position vector of any point on the line. Then,

r = a+ b- a

ˆ ˆˆ ˆ ˆ ˆ r =3i+ 4j - 7k + 2i - 3j+13k

1 1 1

2 1 2 1 2 1

x - x y - y z - zCartesian form of the equation is = =

x - x y - y z - z

x - 3 y - 4 z+7 x - 3 y - 4 z+7

= = = =5- 3 1- 4 6+7 2 -3 13

Page 13: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example –4

Find the coordinates of the points where the line through A(5, 1, 6) and

B(3, 4, 1) crosses the y z- plane.

Solution: The vector equation of the line through the points A and B is

ˆ ˆˆ ˆ ˆ ˆ r =5i+ j+6k + 3- 5 i+ 4- 1 j+ 1- 6 k

ˆ ˆˆ ˆ ˆ ˆ r =5i+ j+6k + -2i+3j - 5k ... i

Let P be the point where the line AB crosses the y z-plane. Then,

the position vector of the point P is ˆˆyj+zk.

Page 14: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

This point must satisfy (i)

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ yj+zk =5i+ j+6k + -2i+3j - 5k

ˆ ˆˆ ˆ ˆ yj+zk = 5- 2 i+ 1+3 j+ 6- 5 k

0=5- 2 ... ii

y =1+3 ... iii

z =6- 5 ... iv

Solving (ii), (iii) and (iv), we get17 13

y = , z =-2 2

17 13The co- ordinates of the required points are 0, , - .

2 2

Page 15: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Co-linearity of Three Points

Let A, B, C be three points with position vectors a, b, c respectively.

Equation of line passing through A and B is

r =a + b- a ... i

A, B, C are collinear if and only if C satisfies i

c=a + b- a

Page 16: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example -5

ˆˆ ˆ ˆ ˆ ˆ ˆ ˆk, 3i k are collinear.Show that points with position vectors i - 2j+3k, 2i - j+

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ

Solution: Let a= i - 2j+3k, b=2i - j+k and c =3i - k.

As we know a, b, c will be collinear if

. c=a+ (b- a) for some real number

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ 3i - k = i - 2j+3k + (2i - j+k - i+2j - 3k)

ˆ ˆˆ ˆ ˆ ˆ ( i+ j - 2k) =2i+2j - 4k

=2

a, b, c are collinear.

Page 17: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Angle Between Two Lines

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 1 2 2

1 2

Let r =a + b and r =a + b be two straight lines.

These straight lines are in the direction of b and b .

I f be the angle between these two lines, then is also

the angle between,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2 b and b .

,,,,,,,,,,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,

,,,,,,,,,,,,, ,1 2

1 2 1 21 2

b . bb . b = b b cos cos =

b b

,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2

I f lines are perpendicular, then

b . b =0

,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2

I f lines are parallel, then

b = b

Page 18: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Cartesian Form

1 1 1 2 2 2

Let the equations of two lines be

x - x y - y z - z x - x y - y z - z= = and = = .

a b c a' b' c'

2 2 2 2 2 2

aa +bb +cccos =

a +b +c a +b +c

I f the lines are perpendicular, then

aa +bb +cc =0

If the lines are parallel, then

a b c= =

a' b' c'

Page 19: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example –6

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ

Find the angle between the pair of lines

r =3i+2j - 4k + i+2j+2k

r =5i - 2k + 3i+2j+6k

,,,,,,,,,,,,,,,,,,,,,,,,,, ,,

,,,,,,,,,,,,,,,,,,,,,,,,,, ,, 1 1

2 2

Solution: The given lines is of the form

r =a + b

r =a + b

ˆ ˆˆ ˆ ˆ ˆ,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2where b = i+2j+2k and b =3i+2j+6k

,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2

Let be the angle between given lines, then is

also the angle between the direction of b and b .

Page 20: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

ˆ ˆˆ ˆ ˆ ˆ

i+2j+2k . 3i+2j+6kcos =

1+4+4 9+4+36

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 2

1 2

b . bcos =

b b

3+4+12

cos =3×7

-1 19=cos

21

Page 21: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example –7

.

Find the angle between the pair of lines:

x - 2 y+3 x+1 2y - 3 z - 5= , z =5 and = =

3 -2 1 3 2

Solution: The given equations can be written as

3y -x - 2 y+3 z - 5 x+1 z - 52= = ... i and = = ... ii

33 -2 0 1 22

ˆ ˆˆ ˆ ˆ ˆ

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2

1 2

Let b and b be vectors parallel to i and ii , then

3b =3i - 2j+0k and b = i+ j+2k

2

Page 22: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

Let be the angle between given lines, then

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 2

1 2

b . bcos =

b b

3- 3+0

cos = =09

9+4+0 1+ +44

=

2

Page 23: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Intersection of Two Lines Example - 8

x y - 2 z+3 x - 2 y - 6 z - 3Show that the lines = = and = = intersect.

1 2 3 2 3 4Also find the point of intersection.

x y - 2 z+3

Solution: Let = = = , then1 2 3

x = , y =2 +2 and z =3 - 3

. Any general point on this line is , 2 +2 , 3 - 3

x - 2 y - 6 z - 3

Let = = = , then2 3 4

3 x =2 +2, y =3 +6 and z = 4

Page 24: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

3 . Any general point on this line is 2 +2, 3 +6, 4

If the lines intersect, then they have a common point.

3 =2 +2, 2 +2=3 +6 and 3 - 3= 4

4

2 =2 ... i

2 3 = 4 ... ii

3 =6 ... iii

2 and 0 Solving i and ii , we get =

Page 25: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

2 0

and = satisfy iii .

The given lines intersect.

Putting =2 in , 2 +2 , 3 - 3 , the point of intersection is

2, 6, 3 .

Page 26: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Perpendicular Distance Example –9

Find the foot of the perpendicular from the point (1, 2, - 3) on the line

x+1 y - 3 z= = .

2 -2 -1Also find the length of the perpendicular.

P(1, 2, -3)

x+1 y - 3 z= =

2 -2 -1 L 2 - 1, - 2 +3, -

x+1 y - 3 z

Solution: Let = = =2 -2 -1

x =2 -1, y =-2 +3, z =-

.

Any general point on this line is

2 - 1, - 2 +3 , -

Page 27: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

Let the co- ordinates of L be 2 - 1, - 2 +3 , - ... i

. Direction ratios of PL are 2 - 1- 1, - 2 +3- 2 , - +3

i.e. 2 - 2, - 2 +1 , - +3

Direction ratios of the given line are 2, - 2, -1.

PL is perpendicular to the given line.

0 2 2 - 2 - 2 - 2 +1 - - +3 =1

Page 28: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

Putting =1 in i , the coordinates of L are 1, 1, - 1 .

2 2 2PL = 1- 1 + 1- 2 + -1+3 = 5 units.

Page 29: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Image of a Point Example –10

ˆ ˆˆ ˆ ˆ ˆFind the image of the point (2, - 1, 5) in the line

r = 11i - 2j - 8k + 10i - 4j - 11k .

Q

A B

P (2, -1, 5)

L

Solution:

Let Q be the image of the given

point P(2, -1, 5) in the given

line and let L be the foot of the

perpendicular from P on the given line.

Page 30: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

r

.

in the equation of a line gives the position vector of

a point on it for different values of

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ

Let the position vector of L be

11i - 2j - 8k + 10i - 4j - 11k = 11+10 i - 2+4 j - 8+11 k ... i

ˆˆ ˆ ˆ ˆ ,,,,,,,,,,,,,,

PL = 11+10 i - 2+4 j - 8+11 - 2i - j+5k

ˆˆ ˆ = 9+10 i - 1+4 j - 13+11 k

Page 31: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

ˆˆ ˆ

,,,,,,,,,,,,,,

PL is perpendicular to the given line which is

parallel to b=10i - 4j - 11k

ˆ ˆˆ ˆ ˆ ˆ. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,

PL . b=0 9+10 i - 1+4 j - 13+11 k 10i - 4j - 11k =0

10 9+10 +4 1+4 +11 13+11 =0

=-1

ˆ ˆˆ ˆ ˆ ˆ1 1 1 2 3 Position vector of L is 11- 10 i - 2- 4 j - 8- 11 k = i+ j+ k

Page 32: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

ˆ ˆˆ ˆ ˆ ˆˆˆ ˆ2 3

1 1 1

L is the mid- point of PQ.

2i - j+5k + x i+y j+z k = i+ j+ k

2

1 1 1Let the coordinates of Q be x , y , z .

ˆ ˆˆ ˆ ˆ ˆ

1 1 12+x -1+y 5+zi+ j+ k = i+2j+3k

2 2 2

1 1 11 1 1

2+x -1+y 5+z=1, =2, =3 x =0, y =5, z =1

2 2 2

Hence, the image of P(2, -1, 5) in the given line is (0, 5, 1).

Page 33: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Shortest Distance Between Two Lines

DB I2

I1C A

90 o

90 o

b 2

b 1

Two straight lines in space, which do not intersect and are also not

parallel, are called skew lines.

(Which do not lie in the same plane)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,,,,,

1 1 2 2

1 2

Let r =a + b and r =a + b be the equations

of two skew lines and respectively.

Page 34: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Cont.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

1 2

1 2

I f AB =d is the shortest distance between and . Then,

AB is parallel to b ×b .

ˆ

ˆ

,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,, 1 2

1 2

I f n is a unit vector along AB, then

b ×bn=

b ×b

ˆ,,,,,,,,,,,,,,AB = d n

1 1

2

a

,,,,,,,,,,,,,,

,,,,,,,,,,,,,, 2

Let C be a point on with position vector and

D be on with position vector a .

Page 35: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Cont.

Di uuur uuur uuur uuur

stance AB = The length of projection of CD on AB = CD cos

ˆ

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,I f is the angle between CD and AB, then

will be angle between CD and n.

ˆ

ˆ

uuur

uuurCD.n

cos =CD n

.

uur uur uur uuruuur

uur uur2 1 1 2

1 2

a a b ×bCD cos =

b ×b

uur uur uur uuruuur

uur uur2 1 1 2

1 2

a - a . b ×bAB =d =

b ×b

Page 36: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Cont.

. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2 1 1 2The two lines will intersect when d=0 i.e. a - a b b =0.

b

b

90 o

90–o

D(B)

C

A

I2

I1

90 o

,,,,,,,,,,,,,,,,,,,,,,,,,, ,,

2 1

I f two lines are parallel, then

b× a - ad=

b

Page 37: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example –11

ˆ ˆˆ ˆ ˆ ˆ

ˆ ˆˆ ˆ ˆ ˆ

Find the shortest distance between the lines

r = i+2j+3k + 2i+3j+4k and

r = 2i+4j+5k + 3i+4j+5k .

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ Solution: The given lines are

r = i+2j+3k + 2i+3j+4k and r = 2i+4j+5k + 3i+4j+5k

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 1 2 2

The shortest distance between the lines

r =a + b and r =a + b is

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,2 1 1 2

1 2

a - a . b ×bd=

b ×b

Page 38: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2 1 2a = i+2j+3k, a =2i+4j+5k, b =2i+3j+4k and b =3i+4j+5k

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ,,,,,,,,,,,,,,,,,,,,,,,,,,,,2 1a - a = 2i+4j+5k - i+2j+3k i+2j+2k

ˆˆ ˆ

ˆˆ ˆ,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2

i j k

b ×b = 2 3 4 =- i+2j - k

3 4 5

ˆ ˆˆ ˆ ˆ ˆ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2 1 1 2a - a . b ×b = i+2j+2k . - i+2j - k =-1+4- 2=1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,1 2and b ×b = 1+4+1 = 6

Page 39: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Solution Cont.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,2 1 1 2

1 2

a - a . b ×b 1 1d= = =

6 6b ×b

Page 40: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Example -12

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ . Show that the following pair of lines intersect :

r = i+ j - k + 3i - j and r = 4i - k + 2i+3k

Solution: The lines will intersect if shortest distance between them = 0

. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,2 1 1 2i.e. a - a b b =0

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ. 4i - k i+ j - k 3i - j 2i+3k

ˆˆ ˆ ˆ ˆ= 3i - j . -3i - 9j+2k

=-9+9=0

Therefore, the given lines intersect.

Page 41: Mathematics. Session Three Dimensional Geometry–1(Straight Line)

Thank you