25
ORGANOMETALLIC COMPOUNDS IN ORGANIC SYNTHESIS CATALYTIC Advantages = 'Difficult Reactions' Disadvantages = Cost, Enviromental Low Cost Metals STOICHEIOMETRIC Advantages = Cost, Enviromental Disadvantages = May not be possi High Cost Metals / Comple Transition Metals

Metal Basicity vs Nucleophilicity and Reductivityy

Embed Size (px)

DESCRIPTION

Metal Basicity vs Nucleophilicity and Reductivityy. Gas-phase Basicity CH 3 -  CH 4 0 KCH 3  CH 4 20 NaCH 3  CH 4 40 LiCH 3  CH 4 60 CH 3 MgBr  CH 4 80 in K cal mol -1. Metal Effects - I. - PowerPoint PPT Presentation

Citation preview

Page 1: Metal Basicity vs Nucleophilicity and Reductivityy

ORGANOMETALLIC COMPOUNDS IN ORGANIC SYNTHESIS

CATALYTIC

Advantages = 'Difficult Reactions'

Disadvantages = Cost, Enviromental

Low Cost Metals

STOICHEIOMETRIC

Advantages = Cost, Enviromental

Disadvantages = May not be possible

High Cost Metals / ComplexesTransition Metals

Page 2: Metal Basicity vs Nucleophilicity and Reductivityy

This presentation looks at the synthesis, reactivity and STOICHIOMETRIC use of...

MAIN GROUP ORGANOMETALLICS AND ORGANOTRANSITIONCOMPOUNDS WHICH ARE ALSO HIGHLY NUCLEOPHILIC (OR BASIC)SOURCES OF "R-"

in the order....

LiR, NaR, KR RMgX RTiX 3

RAlX2 ZnR2 Organoceriums Organosameriums

Organomanganese

Page 3: Metal Basicity vs Nucleophilicity and Reductivityy

RX excess Li

-LiXRLi

RHBuLi

-BuHRLi

ArBr BuLi

-BuHArLi

All Common !!

Also Grignards etc.

THINK !! - Don’t discount the unusual, e.g.........

O SPh

NMe2

Li

"LIDMAN"

O Li

T. Cohen and T. R. Matz, Synth. Commun., 1980, 10 , 311.S. Bank, M. Platz, Tetrahedron Lett. 1973, 14 , 2097

Page 4: Metal Basicity vs Nucleophilicity and Reductivityy

Structures. Hydrocarbons C6H6 Et2O THF

(RLi)n

# Solvent Polarity

# Steric

# S -hybridization

# delocalisation

EtLi

BuLi

Me3SiCH2Li

i-PrLi

sec-BuLi

tert-BuLi

6 4 4

6 4 4

6 4

4

4

4 2 2 / 1

Page 5: Metal Basicity vs Nucleophilicity and Reductivityy

Solvent Effects

BunLi Et2O

OO

O

O

Temp. for t1/2 (dec.)= 100 h

0C -50C -100C

Li O

NR2

X

X = C(O)NR2

BuLi

BuLi

X = H

N/R unless

NMe2Me2N

Li

V. Snieckus, Chem.Rev. 1990, 90 , 879-933.

Page 6: Metal Basicity vs Nucleophilicity and Reductivityy

Metal Basicity vs Nucleophilicity and Reductivityy

Metal Basicity vs Nucleophilicity and Reductivityy

"CH3 M +

" +R

O

R

H Hpka 4.2

R

O

R

H

R

H H

O

M

Me

ROR

• Gas-phase Basicity

• CH3- CH4 0 KCH3 CH4 20 NaCH3 CH4 40 LiCH3 CH4 60 CH3MgBr CH4 80

• in K cal mol-1

Page 7: Metal Basicity vs Nucleophilicity and Reductivityy

Metal Effects - IMetal Effects - I

K 100 : 0

Na 94 : 6

Li 84 : 16

MgBr 0 : 100

PhMMe

O

MePh

Ph

O

M

+

O

Ph

M

Page 8: Metal Basicity vs Nucleophilicity and Reductivityy

Metal Effects - IIMetal Effects - II

BuLi + But OK- 40 C

o

BuK

Strong Base

+ LiOBut

K

LiBr

Li

- 35 Co

Page 9: Metal Basicity vs Nucleophilicity and Reductivityy

Metal Effects - IIIMetal Effects - III

CO2

+

CO2MM

CO2

EMg

X

Strong

low e -density

K 10 : 90

MgBr 99 : 1

Page 10: Metal Basicity vs Nucleophilicity and Reductivityy

Metal Acidity vs. Reactivity and Selectivity

Metal Acidity vs. Reactivity and Selectivity

H

CO

O

OMeMBr

H

C

OO

Me

MeLi

N/R

via H

O

O

Mg

Me

BrO

+

_

Affects * Substrates that form carbocation

* Strong Lewis acid metal complexes (Zn, Mg,Ti, Al etc.)

Page 11: Metal Basicity vs Nucleophilicity and Reductivityy

TITANIUMTITANIUM

RMTransmetallation

Cl TiX3

R TiX3

X = Cl More Lewis Acidic

= OR, NR2 Less Lewis Acidic

M = Li, Mg, Zn

* TiCl4 limited to MeLi, ZnMe2, C3H5Li, resonance stabilisedcarbanions

* X3Ti-R, R is not stable if - hydrogen(s) present( e.g. Et )

Problems

Page 12: Metal Basicity vs Nucleophilicity and Reductivityy

MeTi(OPri)3 < Me2Ti(OPr

i)2 < Me3Ti(OPr

i)

TiCl4 Ti(OPri)4+ 3

RM

Cl Ti(OPri)3

R Ti(OPri)3R

O

H

O

C

R

OHC

RO

Selective for Aldehydes

Page 13: Metal Basicity vs Nucleophilicity and Reductivityy

Cram Selectivity :Cram Selectivity :

M S

L

CHO

Favoured

MR

R

OH

H

H

Ph

Me

R

OH

H

H

Ph

Me+

MeMgBr 66 : 34

MeTi(OPri)3 90 : 10

PhSO2CH2Ti(OPri)3 65 : 35

Page 14: Metal Basicity vs Nucleophilicity and Reductivityy

Enantioselectivity :Enantioselectivity :

R

OH

68-98 % e.e.

O

Ph Ph

O

PhPh

H

H

O

O

TiR

X

Ar H

O

R = Me

X = OPri

R H

O

R = allyl

X = Cp

Ar

OH

Me

H

70-95 % e.e.

Page 15: Metal Basicity vs Nucleophilicity and Reductivityy

Olefination Reaction :Olefination Reaction :

O

CH2Br2 / Zn / TiCl4

83 %

( 10 % with Ph3P=CH2 )+

iPr Pri

OTiCl3(DME)1.5

Pri

Pri

Pri

Pri

87 %

( 12 % with TiCl4 / LAH )

Zn

But what is the mechanism .... ?

Page 16: Metal Basicity vs Nucleophilicity and Reductivityy

ALUMINIUMALUMINIUM

MeLi 79 21MAD/MeLi 1 99

S. Saito and H.Yamamoto, JCS Chem. Commun., 1997, 1585.

2

OH

AlMe3O

AlO

Me

'MAD'

OOH

Me

Me

OH+

OAlX3

R

Page 17: Metal Basicity vs Nucleophilicity and Reductivityy

ZINC I : Synthesis

ZINC I : Synthesis

Klement et al. Tetrahedron Lett., 1994, 35 , 1177-1180.P. Knochel and R. D. Singer Chem. Rev., 1993, 93 , 2117-2188.

Source Problem

ZnEt2 Comercial only one !

ZnX2 + RM Getting ZnX2 dry !

ZnEt2 + RI Getting rid of EtI

R MLn

Br

ZnEt2

RZnBrMLnEt

EtH2C=CH2+

EtH

MLn

RBr

CuCl + MnBr2CuX

M = Mn, Cu

Page 18: Metal Basicity vs Nucleophilicity and Reductivityy

ZINCII : UseZINC

II : Use

R. Noyori, Chem. Soc. Rev., 1989, 18 , 187-208.

ZnEt2

Ar H

O

R2

N

OH

ZnEt2 +

N

O

R2

Zn

O

Et

Ar

H

Slow

NR2

Zn

O

Et

Ar

H

ZnOO

Et2

NR2

Zn

OAr

H

ZnOEt2

99 % ee

OZnEt

HAr

Et

Page 19: Metal Basicity vs Nucleophilicity and Reductivityy

CERIUMHydride Reductions - I

CERIUMHydride Reductions - I

NaBH4-CeCl3

O HO H O

VS.

Sole Product

Via.

(MeO)nHmB H C O H O Me

Ce3+

Page 20: Metal Basicity vs Nucleophilicity and Reductivityy

CERIUMHydride Reductions - II

CERIUMHydride Reductions - II

LiAlH4 CeCl3

RX

RH

X = Cl, F

R = Alkyl, Aryl

NOH NH2

NaBH4PR3

O

BH3

PR3

PR3

O

PR3

..

Page 21: Metal Basicity vs Nucleophilicity and Reductivityy

CERIUMOrganocerium Reagent

CERIUMOrganocerium Reagent

BuCeCl2

BuLi+ CeCl3OH Bu

Ph Ph

O

Ph Ph

96 %(33 %)Si

H

.

O

Si

O

Bu

91 %

Me

Bu

HO

MeO

NH2

BuBu

Ph

PhCN

57 %(< 10 %)

Page 22: Metal Basicity vs Nucleophilicity and Reductivityy

SAMARIUMSAMARIUM

SmI2

RX

RH

O

R

R'R'

OR2

O

R

R'R'

H2

R Cl

O

R' R'

OR

O

R'R'

OH

RCN

R NH2

RCO2H

R OH

R R

O

R'I

R R'R

OH

ROH

( )n

I R

O

( )n

RX

XYI--NC

R SmX2

N

XYI

R R

O

OH

RR

OH

RR

Page 23: Metal Basicity vs Nucleophilicity and Reductivityy

SAMARIUMSAMARIUM

H. Yasuda et al. J. Am. Chem. Soc., 1992, 114 , 4908

XSCO2Me

Me

Me

CO2Me

CO2Me

Me

O

MeO CH2

Me

H

Cp2Sm*

O

MeO

O

MeCH2 H

CH2

OMe

O

Cp2Sm*

Sm

HCp*

HCp*

Sm

Cp*

Cp*

OMe

O

2

O

OMe

Page 24: Metal Basicity vs Nucleophilicity and Reductivityy

MANGANESEOrganomanganese - I

MANGANESEOrganomanganese - I

G. Catiez and M. Alami Tetrahedron , 1989, 45 , 4163-4176.

Mn + I2 MnI2

LiRLiMnR3

10 to 30 C

R2MnRMnX

5 C

Li2MnCl4LiCl +MnCl2

~

RLi Or RMgX

Page 25: Metal Basicity vs Nucleophilicity and Reductivityy

MANGANESEOrganomanganese - II

MANGANESEOrganomanganese - II

RMnX

CuCl

CHO

R

CHO

R' O R'

O O

R R'

O

Cl R'

O

R R'

O

Me COCl

OH

O

Me

OH

O

R

O

CuX

O

O

R

84% c.y.

98% e.e.