35
Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek Watersheds, Illinois David T. Soong U.S. Geological Survey, Illinois Water Science Center Tzuoh-Ying Su U.S. Army Corps of Engineers, Chicago District

Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Embed Size (px)

Citation preview

Page 1: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting:

Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek Watersheds, Illinois

David T. Soong

U.S. Geological Survey, Illinois Water Science Center

Tzuoh-Ying Su

U.S. Army Corps of Engineers, Chicago District

Page 2: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Outline

• Background• Approach and Results• Runoff Coefficient for Consistency in

Observed Data• Simulated Runoff Components for

discrepancies• Summary

Page 3: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

APPROACH

Evaluate the accuracy of hydrologic modeling of runoff:At two small watershed (Tinley, Midlothian), Using two parameter sets (CTE, Current), From water years 1996 to 2003.

Study sites

Page 4: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Digitizing from aerial photographTIA = Upper bound of EIA

Page 5: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

ScenariosWatershed

Tinley Creek

Midlothian Creek

1Polygons of all impervious areas are assigned as completely impervious

55% 68%

2 Impervious percentages assigned according to Rust ( see table 1) 35% 41%

3 Impervious percentages assigned according to TR-55 (see table 1) 28% 34%

4Impervious percentages assigned according to Du Page (see table 1)

23% 28%

5Medium- and high-density residential areas are assigned as completely impervious, but the low-density residential area is assigned to grass

53% 63%

6Apply EIA percentages determined in this study (table 1) to three residential areas, and adopt the percentages for multifamily and high-rise, commercial, and industrial lands from TR-55

29% 35%

7Apply EIA percentages determined in this study (table 1) to three residential areas, and assign multifamily and high-rise, commercial, and industrial lands to be 100% impervious

33% 39%

Page 6: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Areas (in acres) digitized as grass, forest, and impervious land-uses in Tinley Creek and Midlothian Creek watersheds

Total basin area Grass area Forest area Total impervious area

Tinley Park watershed above Palos Park gage

7196 1520 (21%) 1711 (24%) 3965 (55%)

Midlothian watershed above Oak Forest gage

8075 1743 (22%) 855 (11%) 5477 (68%)

Page 7: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Simulated to recorded (S/R) ratios of annual mean and 10-year mean streamflows for Midlothian Creek at Oak Forest and Tinley Creek at Palos Park, water years 1996 to 2005, using HSPF with CTE and Current parameter sets.

EIA Scenarios

Water year

10-year Average

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

Mid

loth

ian

CT

E

3 0.93 1.08 0.98 1.16 0.96 1.00 0.90 0.86 1.03 1.01 0.99

4 0.88 1.03 0.92 1.10 0.89 0.94 0.85 0.78 0.97 0.96 0.93

6 0.95 1.09 0.99 1.18 0.98 1.01 0.92 0.89 1.04 1.03 1.01

7 0.98 1.13 1.03 1.22 1.03 1.06 0.95 0.95 1.09 1.07 1.05

Cu

rrent

3 0.81 1.00 0.91 0.94 0.80 0.87 0.75 0.76 0.78 0.91 0.85

4 0.77 0.96 0.87 0.89 0.74 0.81 0.71 0.68 0.74 0.86 0.80

6 0.82 1.01 0.93 0.95 0.82 0.88 0.76 0.78 0.79 0.92 0.87

7 0.85 1.04 0.96 0.98 0.86 0.92 0.79 0.83 0.82 0.96 0.90

Tin

ley

CT

E

3 0.73 0.90 0.76 0.95 0.71 0.76 0.70 0.61 0.79 0.83 0.77

4 0.68 0.85 0.71 0.89 0.64 0.70 0.65 0.53 0.72 0.78 0.72

6 0.75 0.91 0.77 0.97 0.73 0.78 0.71 0.63 0.80 0.85 0.79

7 0.79 0.94 0.81 1.01 0.79 0.82 0.75 0.69 0.85 0.89 0.83

Cu

rrent

3 0.64 0.84 0.71 0.78 0.60 0.65 0.59 0.53 0.60 0.75 0.67

4 0.59 0.80 0.66 0.74 0.54 0.60 0.55 0.46 0.55 0.70 0.62

6 0.65 0.85 0.73 0.79 0.61 0.67 0.60 0.55 0.61 0.76 0.68

7 0.68 0.88 0.76 0.83 0.66 0.71 0.63 0.60 0.64 0.80 0.72

Donigian and others (1984, p-114), the annual or monthly fit is: Very good error < 10%,

Good 10% < error < 15% Fair 15% < error < 25%

Page 8: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Factors Affecting Simulation Results

• Data – adequacy of data network, measurement inaccuracy and recording errors

• Nature – randomness • Model Parameters – how good the original

calibration was, parameters difficult to calibrate

• Model Structure – capability in reflecting the watershed physical processes

• Operators

Page 9: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

CUMULATIVE PRECIPITATION DEPTH, inches

0 50 100 150 200 250 300 350

CU

MU

LA

TIV

E R

UN

OF

F D

EP

TH

, in

che

s

0

50

100

150

200

EXPLANATION

Observed Midlothian CreekObserved Tinley Creek

WY

19

96

WY

19

97 W

Y 1

99

8 WY

19

99 W

Y 2

00

0

WY

20

01

WY

20

02

WY

20

03 W

Y 2

00

4

WY

20

05

Double mass curves for observed stream runoff depth at Tinley Creek at Palos Park (USGS streamflow gaging station 05536500) and at Midlothian Creek at Oak Forest (USGS steamflow gaging station 05536340) with respect to Thiessen weighted precipitation

Page 10: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0.0

0.5

1.0

1.5

2.0

2.5

3.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

RU

NO

FF

CO

EF

FIC

IEN

TS

TINLEY CREEK WATERSHEDMIDLOTHIAN CREEK WATERSHED

Monthly runoff coefficient =

observed streamflow volume / observed precipitation volume

Page 11: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Jan Feb Mar Apr

MONTH

May Jun Jul Aug Sep Oct Nov Dec Jan0.0

0.5

1.0

1.5

2.0

2.5

3.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MIDLOTHIAN CREEK WATERSHED -- CTE PARAMETER SET

SIMULATED RUNOFF COEFFICIENTS

OBSERVED RUNOFF COEFFICIENTS

S/R RATIOS

Page 12: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Jan Feb Mar Apr

MONTH

May Jun Jul Aug Sep Oct Nov Dec Jan0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

-0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

MIDLOTHIAN CREEK WATERSHED -- CTE PARAMETER SET

SIMULATED RUNOFF COEFFICIENTS

OBSERVED RUNOFF COEFFICIENTS

S/R RATIOS

Page 13: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

TINLEY CREEK WATERSHED -- CTE PARAMETER SET

SIMULATED RUNOFF COEFFICIENTSOBSERVED RUNOFF COEFFICIENTS

S/R RATIOS

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0R

UN

OF

F C

OE

FF

ICIE

NT

S/R

RA

TIO

MIDLOTHIAN CREEK WATERSHED -- CTE PARAMETER SET

SIMULATED RUNOFF COEFFICIENTSOBSERVED RUNOFF COEFFICIENTSS/R RATIOS

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0MIDLOTHIAN CREEK WATERSHED -- CURRENT PARAMETER SET

SIMULATED RUNOFF COEFFICIENTS

OBSERVED RUNOFF COEFFICIENTS

S/R RATIOS

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.0

0.5

1.0

1.5

2.0

2.5

3.0TINLEY CREEK WATERSHED -- CURRENT PARAMETER SET

SIMULATED RUNOFF COEFFICIENTSOBSERVED RUNOFF COEFFICIENTSS/R RATIOS

(a)

(d)(c)

(b)

Monthly runoff coefficients for simulated runoff, and simulated to observed runoff (S/R) ratios

Page 14: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

TOTAL RUNOFF (PERVIOUS PERO & IMPERVIOUS SURO)

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

ACCUMULATED PRECIPITATION DEPTH, inches

AC

CU

MU

LAT

ED

OU

TF

LOW

DE

PT

H,

inch

es

CURRENT FOREST

CTE FOREST

CURRENT GRASS

CTE GRASS

CURRENT IMPEVIOUS

CTE IMPEVIOUS

WY

1996 WY

1997 W

Y19

98 WY

199

9

WY

200

WY

2001 W

Y20

02

WY

200

3

WY

200

4 WY

2005

SURFACE OUTFLOW (SURO)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

ACCUMULATED PRECIPITATION DEPTH, inches

AC

CU

MU

LAT

ED

OU

TF

LOW

DE

PT

H, i

nche

s

CURRENT FOREST

CTE FOREST

CURRENT GRASS

CTE GRASS

WY

1996

WY

1997

WY

1998

WY

1999

WY

200

WY

200

1

WY

200

2

WY

200

3

WY

2004

WY

2005

INTERFLOW OUTFLOW (IFWO)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

ACCUMULATED PRECIPITATION DEPTH, inches

AC

CU

MU

LAT

ED

OU

TF

LOW

DE

PT

H, i

nche

s

CURRENT FoOREST

CTE FOREST

CURRENT GRASS

CTE GRASS

WY

1996

WY

1997

WY

1998

WY

1999

WY

200

0

WY

2001

WY

2002

WY

2003

WY

200

4

WY

2005

ACTIVE GROUNDWATER STORAGE (AGWO)

0

20

40

60

80

100

120

0 50 100 150 200 250 300 350 400

ACCUMULATED PRECIPITATION DEPTH, inches

AC

CU

MU

LAT

ED

OU

TF

LOW

DE

PT

H, i

nche

s

CURRENT FOREST

CTE FOREST

CURRENT GRASS

CTE GRASS

WY

1996 WY

1997 W

Y19

98 WY

1999

WY

2000

WY

2001

WY

2002 WY

2003

WY

2004 WY

2005

SIMULATED EVAPOTRANSPIRATION FROM PERVIOUS AND IMPERVIOUS LANDS

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400

ACCUMULATED PRECIPITATION DEPTH, inches

AC

CU

MU

LAT

ED

TO

TA

L E

T, i

nche

s

CURRENT Forest

CTE Forest

CURRENT Grass

CTE Grass

CURRENT Impervious

CTE Impervious

WY

1996 W

Y19

97

WY

1998

WY

1999

WY

2000

WY

2001

WY

2002 W

Y20

03

WY

2004 W

Y20

05

Page 15: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Midlothian-CTE

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PE

RO

& S

TR

EA

MF

LO

W

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

TA

ET

PERO CTE GrassPERO CTE ForestOBS DischargeWeighted PrecipTAET CTE GrassTAET CTE Forest

Midlothian-CURRENT

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PE

RO

& S

TR

EA

MF

LO

W

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

TA

ET

PERO CURRENT GrassPERO CURRENT ForestOBS DischargeWeighted PrecipTAET CURRENT GrassTAET CURRENT Forest

Tinley-CTE

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PE

RO

&S

TR

EA

MF

LO

W

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

TA

ET

PERO CTE Grass

PERO CTE Forest

OBS Discharge

Weighted Precip

TAET CTE Grass

TAET CTE Forest

Tinley-CURRENT

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

PE

RO

& S

TR

EA

MF

LO

W

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

TA

ET

PERO CURRENT Grass

PERO CURRENT Forest

OBS Discharge

Weighted Precip

TAET CURRENT Grass

TAET CURRENT Forest

Page 16: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Summary

• EIA assessment• S/R ratio for evaluating the accuracy of

simulation – need to check for inconsistency• Use runoff coefficient to examine the

consistency in observed (system) data, to examine the model performance

• Examine components of simulated flow to determine the possible causes of discrepancy

Page 17: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Comments!

Page 18: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

WY

199

6 WY

199

7 WY

199

8 WY

199

9 WY

200

0

WY

200

1

WY

200

2

WY

200

3 WY

200

4

WY

200

5

CUMULATIVE PRECIPITATION DEPTH, inches

0 50 100 150 200 250 300 350

CU

MU

LA

TIV

E R

UN

OF

F D

EP

TH

, in

che

s

0

50

100

150

200

EXPLANATION

Observed Midlothian Creek CTE Simulated Midlothian Creek Current Simulated Midlothian Creek

CUMULATIVE PRECIPITATION DEPTH, inches

0 50 100 150 200 250 300 350

CU

MU

LA

TIV

E R

UN

OF

F D

EP

TH

, in

che

s

0

50

100

150

200

WY

199

6 WY

199

7 WY

199

8 WY

199

9 WY

200

0

WY

200

1 WY

200

2

WY

200

3 WY

200

4

WY

200

5

EXPLANATION

Observed Tinley CreekCTE Simulated Tinley CreekCurrent Simulated Tinley Creek

DMC Analysis of Simulated and Observed Streamflows

Page 19: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Rain Gages Distribution – Thiessen Method

Page 20: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Table 1. Hydrological Simulation Program-FORTRAN rainfall-runoff parameter values used in the Current and CTE models for grass, forest and impervious land segments. [n/a: not available]

Grass land Forest land Impervious land HSPF Parameter Current CTE Current CTE Current CTE CEPSC 0.25 0.1 0.2 0.2 n/a n/a UZSN 1.8 0.5 3.0 3.0 n/a n/a LZSN 9.5 8.5 9.5 9.5 n/a n/a LZETP 0.38 0.38 0.9 0.90 n/a n/a AGWETP 0.05 0.05 0.15 0.15 n/a n/a INFILT 0.015 0.10 0.01 0.01 n/a n/a DEEPFR 0.05 0.05 0.05 0.05 n/a n/a INTFW 15.0 10.0 7.5 7.5 n/a n/a LSUR 50 50 400 400 50 50 SLSUR 0.01 0.01 0.01 0.01 0.01 0.01 NSUR 0.2 0.2 0.25 0.25 0.20 0.20 IRC 0.5 0.5 0.5 0.5 n/a n/a KVARY 1.7 1.7 1.7 1.7 n/a n/a AGWRC 0.98 0.98 0.98 0.98 n/a n/a RETSC 0.25 0.10

Table 2. Hydrological Simulation Program-FORTAN snowmelt parameter values used in the Current and CTE HSPF models for grass, forest and impervious land segments

Grass land Forest land Impervious land HSPF Parameter Current CTE Current CTE Current CTE CCFACT 1.0 1.0 1.0 1.0 1.0 1.0 SNOWCF 1.4 1.4 1.4 1.4 1.4 1.4 RDCSN 0.12 0.12 0.12 0.12 0.12 0.12 SHADE 0.2 0.2 0.3 0.3 0.2 0.2 MGMELT 0.0 0.0 0.0 0.0 0.0 0.0 MWATER 0.2 0.2 0.2 0.2 0.2 0.2 COVIND 0.5 0.5 0.5 0.5 0.5 0.5 SNOEVP 0.2 0.2 0.2 0.2 0.2 0.2 MELEV 610 610 610 610 610 610 TSNOW 32 32 32 32 32 32

Page 21: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Lower surface runoffs were estimated in Tinley Creek watershed because A) Tinley watershed has high percentage of forest areas. B) Higher TAET always results in Tinley watershed.

CTE parameter set results in better S/R ratios than Current parameter set A) Current parameter set estimated higher evapotransporation than CTE

parameter set, and therefore resulted in lower surface-runoff. B) The Current parameter set simulated less infiltrated flows and interflow

outflows, but more groundwater storage and groundwater outflows than the CTE parameter set.

Summary

Page 22: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

The EIA percentages assigned in TR-55 are closer to the TIA percentages result from digitizing 11 land-covers from the 2005 aerial photograph.

Simulated flows have better S/R ratio when EIA % specified by RUST or this study are used.

The S/R ratio for Midlothian Creek (WY 1996 to 2003) is 1.06 and for Tinley Creek is 0.94 which are very good and good, respectively, according to classification by Donigian and others (1984).

Summary

Page 23: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Effective Impervious Areas

Table 1. Total impervious area resulting from digitization of rooftops, driveways, sidewalks, streets, and parking lots in 9 selected residential areas

Land-cover categories Average

percentage Range of

percentage High-density residential 41 32 – 48 Medium-density residential 31 23 – 36 Low-density residential 22 21 – 25

Table 1. Percentage of impervious percentages computed from Rust, TR-55, Du Page and two groups of present study

Watershed Rust TR-55 Du Page This study This study + TR-55 Tinley Creek 0.36 0.28 0.27 0.33 0.29 Midlothian Creek 0.42 0.34 0.32 0.39 0.35

Page 24: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Table 13. EIA percentages for the seven scenarios analyzed in the study. [Scenario (1) no percentages assigned, (2) Rust (1993), (3) TR-55, (4) Du Page (1993), (5) entire low-density residential area is attributed to grass area, (6) percentages listed in Table 3 for residential areas and Multifamily and high-rise, commercial, and industrial lands from TR-55, and (7) percentages for residential areas only as listed in table 2; Unit: percent]

Scenario Watershed 1 2 3 4 5 6 7

Tinley Creek watershed 0.55 0.36 0.28 0.27 0.23 0.29 0.33 Midlothian Creek watershed 0.68 0.42 0.34 0.32 0.28 0.35 0.39

Page 25: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Land UseRust

(USACE, 2004)

TR-55(USACE,

2004)

Du Page (USACE,

2004)

Upper Bounds Determined in This Study

1

Forest 0

Open Space/Park 5determined case-by–

case

Low Density Residential: 1.1 acre median lot

19 20 10Mean: 22

Range: 21-25

Medium Density Residential: 1/2 acre median lot

40 25 15Mean: 31

Range: 23-36

High Density Residential: 1/5 acre median lot

56 38 38Mean: 41

Range: 32-48

Multifamily and High Rise

70 65 50

Commercial 85 85 85

Industrial 72 72 85

Highway Corridor

With Grassed Median 50 50

No Median 80 100

Open Water 100 100

Page 26: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Chicago River at Columbus Drive

Page 27: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

L a k eM i c h i g a n

C o n t r o l S t r u c t u r e s

G a g i n g s t a t i o n

R o m e o v i l l e

C h i c a g o S a n i t a r y a n d S h i p C a n a l a t R o m e o v i l l e

Page 28: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

D i v e r s i o n M e a s u r e m e n t

C o m p o n e n t s o f d i v e r s i o n

• W a t e r s u p p l y

• R u n o f f

• D i r e c t d i v e r s i o n s( c o n t r o l s t r u c t u r e s )

Page 29: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

PrecipitationInterception ET

Depression Infiltration

Overland flow

Land Use & Management

HSPF Sediment ModuleHSPF PEST Module

InterceptionStorage

Interflow

Overland Flow

Interflow

Lower ZoneStorage

Upper ZoneStorage

GroundwaterStorage

To RCHRES

Page 30: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Nov2000

ft

0

1

2

3

4

5

6

7

COMPARISOIN OF SIMULATED AND OBSERVED FLOWS AT USGS MIDLOTHIAN GAGE

OAK FOREST EDITED GHT

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

May1998

ft

0

1

2

3

4

5

6

7

COMPARISOIN OF SIMULATED AND OBSERVED FLOWS AT USGS MIDLOTHIAN GAGE

OAK FOREST EDITED GHT

Page 31: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

Chicago River

Columbus Drive

Lake Shore Drive

Page 32: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

http://tigger.uic.edu/depts/ahaa/imagebase/chimaps

Michael P. Conzen; Dennis McClendon

Source: Newberry Library

Urbanization in Metropolitan Area of Chicago

Page 33: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

C h i c a g oR i v e r s

C a l u m e tR i v e r s

L a k eM i c h i g a n

C r i b

C r i b

P r e - D i v e r s i o n ( p r e - 1 9 0 0 )

P r e - D i v e r s i o n ( p r e - 1 9 0 0 )

Page 34: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

L a k eM i c h i g a n

C r i bC h i c a g oR i v e r s

C a l u m e tR i v e r s

C o n t r o l S t r u c t u r e s

P o s t d i v e r s i o n( P o s t 1 9 0 0 )

P o s t d i v e r s i o n( P o s t 1 9 0 0 )

R o m e o v i l l eO ’ B r i e n

C R C W

W i l m e t t e

Page 35: Methodology for Evaluating Hydrologic Model Parameters in an Urban Setting: Case Study Using Transferred HSPF Parameters in Midlothian and Tinley Creek

P e r m itte d D iv e r s io n s 1 9 0 0 - 1 9 9 4P e r m itte d D iv e r s io n s 1 9 0 0 - 1 9 9 4

3,50 0

8 ,1 00

1 0 ,00 0

8 ,6 00

3 ,2 0 0

3 ,1 00

6 ,6 0 0

1,000

3,000

5,000

7,000

9,000

11,000

1900 1910 1920 1930 1940 1950 1960 1970 1980 1990

Dis

char

ge,

in c

fs

U .S. Supreme C ourt D ecrees