16
May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sci veres 1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except DC-DC)

May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

Embed Size (px)

Citation preview

Page 1: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 1

Pixel Electronics slides for UCSC

Cover 0.13 FE chip

ROD

Other Activities (except DC-DC)

Page 2: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 2

Progress in FY07

• Epilogue from 2004 test chip• Preamp chip submission & testing• Workshop at CERN• Work-plan for full size chip submission

– Includes non-US manpower• CPPM:• Bonn:• Genova:

– US to focus on unique capabilities• Analog design• Architecture• Full chip integration

Page 3: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 3

2004 test chip epilogue

• CPPM has prepared an SEU measurement setup using the LBNL 2004 0.13um test chip.

• They are irradiating with 20GeV protons at CERN right now to extend the studies done at the LBNL 88” cyclotron in FY06.

• LBNL simply provided test boards, a few chips, and advice, but we are getting a great deal in return

• More on collaboration with European institutes later…

Page 4: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 4

Analog test chip submitted Feb. 07

• 130nm bulk CMOS• 840 pixels complete with threshold and bias

registers. • 2 basic charge-integrating amplifier

designs: – resistor continuous reset.

– current source continuous reset.

• nominal current 22A/pixel– Goal for final chip is ~10A/pixel

• Simulated ENC ~200e- for 400fF input load and ~20ns peaking time– Exact value depends on many tunable

parameters

2.8mm

3.6m

m

Page 5: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 5

Analog test chip plans

• Expected chip delivery late May• Test board in fabrication now• Initial “checkout” by Abder at LBNL• Distribution of chips to other test efforts in June/July

– Interest from European collaborators to participate in testing

• Some irradiation possible in FY07, but mainly in 08– Hope that European colleagues will set up irradiation tests in

FY08- no project fund request for this. – Note that all transistors are linear (with guard rings around Nmos)

• Critical initial measurements expected– Threshold dispersion– Uniformity across array. Operating margin.– Current consumption, noise and timewalk

Page 6: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 6

Pixel Upgrade Electronics Workshop

• Held on March 22 at CERN following ATLAS-CMS Electronics (ACES) workshop. http://indico.cern.ch/conferenceDisplay.py?confId=13957

• 7 electical engineers not presently involved in pixels attended this meeting– CPPM, Bonn, Nikef, Genova– Clearly there is interest

• Work Plan drafted in April to foster efficient collaboration– First global chip designers’ pone meeting to go over this plan isnext

week

Page 7: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 7

Plans for FY08

• Work-plan milestones– Architecture definition: September 2007– Initial Design review: January 2008– Final Design review: September 2008– First full size chip submission: December 2008

• LBNL engineering manpower– 100% Abder Mekkaoui: Lead IC designer, analog front end, integration– 40% Dario Gnani: IC designer, High level description, readout logic– 30% George Chao: Pad frame– 10% Peter Denes: Organization, pads. (no cost to project)

• LBNL purchases/fabrications– Assume a second iteration of front end design (if nothing else to fine

tune lower current modifications): $65K including test board.

Page 8: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 8

FY09

• Continue same level of design effort until submission– For Dec. submission this is 25% of FY08 manpower cost

• Reduced effort still needed after submission in FY09 for simulation and testing– Take 50% of FY08 cost for remaining 75% of FY09

• Finally need to cover test board design (based on existing TPLL) and fabrication– EE, drafter, and board fab cost. – Student-like personnel to operate test setup

• Cost of engineering run to be paid out of BL replacement ATLAS project, which is M&O-B with the usual sharing.– 20% of $400K

Page 9: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 9

LBNL FE chip Cost breakdown FY08-09

Page 10: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 10

Chip RequirementsPixel size 50 x 250 m2

Bump pad diameter 12 m

Input DC-coupled negative polarity

Normal pixel input capacitance range* 300-500 fF

Long pixel input capacitance range* 450-700 fF

In-time threshold with 20ns gate 4000 e

Two-hit time resolution 400 ns

DC leakage current tolerance 100 nA

Single channel ENC sigma (400fF) 300 e

Tuned threshold dispersion 100 e

Analog supply current/pixel @400fF 10 A

Radiation tolerance 200 MRad

Average hit rate 200 MHz/cm2

Acquisition mode Data driven with time stamp

Time stamp precision 8 bits

Readout initiation Trigger command

Max. number of continuous triggers 16

Trigger latency 3.2 s

Single chip data output rate 160 Mb/s

* Low value given by planar sensors and high value by 3D.

Very difficult.Critical for power distribution and material

High luminosity and small radius.Wants new ROD

Page 11: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 11

ROD development

• ROD total bandwidth limited by output s-Link at 1.28Gb/s. • This is only enough for 8 chips at 160Mb/s each.• This would have to fed into the ROD on 32 40Mb/s inputs. • To read out a single R=4cm layer would need 94 RODs!• It would be much cheaper and reliable to build fewer new, faster

RODs using modern components• Can keep the basic data flow architecture, but simply implement

within new FPGA. • This is NOT yet an urgent need. Could in principle start in FY09

instead of FY08, but– There is available manpower in FY08– Early design would feed-back into chip I/O architecture, leading

to a better system– There is synergy with PLL-based test setup needs

Page 12: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 12

ROD & PLL test setup

• Interface definition is common to ROD and PLL test setup work, and is needed for chip architecture design.

• Expertise at LBNL is common to ROD and PLL test setup (same people)

• FY08 Tasks to be covered in the ROD/PLL area are:– Interface definition– Schematic layout of revised PLL test card – Initial look at new generation candidate FPGA for replacement ROD.

• FY08 requested resources (split between chip and ROD)– 0.2 FTE under 4.1.2.1– 0.083 FTE under ROD– 10K M&S under ROD (Xilinix evaluation boards)

• FY09 requested resources (split between chip and ROD)– 0.53 FTE under 4.1.2.1 (includes PLL test card layout & fab)– 0.3 FTE under ROD (prototype BOC and ROD design)– 30K M&S under 4.1.2.1 (PLL test card fab)

Page 13: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 13

LBNL ROD Cost breakdown FY08-09

Page 14: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 14

Other LBNL activities

• Progress in FY07 in – 3D sensor testing and – Nanowire carpet hybrid pixel development

• 3D sensor testing– Minor involvement but very positive impact

• Established characterization setup at CERN enabling test work by U. of Oslo

• Provided test boards and debugging help• Results from this work used to specify load requirement on new

130nm amplifier.

– Will need to increase involvement in FY09 once first 130nm full chip is available

• Note request for “tester” support in FY09 4.1.2.1.

Page 15: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 15

Nanowire carpet hybrid pixelsW. Kim (molecular foundry), C. Tindall (eng.), H. Spieler (phys.), M.

Garcia-Sciveres (phys.), and brand new addition CERN Medipix group

2007 Realized implementation

Concept shown at UCSC upgrade meeting Nov. 2005

Page 16: May 2007Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres1 Pixel Electronics slides for UCSC Cover 0.13 FE chip ROD Other Activities (except

May 2007 Pixel Electronics --- US ATLAS Upgrade R&D --- Garcia-Sciveres 16

Nanowire carpet hybrid pixels (cont.)

• Funding sources so far– LBNL molecular foundry (FY06)

– LBNL LDRD “surplus” (FY06)

– ATLAS project R&D 0.07FTE (FY07)

– No explicit ATLAS R&D request for FY08

Diode behavior of NW carpet sample fabricated by C. Tindall in FY07