8
An na ls o r G lac iology 21 1 995 T n ierna ti onal Glac iol ogi ca l Soc iety Melt features in ice cores frotn Site J, southern Greenland: sotne itnplications for sutntner clitnate since AD 1550 T. KiLami i nstilu te o.f Teci1l1ologl' , !t'oencho 1 65, !t'itami, H okkaido 090, J apan H. NARIT A, i llstitute o.f L ow TemjJeratuTe Sciellce , Hokkaido Sapporo, H okkaido 060, J a/}{1I1 H. SH OJ1 , !t 'itami i nstitllte o.f T echllolog) ,. A -oelle/tO 1 65. I,'itoll/i, H oklraido 090, J apall F. NI S HI O, H okkaido L'lIi v ersi0) oJ Educatioll, Shiro),ama i ,/5-55, A 'lIslziro, H okkaido 085, J ajJan Y. FUJll AXD O. W.\TX\AB E .-," atiollal IlI stilute III Polar Research. i tabashi-kll, T okyo 173, J apan ABSTRACT . H or izo nt al and I'erti ca l di stributions 0[" melt f ea tur es (ice layers ) were exa min ed using t wo ice cores (20 6.6 a nd 101.5 m deep, lm apart) fr om S it e J (66 u 5 1. 9'N, 46 ° 15.9' \\ ', 2030 m a.s. I. ). Th e tem p era tur e at 10 m \I 'as 16.3°C. W e obse r \"e d 2804 melt f ea tur es, \I ' ith a tota l thickness of 30.32 m, in the 206.6 m core, co rr es po nd in g to 1 6.4°/cJ by vol um e of the ice-eq uil'alen t core length. Ho ri zon tal dis tributi on of melt fea tur es was exa min ed by correlating me lt,f ea tur e thicknesses in the t wo cores. Th e co rr ela ti on coeffi cie nt was 0.7 1 (n =5 14 ) fo r eac h melt f ea tu re in the t wo cor es . It was max imum ror data passed thr ough 5 and 40 year 10\\'-pass filters. A sig nifi ca nt relations hip (P =0 . 005, n =36 ) was o bt a in ed fo r th e I' ert ica l di s tributi on of melt f ea tur es a nd th e Jun e tempera tur e on the wes t coas t of Greenla nd Ua kobsha l"ll). Us ing thi s, Jun e te mp era tur es at J akobshal'n since 1550 were estimated. Th ere are thr ee pe ri ods (1 685 - 1705, 1835- 70 a nd 1933 45 ) durin g w hi ch m ea n Jun e tempera tur es cl ea rl y decr ease d, wh en th ey were es tim ate d to be 0 .1 °, 0.4° a nd 0.2°C lowe r than the a\'er age ror the whole p er iod (1550- 1 989 ). Th e first two "cold" pe ri ods hal'e been id entified in melt r ea tur es of th e D ye 3 a nd Del'on Isla nd ice co res a nd in a tree ,rin g pro fil e from Yu ko n T e rrit o n ·. Ca n ada. perce nt ages in the Site J ice core hal'e increased since abo ut 1 945, pr oba bl y reOecting s umm e r, te mp era tur e wa rmin g on the ice sheet. 1. INTRODUCTION Glac iers and ice sheets ca n be classifi ed int o fi ve zones based on the amo unt of s urf ace sn ow m clt ing a nd acc umul a ti on (Benson, 1962; Paterson, 198 1). Th e dr y, snow zone, the ar ea \\'here no s umm er me ltin g occ ur s, is a n id ea l pl ace f or r eco ns tru ct ing past climatic a nd env ir o nm e nt al con diti ons thr ough ice - co re analyses (R o bin , 1983; Lan g\\'ay a nd others, 1985; O eseh ge r a nd Lang \V ay, 1 989 ). H owe l'er, sel'eral reco ns tru c ti ons of past s umm er climat es h ave been ca rri ed o ut using ice cores fr om below the dr y,sn ow zone, in the percola ti on zone. Th ese r eco ns tru c ti ons ass um e that the amount of s ur face sn o\V , me ltin g in s umm er is related to the s umm er a ir tempera tur e a nd /or solar radia ti on, with the amo unt of melting wa ter bei ng reco rd ed a the l'o lum e of melt f ea tur es ( i. e. ice laye rs) in the sno \\ ·. \f e lt,f ea tur e perce nt ages in ice cor es hal'e been exa min ed (Lan gway , 1967; Hibl er and Lan gway, 1977; K oerner, 1977; H e rr on a nd others, 198 1; K oe rner a nd Fisher, 198 1, 1990; Fi sher a nd K oe rner, 1983, 1994; T a ru sso\ , 1992 ). Th ese i l1\ 'es ti ga tions have not s tudi ed the ho ri zo nt al di s tributi on of melt f ea tur es a nd the rela ti ons hi p between a nd met eo rolog i ca l data. 1 n T a ru ssov's (1992) s tud y of the Aus rf o nn a ice core, was cO l 11"e n ed to m ea n s umm er te rn pera tur e U un e, Jul y a nd Au gust) using the "Kr enke- Kh odakOl ' equ a, ti o n". Howe \" er, th e va lidit y of this equ a ti on for other r eg ions has not been exa min ed . Fr om i\l ay to Jun e 1989, t\\'o co ntinu ous, mechani- ca ll y dri ll ed ice co r es were r eco l'ered from Site J (66 °5 1. 9' K. 46 ° 15 .9' W, 2030 m a .s.l. ; Fi g. I) on the west slope of so uth ern Gr ee nl a nd by the J apanese Ar c ti c 51

Melt features in ice cores frotn Site J, southern Greenland: sotne

  • Upload
    letuong

  • View
    222

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Melt features in ice cores frotn Site J, southern Greenland: sotne

An nals or G laciology 2 1 1995 ~ T n ie rn a ti o na l G laciologica l Soc ie ty

Melt features in ice cores frotn Site J, southern Greenland: sotne itnplications for sutntner clitnate since AD 1550

T. KA~I E DA , KiLami instilute o.f Teci1l1ologl' , !t'oencho 165, !t'itami, Hokkaido 090, J apan

H. NARITA,

illstitute o.f Low TemjJeratuTe Sciellce, Hokkaido L'lIil"elsi~J ' . Sapporo, Hokkaido 060, J a/}{1I1

H. SH OJ1 , !t'itami institllte o.f T echllolog),. A-oelle/tO 165. I,'itoll/i, Hoklraido 090, J apall

F. NISHI O,

Hokkaido L'lIiversi0) oJ Educatioll, Shiro),ama i ,/5-55, A'lIslziro, Hokkaido 085, J ajJan

Y . F UJll AXD O . W .\TX\AB E .-,"atiollal IlIstilute III Polar Research. i tabashi-kll, T okyo 173, J apan

ABSTRACT. H orizonta l a nd I'e rti ca l distri b uti ons 0[" melt fea tures (ice layers ) were examined using two ice co res (206.6 a nd 101.5 m d ee p, lm a pa rt ) from Sit e J (66u 5 1.9'N, 46° 15.9' \\', 2030 m a.s. I. ) . Th e tem pera ture at 10 m \I'as 16.3°C. W e obser \"ed 2804 melt fea tures, \I'ith a tota l thi ckn ess of 30.32 m , in th e 206.6 m co re, co rrespond ing to 16.4°/cJ by vol ume of th e ice-eq uil 'a len t core leng th . H o ri zo n ta l di stribution of melt fea tures was examined by co rre la ting melt,fea ture thi ckn esses in th e two co res . Th e co rre la ti on coeffi c ient was 0.7 1 (n =5 14 ) fo r each melt featu re in th e two co res . It was maximum ror d a ta passed throug h 5 a nd 40 yea r 10 \\'-pass filt ers. A sig nifi ca nt re la ti o nship (P =0 .005, n =36 ) was o bta ined fo r th e I'ert ica l distributio n of melt fea tures a nd the Jun e tem pe ra ture on th e wes t coas t of G reenl a nd Ua kobsha l"ll ) . Using thi s, Jun e tempera tures a t J a ko bsha l'n sin ce 1550 were es tim a ted. Th ere a re three peri ods ( 1685- 1705, 1835- 70 a nd 1933 45 ) during which mea n June te m pera tures clea rl y d ec reased , when they were es tim ated to be 0 .1 °, 0.4° a nd 0.2°C lower tha n the a \'e rage ror th e whole per iod ( 1550- 1989 ) . Th e first two " co ld " peri ods hal'e been identified in melt rea tures of th e D ye 3 a nd Del'on Isla nd ice co res a nd in a tree,ring pro fil e from Yu kon T errito n ·. Canada. ~l el t,fea ture pe rcentages in the S ite J ice co re ha l'e increased since abo ut 1945, probabl y reOec ting summer, te mpera ture warming o n th e ice shee t.

1. INTRODUCTION

G lac iers a nd ice shee ts ca n be classifi ed into fi ve zo nes based o n th e amo unt of surface snowm clt ing a nd

acc umul a ti on (Benson , 1962; Pa te rson, 198 1) . Th e dry,

snow zone, th e a rea \\'he re no summ er melting occ urs, is

a n id ea l pl ace for reconstruct ing pas t clim a ti c a nd en viro nm enta l con diti o ns thro ug h ice-co re a na lyses (R obin , 1983; La ng\\'ay a nd o th ers , 1985; O esehger a nd L a ng \Vay, 1989 ).

Howel'e r, sel'e ra l reco nstruc ti ons of pas t summ er

clim a tes have been ca rri ed o ut using ice cores from below th e dry,snow zone, in th e pe rcola ti on zone. These reconstruc ti ons ass um e th a t th e a mo un t of surface sno\V, m eltin g in summ er is re la ted to the summ e r a ir tem pe ra ture a nd /or so la r radi a ti on, with th e a mo unt o f m elting wa ter being reco rd ed a th e l'olume of melt

fea tures (i. e. ice laye rs) in th e sno \\·. \felt,fea ture percentages ( ~lFPs ) in ice co res ha l'e been examin ed (La ngway, 1967 ; Hibler a nd L a ngway, 1977; K oe rn er, 1977; H erron a nd o th ers, 198 1; K oe rn er a nd Fisher,

198 1, 1990; Fisher a nd K oern er , 1983, 1994; T a russo\ ,

1992 ) . Th ese i l1\'es ti ga ti o ns ha ve no t system a ti ca ll~ '

studied th e ho ri zonta l distribution of melt fea tures a nd th e re la ti onshi p betwee n ~1FP a nd meteo rological d a ta . 1 n T a russov's ( 1992 ) stud y of th e A usrfonna ice core, ~lFP was cOl11"en ed to mean summ er te rn pera ture U une, Jul y a nd Aug ust ) using th e "Krenke- Khod a kOl' equa,

ti on". H owe\"er, the validity of thi s equ a ti on fo r o th er regions has not been exa min ed .

From i\lay to June 1989, t\\'o continu ous, mec ha ni­ca ll y dri ll ed ice co res we re reco l'e red fro m S ite J (66°5 1. 9' K. 46° 15 .9' W, 2030 m a .s.l. ; Fig . I ) o n the wes t

slope of south ern Gree nl a nd by th e J a pa nese Arcti c

5 1

Page 2: Melt features in ice cores frotn Site J, southern Greenland: sotne

Kameda and others : A1eltJeatures in ice coresJrom Site], Greenland

Fig. I. Locatioll if Site] (6rY5J' N, 4rY 15.9' f,r, 2030 m a.s.l.) on the west slope oJ South Greenland.

Glaciological Expedition UAGE89 ) (W a tan a be and Fujii , 1990) . The ice cores were 206 .6 and 101.8m deep, respectively, and 1 m apart. Th e quality of both ice

! I I I I I I 1 ! I I !

53.80 53.85 53 .90

cores was excellent. The 10m temperature was - 16.3°C. In thi s paper we fo cus on th e horizonta l and verti cal

di stribution of melt fea tures in th e Site J co res a nd evaluate rela tionships between th e la tter and meteo rolo­gical data from th e coas t of Greenland.

2. METHODS OF OBSERVATION AND ANALYSIS

As soon as th e ice co res were retri eved , they were stored in a storage and a nal yti cal room below the snow surface (Wa tanabe and Fujii , 1990) at a temperature that ranged from - 20 0 to - 12°C. Ice co res were se t on a li ght ta bl e and

subjected to d etailed megascopic examina tion. Melt­feature sha pes were reco rd ed at full scale on a roll of g raph paper, being clea rl y di stinguishabl e with the transmitted light , as shown in Figure 2. The so lid layers a re melt fea tures and the rest dry pola r urn. Even a ft er the pore close-off of air bubbles in th e firn (66m ), the

fea tures can easi ly be distinguished by their relatively low bubble concentration.

MFP per I m length of core was ca lcul a ted using K oerner's ( 1977) ice-percentage equation. This corrects [or the effe ct of depth on urn compac tion.

[)1) 0.9Sj

MFP( lO = S S X 100 0.9 j + Pr r

(1)

where Si and Sr a re the measured cross-sec tional a rea of melt fe a tures a nd Grn per I m length , respecti vely; 0.9 is the melt-feature density and Pr the Grn density, bo th in g cm 3 . Below 90 m the firn becomes glacier ice, so at thi s point 0.9gcm 3 is used [or Pr in Equation ( I ).

Because MFP is an ave rage for each 1 m core sec ti on (2.2 yea rs on average), the a nnual MFP (ANJFP) had to

be calculated from it using a cubic spline curve (lshida , 1982 ). A digital Chebyshev filter (Ashida and Saito,

1970) was used to examine th e long-term trend o[ the AMFP. Cut-ofT frequencies (CF), half-power frequencies (HF) and maximum permissible ripple amplitudes (RA) could be justified individually in the filter. The filtering

I I ! 1 1 I I I I I 53.95 54.00 54.05

Depth ( m )

52

Fig. 2. PhotograjJh of melt features in Site] ice cores. A 4 cm thick me/tfeature is observed in the center. The depth of the ice core is shown below the photograph.

Page 3: Melt features in ice cores frotn Site J, southern Greenland: sotne

Kameda and alhers: .IIelt features i ll ice cores f rom Site ] , Greenland

operation can be accomp li shed USltlg th e standard rec ursive method.

3. MELT FEATURES

3.1. Thickness and interval distributions

\Ve observed 2804 melt features, wit h a total thi ckness of 30.32 m, in the 206 .6 m long core . correspond ing to

16.4% by \'01 ume for an ice-eq ui va len t core length of 184.8m. Th eir th ickness di stribution is summarised in Table 1. 38.4% of the melt features were 2mm thick or

less; 70.0% were 10 mm Or less ; and the overall a\'Crage thi ckness was 10.8 mm. The thi ckest feature was 2 10 mm , obse rved at a d epth of 1.40 m. Ice-eq ui va lent inren 'a ls between two adjacent melt fea tures a re summari sed in Table 2. Interva l calcu la ti ons were mad e by correcting th e d ensity offirn observed between melt features . 36.6%

of the inten·al. between adjacent melt features were with in 0.02m , and 85.6% were with in O. lm . The mea n interval was 0.058 m in ice-eq ui \'a lent length.

In the 10 1.5m core, 448 melt features , with a tota l thi ckness of 6 .32 m, \\"(1"( obsen 'ed frol11 th e surface to

39.26m depth ; this amounted to 22.8 % by vo lume for th e ice-eq ui \alen t core length of 27 .7 m. Below 39.26 m, no stratigraphic obsen 'at ions were made.

Table 1. Thickness distribution of all melt fea tum .from the sll1j ace to 206.6 m del)th. The thickest melt fea ture u'as 210mm , observed at 1.40m depth

,\fe/t-.featllres thickness Appeara /lces Percenlage mm

0 < X :::; 10 1962 70 .0

10 < X :::; 20 416 14.8 20 < X :::; 30 174 6.2 30 < X ::; 40 97 3.5 40 < X ::; 50 44 1.6 50 < X :::; 60 34 1. 2

60 < X :::; 70 29 1.0

70 < X :::; 80 25 0.9 80 < X :::; 90 7 0.2 90 < X ::; 100 5 0.2

I 00 < X ::; I 10 2 0. 1 110 < X :::; 120 4 0. 1 120 < X :::; 130 I 0.0

130 < X :::; 140 3 0.1 140 < X :::; 150 0 0 150 < X ::; 160 0 0 160 < X ::; I 70 0 0 170 < X :::; 180 0 0 180 < X :::; 190 0 0

190 < X :::; 200 0 0 200 < X :::; 2 10 I 0.0

(0 < X ::; 2) ( 1078) (38 .4) (2 < X ::; 4) (375 ) ( 13.4) (4 < X ::; 6) (2 10) (7.5) (6 < X :::;8 ) (160) (5 .7)

(8 < X:::; 10) (139) (5 .0)

Table 2. M elt feature inlervals ill ice-equivalenl lenglh from the sll1Jace to 206.6 m depth. The mean melt f eature interval was 0.058111 in ice-equivalent length

,'vi ell-.fea III res inlerval m

Appearances Pe/u nlage

0 < X :::; 0.10 0. 10 < X :::; 0.20 0.20 < X ::; 0.30 0.30 < X ::; 0.40 0.40 < X :::; 0.50

0.50 < X :::; 0.60 0.60 < X :::; 0.70 0 .70 < X ::; 0.80

(0 < X ::; 0.02 ) (0 .02 < X ::; 0.04)

(0 .04 < X :::; 0.06)

(0.06 < X :::; 0.08 ) (0 .08 < X :::; 0. 10)

2402 260

78 37 14

6 2 3

(942 ) (64 1 )

(408 )

(245 ) (166 )

25 May 1989

85.6 9 .2 2.8 1.3 0.5

0.2 0. 1 0. 1

(33 .6 ) (22.9 )

( 14.5 )

(8.7 ) (5.9 )

Horizon ta l Distance ( cm )

E u

..c ~

0.. Q)

o

o

20

40

60

80

o 20 40

~;: --0 _ ___ o __ .~ D _ _ . -----o 0 o o

o o o o o

o 0 o _- _?- - 0 _,' Q"-~ -~-:-=-=--'o;:;"-2.~ ,::.---'--"0.-:--_-----;0

o o o

o o 0 o . ~- --- - -- -

1\ 1\ 1\ 1\

1\ 1\ 1\

Fig. 3. A slratigraphic observation of a shaLLow Il il at Sile ]. Shaded areas show mell f eallITes, and SJ1mbols express snow qualities: +, /1., 0 , 0 , A and . express new snow, loose sellled snow, small fa ceted snow. sell led snow, dej)th !lOar and granular Sl/OW, respectively ( Jaj)anese Society of SII OW and l ee, 1970) .

53

Page 4: Melt features in ice cores frotn Site J, southern Greenland: sotne

Kameda alld others: M elt fea tures in ice cores .Fom Site ] , Greenland

3.2. Horizontal distribution

A stra tig ra phic sec ti on from a sha ll ow pit a t Site J is shown in Fig ure 3. Sh ad ed a reas a re melt fea tures, a nd the symbol express snow qua liti es according to the jSSI

classifica ti on schem e U a pa nese Socie ty of Snow and I ce, 1970) . It is obvious th a t the melt fea tures a re not hori zonta ll y uniform. Fig ure 4 shows their thickn ess in the two cores. The genera l trends in the profiles a re qui te simila r. In the sca tter di agra m (Fig . 5), only fea tures to a

depth of 39 .26 m in bo th co res a re used. The correla ti on

coe ffi cient (r- ) and the degree of freed om (n ) are 0.71 and

Melt-feature thickness (mm)

o 100 200 0 100 200

10 -=--

E -:S 20 0-0)

o

30

Fig. 4. Distributions of meLt:feature thickness in two ice cores (A: 206.6m core; B: 101 .5m core) from the swface to 40 111 deptlz .

5 17 , respec tively, a t -distribution rela ti on signifi cant a t th e P = 0.001 level. Equivalent melt fea tures in th e two co res were identifi ed from their depth a nd thi ckn ess, d epth d evia ti ons of ± 5 cm being a llo wed for th e

identifi ca tion. The 315 melt fea tures identifi ed in both co res a re

designa ted as B-type melt features: those found onl y in one a re denoted as E-type and li e on ei ther the x or y axis in Figure 5. The number a nd average thickn ess of the B­a nd E-type melt fea tures are summ a rised in T a ble 3.

Comparison of the a nnua l melt thi ckness (AMT) in

the co res gave a correla tion coeffi cien t of O. 75 (P = 0.00 I,

200 ID lo-

::J E -ro 160 2 5 - ID ID L-

E 0 120 u ..... 0 E • (/l CD • (/l

CD ID 80 • c 0 ~ C\J U

.~ .r:. !-

o

• r = 0.71

n = 517

•• • • • •• •

40 80 120 160 200

Thickness of melt feature

in 101 .5m core (mm)

Fig. 5. The relation between thickness of the same melt fea tures observed in the 206.6 and 101.6 m ice cores from the swface to a dejJth of 39.26 m. SoLid circles show measured thicknesses of melt features in 101 .8 (x-axis) and 206.6m (y-axis) ice cores.

T able 3. Characteristics of B- and E-tJljJe melt features in the two ice cores from Site ]. M elt features which were observed in both ice cores are called B-tyjJe melt fea tures; melt features observed in only one ice core are caLLed E- tJlpe melt features

M elt-feature characteristics 206.6 m core 101.5 m core

Depth ra nge of stra ti gra phic obse rva tio ns o ,,-,39 .26 m 0 "-' 39. 26 m T o ta l number ofB-t ype melt fea tures a bove

d epth ra nge 345 345

T o ta l thi ckn ess of B-typ e m elt features, and 5.59m 5.90m

percentage for to ta l d epth ra nge in ice equiva lent 20 .2% 21. 3%

IVlean B-type m elt-fea ture thi ckn ess 16.2mm 17.1 mm T otal number of E-type melt fea tures a bove

d epth range 71 ]03

T otal thickn ess of E-typ e m elt features, a nd 0.61 m 0.42 m

percentage fo r to ta l depth ra nge in ice eq ui valent 2. 2% 1.5%

M ean E- type melt-fea ture thi ckn ess 8 .6mm 4.0mm

54

Page 5: Melt features in ice cores frotn Site J, southern Greenland: sotne

n = 62 ) . Annual boundaries were determined by contin ­uo us 5180 , du st and electri ca l-conducti\ 'ity profi les (paper in preparation by Y. Fujii and others) and from stratigra phi c records (mainl y or th e posi tion of melt features) . Figure 6 shows correlations between AMT in ice core. after smoothing by a n m year low-pass filter. Th e initia l maximum value is found at m = 5 (r = 0.80 , P = O.OOI , n=59 ) a nd th e minimum a t m=25 (r = 0.09, n = 46) before a r ise to the highest value at m=40 (1'=0.94, P=O.OOI , n=27 ). Snow acc umula­ti on at the 5 and 40 year periods was abo ut 4 and 15 m,

respec tively.

1.0

0.8 C ill '0 :t: 0.6 ill 0 u c 0

~ 0.4

ID "--"--0 U 0.2

0.0

0 10 20 30 40 50

Period (years) in low-pass filter

Fig. 6. CorreLalion coefficients between annuaL meLt

thicknesses (A Ai Ts) in the Iwo ice cores after an myear

low-pass fiLter . The x axis is m.

Kameda and others: MeLtJealures in ice coresJroll1 Site J, Greenland

3.3. Vertical distribution

A ve rti ca l profil e of l\IFP (thin line) in th e 206.6 m co re is shown in Figure 7, with es tim ated ages. Th e thick li ne is th e MFP profile a ft e r a 60 yea r 10 \\'- pass filter ( C F = 0.01499year I , HF = 0 .0 1666year I, R A= 0.5 dB ). This filter was se lected beca use the short-term a ir-temperature osc ill at ions between \Ves t a nd Eas t Greenland a re not in ph ase, and differences occur e\'en in the 30 year smoothed cun'es (D a nsgaa rd and oth ers, 1977 ) . I ce below 103 m wa s d a ted by e lect ri ca l

condu ctivity which d etected \'olca nic layers (paper in prepara tion by F. ~i shio and others) . The time-scale probably d e\' iates less th a n ± 5 yea r between the surface and 103 m and by ± 10 yea r from 103 to 206 m depth. Shoji and o thers (199 1) have published prelimin a ry res ults of the core dating.

There a re two 10w-fl/IFP periods in th e profile , 1685-1705 and 1835- 70, including remarkably low l\IFP from 1835 to 1842 . Th ese cha rac teristi cs of th e profile sugge. t past va ri ations of summ er tempera ture an d /or so la r radiation a t Site J.

4. DISCUSSION

4.1. Relation betW'een melt-feature thickness and summer temperature

Simple relations between an nual melt thi ckness (Al\IT) and monthl y mean summer tempera tures on th e coas t of G reenla nd were exa min ed. Summer temperatures were selec ted because of their long period a nd uniform qua li ty. Three meteorologica l ·tations Ua kobshav n, Godthaab

a nd Angmags a lik ) clo e to Site J were used (Fig. 1). Summer temperature d a ta came from World " 'ea rher R ecords (1927,1934, 1947, 1959, 1968, 198 1) .

Th e correla tion coe ffi cients be t"'ee n AMT a nd monthl y summer tempera tures a re summarised in T ab le 4. Al\ lT is well co rrelated withJun e temperatures in \\'est

DEPTH (m)

a.. LL ~

200 150 100 50 o

40

20

O~'-"-..-,,-r.-,,~,,ro'-,,-..-,,-r.-r

1500 1600 1700 1800 1900 2000

YEAR (AD)

Fig. 7. M eLt-feature jJercentage ( NI FP) in Ihe Site ] ice core . T he thin Line shows M FP for each 1 m inlervaL (2 .2]ears

on average). The thicker line shows the MFP after a 60year /ow-/JassjiLter.

55

Page 6: Melt features in ice cores frotn Site J, southern Greenland: sotne

Kameda and others : NI eLt J eatures ill ice cores ji-om Site J , Greenland

T able 4. Correlation coifficiellts betwee11 allnual mel/ /ltickness ( ANI T ) and summer temjJeratuTes Oil the Greenland coast ( AD 1926- 63; degree oJ freedom is 36) . Significance levels are shown by the number oJ asterisks, 0.10() , 0.025( *) and 0.005(" )

June J uly

J a ko bshavn 0. 49**' 0.20 G odthaab 0.4 1** 0.16 A ngm agssal ik 0.1 7 0.06

Greenla nd Ua kobsh av n a nd G odthaa b ) a nd poo rl y

correlated with th ose in Eas t Greenl a nd (Angm agssa ­li k) . Fig ure 8 shows th e " bes t rela ti on" betwee n AMT

300

I ~

C\l Q) 250 >.

E .s 200 QJ "-0 u E 150 <D <D 0 100 N C

l-~ 50 <t::

2

r = 0.49 • n = 36 • • •

• •

• • • • •

• • • •

• • • • • • •

3 4 5 6 7 8

Monthly June temperature

at Jakobshavn (QC)

9 10

Fig. 8. The relatioll be/ween monthly J une temjJeratll res at J akobslzavn, I Vest GreenLand, a/ld annuaL meLt thick/l ess ( AM Y) ill Ihe Si le J ice core (. 1D 1926- 63) . The co rrelation coefJicient and degree oJ ji-eedom are 0.49 and

35, resjJectille/y.

w er: :::J

~ W 0... ~ W I-

1.0

0.0

AUgllS/ J une + J ul]' + August

0. 21 0.42**

0.1 3 0. 30' 0.14 0.10

a nd m onthl y m ean June temperatures a t Ja kobshavn

fro m 1926 to 1963 (signifi can t a t P = 0.005, n = 36) . Equation (2) is th e linear regression o bta ined in Figure 8.

AMT = 28.87T - 77 (2)

w here AMT a nd T ar e in mm year~ 1 a nd QC , res pec ti ve ly.

Th e 1963 ho ri zo n wa s d ete rmin ed b y th e tri ti u m concentra ti on peak (Fujii , 199 1, li g. I ) . The rela ti vel y short refe rence pe ri od (38 yea rs; 1926 63 ) was due to diffi culti es in id entifying a nnua l laye r bo und a ri es reli a bl y

because th e melt fea tures pa rtl y influence th e origina l

8180 osc illations (pa per in prepa ra ti on by Y. Fujii and

o th e rs) . The mea n June tempera ture a t Site J is about - 5°C ,

according to th e ma p ofm onlhl y surface tempera tures fOI­th e Green la nd ice shee t (Ohmura, 1987 , lig . 9) . Surface­snow layers a t Site ] proba bly start m eltin g in thi s month ,

a nd melt fea ture: will fo rm in the snOII'. Because th e

surfa ce was coo led during th e prev ious winte r, melt fea tures a re effec tive ly produced from meltwate r, hence th e " bes t rela tio n" be tween ANfT a nd th e Jun e monthl y tempera tu re.

4.2. Past summer climate reconstruction from the MFP profile

Fig ure 9 shows estima ted devi a tio ns of Jun e monthl y

tem pera tures for J a kobshav n ca lcula ted from Eq ua tion

(2) . Th e a ppa ren t tempera ture d ec rease a long th e core

1.0

0 .0

-1 .0 -+-.... -,-,-,..,..,.--.-O"'T'"--r-r-r--,--,-,-T""T--,-.... -,-,-,+ -1 .0

56

1500 1600 1700 1800 1900 2000

YEAR (AD)

Fig. 9. Reconstructed J une temperatures at J akobshavn, VVesl Greenland. Deviations oJ temperatures J rom the whole period ( AD 1547- 1989) are shown.

Page 7: Melt features in ice cores frotn Site J, southern Greenland: sotne

Kameda and others: .Il eLl features ill ice (o res )i'01ll Sile j , Green/alld

depth , caused by ice-shee t now, was correc ted using a la pse rate of 0.75°C per 100 m , an ice velocity of 38 .4 m yea r I a nd a n ave rage ice-shee t slope of 0.20°.

Th e ] une la pse ra te on the wes t coas t of Greenla nd (Ohmura, 1987 ) was used . Th e ice-now velocity was ta ken fro m the " \\' es tern C l uste r" (Drew and \ Vhi ll ans, 1984) beca use it is posi ti oned a t nea rly the same d istan ce fro m the ice d i\·ide as Site ] (a bout 180 km ). The a \'e rage

slope was es tima ted from surface topographi c d a ta of th e Gree nland ice shee t (Bi ndschad ler and o th ers, 1989) . Four grid-point positions (347, 220; 349, 220; 347, 22 1; 34·9 , 22 I) a round Si te J were selec ted a nd th e a \'e rage slope to a poin t 17 km upstream ca lcu la ted (th e ice a t Site

] a t 206 m depth was p roba bly d eposited in 1550). Using thi method , co rrec tions were + 0.2 1 °C a t 100 m d epth and + 0.45°C a t 206 m.

Beca use short- term oscill a ti ons of a ir tempera ture « 30 year ) a re no t in ph ase between Wes t a nd East Greenland (D ansgaard a nd oth ers, 1977) , only signa ls

long enough to be significant a re discussed . It is obvious

th a t th ere a re three periods when summ er tempera tures dec reased : 1685 1705, 1835- 70 and 1933- 45. A \'e rage summer tempera tures during th ese periods a re es tima ted to be O. I 0, 0. 4° and 0. 2°C lower, res pec ti\'e ly, than the average for the whole per iod (1546- 1989) . From 1835 to 1842, es tima ted as the cold es t summ er seasons during th e

las t 450 yea rs, summer tempera tures were 0.5°C lower th a n the ave rage .

Figure 10 g ives the spec tra l distribution ob ta ined from

C')

M - AR = 40 -(f) 1.0 - AR = 60

co 0 Cl:) oi Cl) 0.8 0 (L '" QJ

0.6 > Cl:) :;:J <ri ('(l

ID 0.4 a:

0.2

0.0

0.0 0.1 0.2 0.3 0.4

Frequency (year - 1)

Fig. 10. Power Spett/'{t/ densities (PSDs) 1I0rmali<.ed all Ihe /mgesl /Jeak (l3.3yeal' il1 AR = 40), ob lailled )i'om Ni EM using BUIg aLgorithm. AUla-regressive (AR ) orders are 40 and 60. The periods are given in ),ears Jor each individual peak Jor A R = 40. The peaks present al AR of 60 are 32.3, 20.0, 14.3, 12.5, 9.7, 8.3, 6.7, 4.5, 4.1,3.8 alld 3.3.

th e Burg ME~I (max imum entropy meth od ) for a uto­regressive (AR) ord ers 40 a nd 60. The ~jEM time-series model equ a tion is a linea r a uto-regression one, in wh ich eac h \'alu e is a \\'eighted sum of 1I f past d a ta points

YEAR (AD)

1500 1600 1700 1800 1900 2000

A: Site-J ice core e: 1.0 ~ ::J

0.0 ~ Q) a. E Q)

10 I-

£ - 1.0 8 B: Dye 3 ice cores --:

CL 6 -:?; « 4

2 ?R 20 ID

E 10 C

~ Q) (,)

80 ID 'iD

~ 0 CL

E 60 C 40 Q) (,)

ID 20 a...

0

- 2

e: - 3 Q)

::; ~ Q)

- 4 a. E Q) I-

- 5 1500 1600 1700 1800 1900 2000

YEAR (AD)

Fig. 11. Com/Jarison of estimated J une temjmature devialiol1s from Site J ( A) with /Jrevious sludies of mell-jeature profiles (B, C, D and E) .

57

Page 8: Melt features in ice cores frotn Site J, southern Greenland: sotne

Kameda and others: jl1 ell features in ice (ores ji"Oll1 Site J, Greenland

togeth er wi th random noise, where ]I. ! is th e AR ord er. The la tter was se lected a t th e minimum fina l predi ction error, accord ing to Ulryc h's (1974) sugges tion. Power spec tral densi ti es are normali zed on the la rges t peak obtained a t the 13.3 yea r cycle (AR = 40) . This pea k,

and the split peaks at th e 14.3 and 12.2 year cycles (AR = 60), a re well identifi ed in Figure 10.

4.3. Cmnparis on with previous s tudies

In Figure 11 , the es tim a ted Jun e temperature deviations (A) a re compared with previous studies of melt-fea ture profiles in ice cores (B, C, D and E) . The profiles of the Dye 3 (B) ice co re a re taken from H en-on a nd Langway (1981 ). The d as hed line is from the D ye 3 co re drill ed in 1971 and th e so lid line from that drill ed in 1979. T he

De\'on Island (C) and Agassiz Ice Cap (D ) core profil es

a re from Fisher and K oerner (J 994). Tha t [or Austfonn a (E ) comes from T arusso\' ( 1992).

A common low-l\1FP (cold-summ er) period (about 1830- 50) can be seen clearl y in the A, B, C a nd D profil es but seems to have been delayed by about 20 yea rs in

profile E. Another unusua l "cold " period (1680- 1700) that can be een in the first [our profil es is delayed abo ut 10 yea rs in profile E .

The same unusual "cold periods" around AD 1690 and 1840 can be obse rved in the tree-ring profil e at TT- HH from Yukon T erritory, Canada Oacoby and Cook, 1984). J acob)' and Cook (1984) sugges ted that the profile re fl ec ts mean June July tempera tures a nd tOla l degree d ays above 10°C [or June plus Jul y, whi ch seem.s to pl ay a n important ro le in NIFP. 1n- and o ut-o r~ph ase cha racte r­istics of th ese profil es suggest spa ti a l a nd tempora l variabi lity o[ mean summer tempera tures during th e

las t 450 yea rs.

ACKNOWLEDGEMENTS

The a uthors would like to express their sincere gra titude

to GRIP members a t the GOC fi eld headquarters in Sondre Stromfjord who supported our field activiti es through d a ily radio communi cations. T hey a lso wish to express their thanks to a ll mem bel'S of the J apa nese Arctic G laciologica l Expediti on 1989, especia ll y to the ice-coring technicians, Y. Tanaka a nd M. Mi ya ha ra . This resea rch

was supported by a Gra nt-in-Aid [0 1' internationa l Scien ti fi c R esea rch from the Ja panese Mini stry o[ Educa tion, Science a nd Cu lture (principal inves tigator Professor O. Wa tanabe) .

REFERENCES

Ashida, Y. and ~r. SailO. 1970. Dcsign of d igi tal Cheb\'s hc\' lilt crs. Blllsuri-TaIlM, 23 (1), 6 19. In J apa nese with English abs trac t.

Benson, C. S. 1962. Stratigra phic stud ies in thc snow a nd lirn of the

Green land ice shee t. S/PRE Res. Rep . 70. Bindschadler. R. A. , H.J. Z\\'a ll y. J. A. :\lajor and A. C. Brenner. 1989.

Sill/ace lopogra/)/~)' r!f Ihe Creell/alld iCl' sheel ji-Olll ,alellile radar n/limell)'.

58

Washington, D C, i\ational Aeronautics and Spacc Admin istration. (:\'I\S/\ SP-503. )

Dansgaa rd. \\'., N. Gundestrup . C. H am mcr, S. J.j ohnsen and :.l. Reeh. 1977. The climatic significa nce of stable isotopes in polar glac iers. III Dunbar, i\ l.j ., ed. Polar ouallS. Ca lgary, .\rct ic I nsti ,u te of :\orth .\mcrica. 585-588.

Dre\\, A. R. and 1. i\l. \\ 'hill a ns. 1984. i\l eas urement of surface deformation of the Greenland ice sheet by sa telli te tracking . .'11111 .

C/aciol., 5. 51 55. Fisher, D . A. and R . :\1. Kocl'11e r. 1983. Ice-core stud y: a cl imatic link

bctwcen the past. prcsent a ncl luture. ~)'lIogell' 49. 50- 69. Climat ic C hange in Canacla 3. )

Fisher, D. 1\. and R . .\1. Koerner. 1994. Signa l ancl noise in four ice-corc records li'om the Agass iz Ice Cap, Ellesmere I sland. Canada: details of the las t millennium for stable isotopes, melt and so lid conduct ivit y. HoloCl'lIe , 4(2), 113 120.

Fujii. Y. 1991. Correspond ence. R eply to "Commcnt' on: '6000-year cl imale reco rds in an ice (or(' from th e Hoghctta ice do me in nort hcrn Spitsbergen .. ·. J. Glaciol., 37 ( 125 ). 186- 188.

H erron. i\ 1. ,\1 .. S. L. Hcrron ancl C. C. Lang\\'av, jr. 1981. C li ma ti c signa l of ice melt features in southcl'11 Green la nd . . \ ·allll·e. 293 (583 1).

389 39 1. H ibler, \\'. D ., III and C. C. Langway, Jr. 1977. Ice core stra tigraphy as

a cl imat ic ind icator. / 11 Dunbar. i\I. J .. ed. Polar 0(('(1115. Calga r\'. .\ ret ic lns titute or North America. 589 60 1.

Tshid a, T. 1982. SAS] C progra ms. l. Loll' Tell//). Sci. Dala Re/)., Ser . . -1 ~· I ,

R3 90. j acoby. G.C. and E.R. Cook. 198 1. Past tempera turc va ri at ions

interred li'om a 400-),ear tree-ring chronology li'om Yukon T errit ory. Canada . .-I rc!. Alp. Res.. 13 (4 ), 409-418.

J apanese Sociel\' of Sno\\' a nd Ice. 1970. Class ifi cat ion of sno\\' cO\'Cr. Se/)/))'O 110 A'ellk]lI, 4. 3 1 ~1·9. In J apanese.

Koerner, R . 1\1. 1977. I)e\'on Island ice cap: core s'ra'igra ph )' and pa leod ima te. Sciellce. 196(4-285 ). 1.1 18.

Kocrncr, R. ~l. a nd D .. \ . Fi sher. 1981. S tudy ing clima ti c change li'om Canad ian high Arctic ice cores . . ~)'"ogells 33. 195-2 18.

Koerner. R.;"1. and D. A. Fisher. 1990. A record of Holocene su mmer cl ima te from a Ca nad ian high- Arct ic ice core . . \ itlllre, 343 (6259 . 630 631.

Kr('nke, A. N. 1982. ,l/os.\oobll/eII [' ler/lliA-III),kh .,i.llell/a"" lIa lerrilorii SSSR .\/aSJ ('\change in l!,/ariN J)'J/em (!l the U.S.S. R . Leni n g ra d .

G id romctco izdat. Lang\\'a\, C. C., j r. 1967. Stra tigraphi c ana lys is ofa deep ice co rc from

Greenla nd . CRREL Res. Rep. 77. Lang\\'ay, C. C., Jr. H . Ocschger and \\' . D ansgaard , eds. 1985. Gree))loud

ice Uire: geojJ/~)'.\icj. geochell/isll)'. alld Ihe fll1'I·rolllllelll. \\ 'ashington, DC. American Geophysical Un ion. (Gcophysica l .\Ionogra ph 33. )

Ocsc hgc r, H . and C. C. Langway. Jr. 1989. The ell1,irolllllelllal raord ill g/acier.1 a))d ire .Iheels. Chichester, etc. J ohn \I 'i k)' and Sons.

Ohmura. A . 1987. :\e\\' tempc rature d istribution maps for G reenland . '(. Glelscherkd. Gla:;,ialgeol .. 23 ( 11, 1-45.

Pa terson, \1'. S. B. 1981. The pl!ysics oJ glaciers. Seco))d edilio)). Oxforcl, etc.. Pergamon Press.

Robin , G. dc Q ed. 1983. 7 he clilllalic record ill/)olar ice sheels. Cam bridgc, etc .. Cambrid ge Un iversi ty Press.

Shoji. H .. H . B. Clausen and T. Kameda. 1991. Accumulation ra te at Sitc-J and 0 )'('-2. Greenland. BlIlI. Glacier Re,. 9. 85-88.

Sm ithsoni an Inst itution. 1927, 1934, 1947. World " 'ra ther reco rd s.

Smil/nol/ . .\/isc' Colleel., 79, 90. 105. Tarussov, A. 1992. Thc Arct ic ri'om Sva lbard to Sel'crnaya /'.embl ya :

climatic recons truct ions li'om ice co res. III Bradlc\·. R . S. and P. D. J uncs, ed,. Clilllale sillce , I,f) . 1500. London and :\e\\' York, Routicdp;e, 505 5 16.

L' lrych , T.j. 1972 . .\Jaximum en,ropy po\\'er spectrum or trunca ted sinusoids. J. Geopl!)'J. Res., 77 (8 ). 1396- 1400.

United States. Depart mcn t of Com merce. 1959. lJ"orld l1'ealher records. \I·ashi ngton. DC, C.S. Department of Commerce. Wea th er Burea u.

Un ited Sta tes. Departmcnt of Commerce. 1968. Il'or/d leealher records, \\ 'ashi ngton, DC, C.S. Departmcnt or Commerce. EIl\ 'iro nment a l Science Sen"icc Adm inistration. EIl\"iro IlI11 Cll la l D ata Sen"icc.

Lni,cd States. Departmcnt of Commcrce. 1981. 1 " orld ",ealher record.r. \I 'ashington , DC, U.S. Departmcnt ofCommcrce. :.Iationa l O ceani c and A tmospheric Administ ra tion.

Watanabe, O. a nd Y. Fujii . 1990. Ou tl ine or the J apanese Arctic Glac iologica l Expcdition in 1989 I.JAGE 1989). Bull. Glacier Re.l. 8. 103 106.