34
IBM T.J. Watson Research Center IBM T.J. Watson Research Center © 2011 IBM Corporation IBM T.J. Watson Research Center IBM T.J. Watson Research Center © 2011 IBM Corporation Matt Copel MEIS of Materials for Post-Silicon Electronics

MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Matt Copel

MEIS of Materials for Post-Silicon Electronics

Page 2: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Outline

• Graphene growth modes on SiC

• Contacts to carbon nanotubes (CNTs)

• Materials for the PiezoElectronic Transistor (PET)

• Methods

– MEIS with toroidal energy analyzer

Channeling

Page 3: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Graphene via thermal decomposition of SiCJim Hannon, Ruud Tromp, Toshi Oida

• At temperatures >1200°C, SiC decomposes

• Liberated Si evaporates from the surface

• The carbon left behind forms graphene

• 3 SiC bilayers must decompose to form one graphene layer

• Wafer-scale synthesis process

6H

(1120) projection

2.5 ÅA

B

C

A

B

C

SiC bilayer

Page 4: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Proposed Agenda

• Determine the graphene growth mode using isotopic labeling

– Grow a thin (~3 ML) epitaxial Si13C “marker” layer

– Use medium energy ion scattering (MEIS) to measure where the 13C goes when graphene forms

PRL 107, 166101 (2011)

Page 5: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

What is the graphene growth mode?

• Does a second layer (red) form on top of, or underneath, pre-

existing layers?

“layer by layer” “from the inside out”

Page 6: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Growth on Si-face and C-face is very different

• Graphene layers are epitaxial on the Si face (evidence for “inside out”?)

• (Nearly) random stacking seen on C face.

Gr/SiC(0001)

Silicon Face

Gr/SiC(0001)

Carbon Face

Emtsev et al. PRB 77 (2008) 155303

Page 7: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

A direct measurement using isotopic labeling

• Grow ultra thin layer of SiC via CVD with 13C-ethylene

• Make graphene and measure the 13C depth profile using MEIS

• Do this for both SiC(0001) and SiC(0001)

This ? …… Or this?

Can these even be made?

Page 8: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

MEIS simulations for two possible outcomes

• Should be easy to distinguish between the two casesC

Page 9: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Grow a few bilayers of Si13C via CVD

• CVD growth: disilane + ethylene

– 1200 °C

• Very low growth rate

– No nucleation (~1 bilayer/min)

– Only step-flow growth

• After SiC growth, make graphene

in the LEEM

– Buffer layer formed at 1270 C

– Subsequent layers at 1450 C

Page 10: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Si13C CVD Growth

Page 11: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

MEIS analysis: Si-face

• Blue: 1.3 carbon layers on SiC. 13C

content of the graphene is 80%

• Green: 2.7 carbon layers on SiC. Top

half of the graphene is 80% 13C, while

the bottom half is only 45% 13C.

• Black dashed: simulation for the reverse

stacking (45% 13C on top of 80% 13C).

Energy (eV)

Page 12: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

MEIS Analysis: C-face

• Blue: 1.5 carbon layers. 13C content is

76%.

• Green: 2.5 carbon layers: 61% 13C in the

top half, 17% 13C in the lower half.

• Black: 3.5 carbon layers: 61% 13C in the

top 1/3, 20 % in the bottom 2/3.

Energy (eV)

Yie

ld (

counts

)

top 1/3

bottom 2/3

graphene

SiC

graphene

Page 13: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Summary

• Graphene grows “from the inside out” on Si-face and C-face SiC(0001)

– Isotopic labeling, monolayer epitaxy

– LEEM → 2d info

– MEIS → depth

• Disordered growth on C-face has other causes

– maybe local bonding arrangements?

6H

(1120) projection

2.5 ÅA

B

C

A

B

C

SiC bilayer

Si face

C face

Page 14: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

The PiezoElectronic Transistor: Forcing Materials to Switch

M. Copel,Brian Bryce, Josei Chang, Li-Wen Hung, Marcelo Kuroda, Xiao-Hu

Liu, Glen Martyna, Hiro Miyazoe, Dennis Newns, Stephen

Rossnagel, Alex Schrott, Tom Shaw, Paul Solomon, Tom Theis,

John Yurkas

IBM TJ Watson Research Center, Yorktown Hts, NY 10598, USA

Susan Trolier-McKinstry, Ryan Keech, Smitha Shetta

Penn State

Page 15: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

What is thePiezoelectronic Transistor (PET)?

� Idea

– Couple an actuator to a sensor

– Actuator = piezoelectric

– (PZT, PMN-PT)

– Expands under applied voltage

– Sensor = piezoresist

– Becomes conductive under pressure

– MEMS relay without a contact

� Concept well-developed

– Newns et al, Advanced Materials 2012, & JAP 2012

• Could replace CMOS!

• Low power, high speed

• Requires

• Bulk materials properties

• Integration under rigid mechanical yoke

Page 16: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

Rare Earth Chalcogenide Piezoresist

� Underlying physics

– 4f band

– no transport

– 5d band

– conduction

– compression

– raises 4f binding energy

– thermal carriers

– SmSe, SmS, SmEuS etc.

d band d band5d1

4f5

4f electrons

excited into

5d band

Pressure promotes 4f electron

energy

5d0

4f6

0.5 eVFilled 4f j=5/2 subshell

Eg

Insulator

Metal

Jayaraman, PRL, 1970

Page 17: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

How to Make SmSe Thin Films?

� Phase diagram

– Need monochalcogenide

– Many phases exist

– Require precise control of supply

– Slight variation in composition lowers resistivity

– Growth

– Co-sputter Sm & Se

– Wafer temp 300C

– Beware! Radiative heating of Se source!

Page 18: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

Sm

Se

M. Copel

SmSe Deposition Control

� Dynamic control

– Quartz crystal monitor (QCM)

– Feedback loop to RF supplies

– Able to get 50:50 composition

– See medium energy ion scattering spectrum

– Reads like RBS data

– Need aggressive cooling of Se target & QCM

– Se tooling factor liable to long-term drift

– Constant vigilance needed

A

QCM1

Sm target

A

QCM2

Se target

Page 19: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

• High pressure (GPa range)

• Current flow transverse to film

• Via-confined current flow allows quantitative data analysis

• Thick Al pad distributes force from indenter ball

How to Measure Piezoresistance?Novel Microindenter Experiment

Contact area

16 microns

Via diameter

1 micron

Page 20: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

Microindentor Results

0 3 6 9

1E-4

1E-3

0.01

0.1

Re

sis

tan

ce

Vo

lta

ge

(V

olts)

Load 1/3

(gram1/3

)

� Over 1000x modulation

– Almost enough for logic

– Extrapolate to 0 pressure

– Checked with add’l measurement

– Bottom out at high pressure

– Series resistance?

– Exponential

– Approx 1/3 power (almost Hertzian formula)

Copel et al, Nano Letters 2013

Page 21: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

Materials Challenges

� Integration of Rare-earth Chalcogenide

– Highly reactive with oxygen

– How to passivate sidewalls?

– Reacts with XeF2 used for air-gap

– Compatibility with piezoelectrics?

– Need to prevent oxygen flow

Page 22: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

MEIS of SmSeThermal Stability

•3nm TiN / 6nm SmSe / Si

•reaction 750-850C–intermixing with TiN

•or pinholes in TiN

–not silicidation

–very stable!

Page 23: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM CorporationM. Copel

Oxidation of SmSeMock ALD process

Conditions

300C 40 cycles H2O

No Hf precursor

Reaction

See buried oxygen layer

5nm underneath surface

why oxygen-poor layer under surface oxide?

approx 20% oxygen

need to check how deep it penetrates

Page 24: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

30 nm SmSe after XeF2 etch (Si-cap removal)Marco Hopstaken, Micah Schamis

80Se

29Si

19F

18O

12C

0 50 100 150 200 250 300

Time, s

1e1

1e2

1e3

1e4

1e5

1e6

1e7

Inte

ns, c/s

223

Complete Si-cap removal upon XeF2

F intensities increased by ~2 orders of magnitude

SIMS analytical conditions

19 nA 1.25 keV Cs+; analysis of negative ions at high mass resolution

Control (silicon cap) After XeF2 etch

80Se

29Si

19F

18O

12C

0 50 100 150 200 250 300

Time, s

1e1

1e2

1e3

1e4

1e5

1e6

1e7

Inte

ns, c/s

50 231

Page 25: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

First fully integrated PET!

Page 26: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

Pattern gate and common electrodes Pattern sacrificial template

Pattern nail PZT/bottom metal isolation

30nm SmSe

100nm TaN/50nm TiN

PZT

Pt

80nm Ru50nm TiN

50nm SiN

Si/SiO2/TiO2

Gate Common

500nm Al

30nm Air Gap

PZT

Si/SiO2/TiO2Pt

80nm Ru

50nm SiN50nm TiN

SmSe

TaN/TiN

Starting Stack

20nm SiO230nm Si

Pattern clamp/PR

Final wiring metallization

TiN

Drum clamp /

Drain Electrode

Page 27: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

PET Status

� Gen I build

� Not integrated device

� Performance matched simulations

� Gen II build (integrated device)

– Performance sacrifices

– Encapsulation limited mechanical deformation

– Successful build, except metallization fail

–Unreliable contacts

–Results difficult to interpret

– Future prospects

– IBM-Penn State project discontinued

– PET memory project

–IBM Zurich-led collaboration

–SmS for hysteresis

Page 28: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM Research Division

© 2003 IBM Corporation

M. Copel

http://www.petmem.eu/

Page 29: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Summary

• Graphene grows “from the inside out” on Si-face and C-face SiC(0001)

• CNT contact metallurgy challenging problem for nFETs

• Problems & strategies for using rare-earth chalcogenides for

piezoelectronics devices

Thanks!

Page 30: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Backup

Page 31: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM CorporationPiezoElectronics

Gen I Device: Split Actuator – Receiver

(b)

Ir tipped PR pillars

Sapphire plate

INDENTOR

PR substrate metal

Plate Spacer

support arrayPZT

ACTUATOR

Actuator area

Ir landing pad

PR

RECEIVER

leads landing pad

PR pillars

Pillars Randomly Aligned to Actuator

• Indenter ball substitutes for bridge structure (mechanical clamp).

• Sapphire plate insures insensitivity to indenter alignment.

Advantages:

• Separate fabrication of actuator (PE) and receiver (PR)

• Simple structure for early feasibility demo.

• Self leveling

• Provides a local displacement reference.

• No critical high step coverage metal is required.

Page 32: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM CorporationPiezoElectronics

Device Results:

Reliability

� Extended cycling of Gen I device

– 100KHz, 8V p-p

– Allows more cycles

– Response

– Minimal changes after 1.8x109 cycles

– Degradation after 7x109 cycles

� Failure analysis

� Time-dependent breakdown of PZT

� Unpassivated PZT

� millimeter-scale lines to access device

� Not inherent to PET

100 200 300 400

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0

2

4

6

8

100KHz 50KHz

PIE

ZO

RE

SIS

TO

R

CU

RR

RE

NT

(m

A)

TIME (µs)

100KHz

CY

CLE

S

(10

9)

1.6mm

1 um

Leads

Page 33: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

Well-separated isotope peaks

Si

12C

13C

SiC(0001) with graphene, 100 keV• Values for k at θ = 110°

Page 34: MEIS of Materials for Post-Silicon Electronicshrdp8.uwo.ca/hrdp8_presentations/03_Copel.pdf · IBM Research Division M. Copel © 2003 IBM Corporation What is the Piezoelectronic Transistor

IBM T.J. Watson Research CenterIBM T.J. Watson Research Center

© 2011 IBM Corporation

gra

ph

en

e

SiC

Depth distribution from energy loss

• Protons travelling through matter suffer

inelastic collisions

• Protons backscattered from deeper in the

sample have lower energy

PRB 82, 041411R (2010)