7
272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute of Chemical Engineers) Methyl Formate * * (2001 2 16 , 2001 4 17 ) Process Study of Methyl Formate Intermediate Methanol Synthesis for Coal-derived Syngas Jang-sik Shin , Heon Jung* and Jong-Dae Lee Dept. of Chem. Eng. Chungbuk National University, Chungbuk 360-763, Korea *Energy Conversion Research Team, Korea Institute of Energy Research, Daejeon 305-343, Korea (Received 16 February 2001; accepted 17 April 2001) . copper chromite Cu/MgO copper chromite . KOCH 3 polyaniline , . Copper chromite + KOCH 3 , 250 cc 20-40 g copper chromite 5g KOCH 3 180 o C 61 1,000 L/kg hr . CO 2 1% CO 2 . H 2 /CO 1 70% 6 gmole/kg hr . triglyme , . Abstract - New catalysts development and process variable study have been carried out to seek the possibility of develop- ing methyl formate intermediate methanol synthesis process into commercial scale. Cu/MgO was prepared in an effort to replace the copper chromite catalyst. Cu/MgO was inferior to copper chromite in terms of the weight-based activity and the sta- bility. An attempt to substitute the homogeneous(methanol-soluble) KOCH 3 catalyst with an anion-exchanged polyaniline resin was partially successful since anion-exchanged resin showed some activity but it seems to dissolve in the methanol solvent. The best combination of the catalysts is Ba-promoted copper chromite with KOCH 3 . The optimum reaction condition is at 180, 61 atm with syngas flowing at 1,000 L/kg hr to the reaction mixture of 40 g of copper chromite and 5 g of KOCH 3 dispersed in 250 cc of methanol. At this condition, the problem of severe deactivation of the catalytic system by a few ppm of CO 2 has been overcome and the system was stable up to 1% of CO 2 in the feed gas. The catalytic system was stable when feed gas was syngas generated from coal gasification (H 2 /CO=1) with 70% of H 2 conversion at the rate of 6 gmole/kg hr. When triglyme was used as a solvent instead of methanol, slight reduction in the rate of reaction was observed. However, the use of triglyme can make the recovery of the product methanol much easier than the methanol solvent system. Key words: Methyl Formate, Methanol Synthesis, Coal-Derived Syngas, Cu/MgO E-mail: [email protected] 1. Fischer-Tropsch(FT) . FT . ( ) 100% .

Methyl Formate Process Study of Methyl Formate ...cheric.org/PDF/HHKH/HK39/HK39-3-0272.pdf · 272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Methyl Formate Process Study of Methyl Formate ...cheric.org/PDF/HHKH/HK39/HK39-3-0272.pdf · 272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278(Journal of the Korean Institute of Chemical Engineers)

���� ��� Methyl Formate � ��� ���� �� ��

���†����*���

����� ���� �����*�� ����� �������

(2001� 2� 16� ��, 2001� 4� 17� ��)

Process Study of Methyl Formate Intermediate Methanol Synthesis for Coal-derived Syngas

Jang-sik Shin†, Heon Jung* and Jong-Dae Lee

Dept. of Chem. Eng. Chungbuk National University, Chungbuk 360-763, Korea*Energy Conversion Research Team, Korea Institute of Energy Research, Daejeon 305-343, Korea

(Received 16 February 2001; accepted 17 April 2001)

� �

����� ���� � ���� ���� ������ ��� ����� ��� !" �#�$ %&'( )

* +,� -. / �� 01� 0"2 34'56. (7� copper chromite +,2 8�'� 9:;< =(� >�2 ?!

@ Cu/MgO� �# / AB��� copper chromite� C* DEF6. GH+,< I� 4!�� KOCH32 CGH"'( )

* polyanilineJD� K��L1A2 M3'N O!@ PQ, �#�R ST'5;U +,� V�O�A WX6. Copper

chromite + KOCH3 +,J2 4!'N YO� Z?3[$ 34@ PQ, 250 cc� ��� \�!,� 20-40 g� copper chromite

/ 5 g� KOCH32 ]^' 180oC / 61(_�� 1,000 L/kg̀ hr� aB� ����2 b^'� c;< de�f6. �

3[�� ������ ��� ��� gMh;< ijk lmn� CO2� �@ +, Co�"� lp�q 1%� CO2� �

rs ����2 4!'Nt +,J� o�� aA�f6. uv w�� ��"� �* M3�� ����� 3�T H2/CO

� C� 1 �'T ��� 1m�� 70%� �xy Z?Bt� 6 gmole/kg̀ hr � �f6. ��� 8z triglyme$ !,

< 4!@ PQ {�� Z?Bt |m�t }~' , Z?���� �1� !�@ �h� �q \ ��� �� ��� O

! �#�$ �N bf6.

Abstract − New catalysts development and process variable study have been carried out to seek the possibility of develop-

ing methyl formate intermediate methanol synthesis process into commercial scale. Cu/MgO was prepared in an effort to

replace the copper chromite catalyst. Cu/MgO was inferior to copper chromite in terms of the weight-based activity and the sta-

bility. An attempt to substitute the homogeneous(methanol-soluble) KOCH3 catalyst with an anion-exchanged polyaniline resin

was partially successful since anion-exchanged resin showed some activity but it seems to dissolve in the methanol solvent.

The best combination of the catalysts is Ba-promoted copper chromite with KOCH3. The optimum reaction condition is at 180,

61 atm with syngas flowing at 1,000 L/kg�hr to the reaction mixture of 40 g of copper chromite and 5 g of KOCH3 dispersed

in 250 cc of methanol. At this condition, the problem of severe deactivation of the catalytic system by a few ppm of CO2 has

been overcome and the system was stable up to 1% of CO2 in the feed gas. The catalytic system was stable when feed gas was

syngas generated from coal gasification (H2/CO=1) with 70% of H2 conversion at the rate of 6 gmole/kg� hr. When triglyme

was used as a solvent instead of methanol, slight reduction in the rate of reaction was observed. However, the use of triglymecan make the recovery of the product methanol much easier than the methanol solvent system.

Key words: Methyl Formate, Methanol Synthesis, Coal-Derived Syngas, Cu/MgO

†E-mail: [email protected]

1. � �

�� � ����� ��� ��� ����� �� ����

��� ���� �� ��� ���� ����� !"�# ���

����� $�� %�&' ()�* Fischer-Tropsch(FT) +,' *

- ����� �� ��. /0.

.1 FT+,2 034 ��5� ���� $�� (6� 789� :

;< �5� =>? � �+,. @AB.C� D(B�� EF�

0. +G %�& ��+,2 ��5(%�&)� 4 789� *� 100%

� .H� IJ. /0. K4 ��� %�&2 LM AN���9 OP

272

Page 2: Methyl Formate Process Study of Methyl Formate ...cheric.org/PDF/HHKH/HK39/HK39-3-0272.pdf · 272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute

���� ��� Methyl Formate � ��� ���� �� �� 273

Q A /R, S�, TUVW�.X, MTBE Y� $�� OPZ[, \]

A^� _?Q A /� �"� .`a fuel cell� $��9 OPQ A

/0.

%�&. bc� �d$�� ��� ef' g �b h�<�

bc� Cu/ZnOi jk� OP4 lm%�& ��no� p� qr'

s.� �t�� no. !7Zuv 40. 4 ���� Iwp� x.

b h� y+,��� =>?' z^��# {|}<� ~b� x.�

��. /0. %�& () no1 %�T%.�� 1��� �# ��

�< %�&' ()�� no2 ����� ��_?r. s;< =>

? pr. :2 no.0.

%�& ��+,1 %�T%.�� 1��� �# ����� %

�&' ���� � �i ��+,2 1919� Christiansen� ��< ;

�� +, D�� �. (�Z�0[1].

CH3OH + CO� HCOOCH3 (1)

HCOOCH3 + 2H2� 2CH3OH (2)

(1) + (2) 2H2 + CO� CH3OH (3)

h� +,2 +,5.� ��5� %�&. ����^� +,�#

%�T%.�� ��4[%�& ����+,; +, (1)] � %�T%.

�� A^���� 2�� %�&. ��Z[[+, (2)], >+,2 ��

��^� A^�� %�&. ��[+, (3)]Z� �.0.

2H2 + 2CO� HCOOCH3 (4)

. ��2 K4 %�&. 1��� Zu ����� %�T%.

�� LM ��f A9 /�[[+, (1)�2 ++, (2) =+, (4)], %�

&� %�T%.�� `�� ��f A /0.

h� +,1 +, (1)� %�& ����+,2 alkali alkoxide� j

k� V�� /R �� NaOCH3� KOCH3� ��. s0[1-3]. ��

KOCH3� 5� +,�# formate(HCOOK)�, .���^� +,�#

methyl carbonate(KOCOOCH3)� ���] Z[, � D  ¡� KOCH3

� jk�<� ¢�' £] �0. ¤¥< ����+,�< alkali

alkoxide� jk� OP��G 5� .���^� 1 ppm� 10 ppmo9

¦§ (*�v40[4, 5]. %�T%.�� A^���+,2 copper

chromite Y� �2 jk� .P�# �� K� b��< +,40[2, 5-9].

Christiansen� �� (�� %�&�� no2 ¨©� 2!� +,b

�< +, (1)� (2)� ªª «¬�9­ Zu /0. �� alkali methoxide

� copper chromite� ®¯ OP�G �� +,b°�< �����

LM %�& ��. ���0R �RZ��[, . +,� +,)±

2 100-180oC, 50-65bm.R, . +,)±��< ªª� +,� �

²³� +,´9�0 µ(� _� +,´9� ¶ s] · , +,�

OP4 � jk O.�� �¸¹P. /� ��� ·º0[5, 10-13].

. %�& ��+,2 +,5.� ��5� %�&. ���� c=

�� +, )±�< )»�C� 5"_¼ (4� ¤½ +,´9� ¾

^� /' A /� , +G� ¿_¼ ´9�  A�# +,¿� (*�

P.�# ����� ��_?r. bc� �Pno� p� s2 IJ

. /0. K4 +, ��5. \] �FQ A /� %�&� %�T%

.�À.0. �� ����� @�B�� T®Zu /� .���^

� 5� �� ÁÂ4 p¢��� «¬ZC� . no' �P��b h

�<� ����� T®� .���^� 5' ppm �h� o(�* ,

no. �ÃÄ� .���^� 5�9 ³Å A /9­ !7�� ÆÇ

. @�0.

K4 ª +, �i� +,�. s;< ^Ä� jk� �� s2 %�

& ���. ���# +,b� ~b� x.� �t� �� �P�

�9 _� Ê @È4 �É �v.0.

¤¥< Ë �É� ÌB2 �� %�T%.� 1�� %�& ��+,

� �P�� h4 ����+,� A^���+,� OPZ� ��.

t�� jk !Í� +,)±� !7� �4 .���^� �4 Ψ

Ï�� D¾.0.

2. � �

2-1. ���� � ��

µÐIw� Ñ�F�� jk� Ò«� Rm� Ó+a Autoclave

(Autoclave EngineersO)� "Ä�´i(MFC; Brooks 5850)� H2/CO/

CO2 Y� pr � �Ä. )Ô� ¡O����� ÕÖZR, +,b�

×�4 y+, ��� condenser � emÇ )ob(BPR; Tescom)� ×

� ��y� *- ØÙZ9­ É�Zu /R �Ú4 °P2 ÛÜ�

· /0[14]. �� Rm� syringe pump(IscoO)� IÝ�# µÐ9

1� VÞF jk Y� ÕÖ. ���9­ ßiZu /0.

+,2 500cc P� stainless-steel autoclave�< +��a(semi-

batch)�� «¬�0. +, Sb� 250 cc� %�&� BoÄ� A^�

��jk(², copper chromite)� ����+,jk(², KOCH3)� àR

170oC, 60bm�< 8��`� A^� ?$ �, �Ä)Ôi(MFC)� )

�� �Ä. )Ô� ����� %�&-jk Ñ�F� ×��G< +,

40. +,b mÇ2 emÇ )ob(BPR)� )ÔZR _?Z§ á2 �

���� ��y� �Ä' âo40. +,�� ��� %�&� %�

T%.�� �� ��' h4 ãäå' (æ�R� +,b�< (*Z

§ á�C� +,b °� i´ çB�0. +, 1 ��� b�� )

�2 ÕbB�� èé�# ��~�êë��|(GC; HP5890; Carbosieve

S column, Porapak Q, TCD)� "��b(Mass Spectroscopy; Balzers)

� ���ì0.

+,b� ÕÖZ� ¡O����� �Ä � )�2 bypass line' *

- ��y � ��~�êë��|� ªª ���0. +,b� ×�4

y+,��� �Ä� ÕÖ��� �Ä�� í. � ª ��� )�'

îï�� +,´9� i��ì0.

2-2. �

2-2-1. Cu/MgO

A^���+,� jk� Cu/MgO(3 : 7) jk� nð�� �� ()

Z�0. Copper(II) nitrate hydrate [Cu(NO3)2ñxH2O]� magnesium nitrate

hexa hydrate[Mg(NO3)2ñ6H2O]' ªª .òo(A� P��ó[, .

ô 3.0 M� NaOH AP�9 ®¯ ()40. ()� AP�' pH=

9.5±0.5� �§�G< µò�< Ó+�õ �, .òo(A� .P�# Ò

�� Úö4 � @� *½0. ÷�« jk� 90oC� «nøù�< Ò

�� ±)�óR 120 mesh� �ú4 �, 300oC�< 6��`� nb �

hb�< ^�40.

2-2-2. Copper Chromite jk� �ú

A^���+,� jk� copper chromite(Aldrich, Ba promoted)�

�ú� �4 �û jk� yÚ� � üGB ý�� �Í�# jk ¢�

t� q�� V;�b h� copper chromite� ªþ ~b� alumina ball

' OP�# 1�� `� �ú�ì0. zÿ ÛÜ� ��G �ú� ��

# p�o�� copper chromite� �o�� p� A^��� ��. �

u 0R Íü� î /0[15].

2-2-3. �.ò Ó? A§(PANI-OH) jk

p�"�4(heterogeneous) ����+, jkP�� 1Rò�< ³

�� polyanilinei� �.òÓ?A§ jk� () ��2 ;�� �0.

PAN(polyaniline<emeraldine salt>, Aldrich) 50.0 g� 3.0 wt% NH4OH

(�¡�;A) 1,200 cc� ��# 50oC�< 2�� `� Ó+40. Ò

�� Ó+4 P�' .òo(A(1,000 cm3/5 g), %�&(500 cm3/5 g) �

diethyl ether(50 cm3/5 g)� Ò�� Úö4 � @� *½0. @� ÷

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001

Page 3: Methyl Formate Process Study of Methyl Formate ...cheric.org/PDF/HHKH/HK39/HK39-3-0272.pdf · 272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute

274 ����� �����

�« jk� «nøù(10−2 Torr, 70oC)�< ] ��� �' ô¦§

Ò�� ±)40( 4��/5 g). Ò�� ±)4 PANI� 0.5 M� NaOH

� %�&� �� P�� àR 50oC�< 24�� Ó+40(P�� 3:

500 cm3/5 g). Ó+. �� P�' .òo(A(1,000 cm3/5 g), %�&

(500 cm3/5 g), diethyl ether(50 cm3/5 g)� Úö40. Ò�4 Úö� @

� *½ � «nøù(10−2 Torr, 70oC)�< ] ��� �' ô¦§

±)�# jk� ���ì�[, �ú� jk� üGB(BET, ASAP2010,

MicromeriticsO)' âo�ì0. .��< ()� jk� üGB2 Table

1� ·°�0.

3. ��

Ë µÐ�< b�� �´B�� Ó++,b� ×��R ��2 ��

a.0. �, +,� ��< ��� %�& Y2 +,b�< (*Z§ á

R i´ çB�0. +,b °� ª b� �m2 �o�] �§ZC�

+, (1), (2)� 0�� �. ü�ZR;

k1 k3A(CH3OH) + (CO)� B(HCOOCH3) + (2H2) →2A(CH3OH) (5)

k2

5"A§a2 ªª 0�� �0.

(6)

(7)

#b�< nA� nB� +,b °� %�&� %�T%.�� �A.R

CA� CB� ªª� �9.0.

Liu Y[4]. ª +,' )O4 î� ��G +,´9� ª +,5�

� 1í� p��[, ª jk� 3� 7� p�40. ¤¥< ª +,�

A(k)� ª jk� 3� b�� �m' T®40. h� � a' B��

G jk �9 ��� ¤½ o��� +,´9 � 1��� %�T%.

�� �� )�' o�B�� V A /0.

4. � � �

4-1. � �� �

4-1-1. Ruthenium Carbonyli jk

Darensbourg Y[16]2 W(CO)6 Ru3(CO)12+ KI� KOCH3� ®¯

OP�G ����+,� ´9� �. ��40R Íü�ì0.

.� BP�b h� �l +,b� copper chromite 5.0 g� KOCH3

0.833 g' %�& 250 cc� ®¯ Ò«�R, +,' �¹�# o����

9¼4 �, Ru3(CO)12(Aldrich) 0.1 g� KI(Aldrich) 1.298 g' %�&

110 cc� P��õ P�' syringe pump� .P�# +,b °� ÕÖ

�ì0. ÕÖ �, %�& ��´9� ���] ¾^�# o��� ´9

� 23%¦§ ¾^�ì0. +,ò9� 170oC � 180oC� ý��#

9 +,´9� ��� *� ��0.

�� ��� %�T%.� �9� Ru3(CO)12+ KI jk� ÕÖ �

2Ø� ý��# ����+,� ´9� ����' �#Õ _� +

,´9� 1/4� ¾^4 �2 Ru3(CO)12 jk� copper chromitejk�

Ψ��b ôÛ�� �ª�0. ¤¥< Ru3(CO)12, Fe(CO)5 Y� �2

carbonyl i� jk� %�T%.� 1�� no� B�4 ��� �

�Z�0.

4-1-2. �.ò Ó?A§ jk

����+,� OPZ� VÞF jk� �"(homogeneous)jk�

%�&� P�Zu OPZ �04 3. c=�G A^���+,�

jk� copper chromite� jk site� blocking�# �� eq��

��0. .� �§�b h4 ��� � � p�"(heterogeneous) ��

��+, jk� OP.0. zÿ� Amberlyst A26.¥� �.ò Ó?

A§ jk� .P�# ����+,� qr' �Pjk� NaOCH3 �

0 s] «¬f A /0� ��� ÍüZ�0[17]. . jk� (polymer)-

CH2N(CH3)3+Cl−� b�b� �§R /�[ +, _� NaOH� OH−�

Ó?�# OP�0. �� . jk� OP ��ò9� 60-80oC� Ë n

o� +,ò9� 150-180oC�<� OPQ A �� �J. /0. ¤¥

< Ë �É�<� s2 ò9�< OP ��4 �b�i¿� R���

polyaniline(PAN)' 1��# protonation�õ �.ò Ó?A§(PANI-

OH)� ()�ì0. K4 Di Girolamo Y[17]� ��G .���^ Y

� p¢��� A§ jk� ��4 caustic washing� �� �_ =�

. ���0R �C� ex situ =��� +,b� 0� ÕÖ�# i´

B� OP. ���F¥R Ë0.

()� PANI-OHjk� %�T%.� 1�� no� OP4 ���

��0. KOCH3(0.833 g)� �2 ]� PANI-OHjk� OP4 D 

%�& ��´9� KOCH3� D � p� 1/4 A �� ·º�

PANI-OH� 150oC� ò9�< ����+,� jk� ¹P40� O

µ' g��ì0. .� polyaniline� �.ò Ó?A§� %�T%.�

1�� no� p�" ���� jk� OPf A /�' �y40.

PANI-OH� OP� D  KOCH3� p� :2 +,´9� �� .�

� KOCH3� %�&� P�Zu _Ä. jk� ¹P. ��� , PANI-

OH� R��� Ó?� �.ò!. jk� ¹P�C� �2 ]� j

k� ¶ B2 3� jk site� c=40R " A /0.

PANI-OHjk OP� ����+,� ¢� ý�� #�B� PANI-

OH� ÕÖ�� ��f �.R, .ô �" VÞF jk�� ¼F copper

chromite� site blocking Ï�2 Í�Z§ á' ��� ²��0. .�

µý�b h� copper chromite 5 g� �# PANI-OH� 3' 0.833,

5 g, 10 g, 20 g�� ý��óG< �2 ��� Fig. 1� ·°�0. �

dnA

dt-------- k1CA– k2CB 2k3CB+ +=

dnB

dt-------- k1CA k2CB k3CB+ +=

Fig. 1. Effect of various loadings of PANI-OH catalyst on methanol syn-thesis rate(copper chromite 5.0 g in 250 cc methanol, 260 Ncm3/min, H2/CO =2, 180oC, 900 psi).

Table 1. BET surface areas of hydrogenolysis catalysts

CatalystsCopper chromite

Cu/MgOBefore milling After milling

BET suface area[m2/g] 39.63 44.63 132.10

���� �39� �3� 2001� 6�

Page 4: Methyl Formate Process Study of Methyl Formate ...cheric.org/PDF/HHKH/HK39/HK39-3-0272.pdf · 272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute

���� ��� Methyl Formate � ��� ���� �� �� 275

$�< " A /%. 0.833 g�< 5 g�� ý�4 D (6Ø) +,´9�

øL 38% ý��#, +,´9� eA� ����+, jkÄ� eA�

p�40� Oµ' R��9 +,´9 ý�r. & B0. K4 5 g .

��� PANI-OH� 3' ý��9 +,´9� ø�� ¾^�ì0.

PANI-OHjkÄ� ý��9 EÉ�R +,´9� ý�� `+Z§ á

� .�� ;L '(§§ á)0. Polyaniline. %�&� � �;

� �. ͳZu %�&� 4 PAN� E�o�. � .�� #o

�0. ¤¥< �.òÓ?A§jk� ����jk�� OP� �<�

���! g�� ��� %�&� �0 �oB� .òÓ?A§ jk�

!Í. @È�0.

4-1-3. Copper Chromite� �ú

jk� ¢�� *t' yw� ��� �R� copper chromite� �ú

� �4 *t' )O�b h�# 1�� `� alumina ball� �� �ú

� copper chromite� OP�# +,� µÐ' A¬4 ��� Fig. 2�

·°�0. �ú� copper chromite� �úZ§ á2 copper chromite

� p� üGB.(Table 1) 12.6%� ý�� �ì��9 EÉ�R %�

& ��´9� 28% :2 ¢�' �ì0. ÛÜ[15]� �R� î�� ¼

F copper chromite� �ú� �4 A^���+,� ¢� ý� q��

�� ��� g�Z�0.

4-1-4. Cu/MgO jk

A^���jk� copper chromite� A^���+,� +,$��

A^� T®� ����^� �� �eB�� p¢���0R V��

/0[18]. �� �b� +�� MgO� +§� ÉFjk� CO� 4

l,�. s0R Íü� î /u[19], b� +,5� H2� CO� nc

�� %�T%.� 1�� no� k  B��0R " A /0. K4 +

�� �b�.C� MgO� �4 ���� jk��9 b f A /'

��� ²�Zu nð�� �� Cu/MgO jk� ()�# ��' )O

4 ��, Cu/MgO jk� �2 3� copper chromite jk� p� :2

��' �ì0. ²� -u 40 g� Cu/MgO jk� OP4 D � +,´

9� üGB. copper chromite� p� 3Ø .�.�9 EÉ�R(Table

1) �2 )±� copper chromitejk� p�# 27.8% :] ·º0. K

4 Cu/MgO jk� 5 g .� OP4 D (H2/CO=2) copper chromitej

k�<� · § á� p¢�� Ï�. · ÛÜ� �R�� ¼

F Cu/MgO� ¿Y®. ��Z�0.

H2/COp� 1� D (CO �m. s2 D ) Cu/MgO jk� CO�

4 l,�' )O4 ��� Fig. 3� ·°�0. �$�< �� î�

�. Cu/MgO jk� 40 g� �2 3' OP��9 E�R, ��

��� )�(H2/CO). 2� D �9 copper chromite jk� 0-0.37%/�

� p¢��´9�� ¼F 8.1%/� o9� p¢��´9� �#Õ�0.

����� H2/COp� 1� D � p¢��� Â�Zu 20.0%/��

´9� /uº0. .ô ��� %�T%.�� �9� §´B�� ý�

�� ��� �; Cu/MgO jk� A^��� +,� jk� q�B�

� ¹P�§ 0�R /�' V A /0. Cu/MgO jk� �� � �o

� G�< copper chromite� p� %�T%.� 1�� noP jk�

B�®. ��Z�0.

4-2. ����� �

%�T%.� 1�� no�< copper chromite� KOCH3� 1f

jk� 2;�)� �n�§ 0�ì0. ¤¥< zB jk )��

copper chromite� KOCH3� OP�# jk� 3, �´ � Pk� OP

Y� +,)±' ���# p¢��� z^� � CO2� 4 l,�

Y zB� +,´9� �.� )» )±' 2� µÐ' A¬4 ���

;�� �0.

4-2-1. Pk� OP

Ï= %�T%.� 1�� no2 %�&. +,5� Pk� `��

OPZR /0. %�& .æ� Pk� OP�# +,b�� A^� �

���^� P�9� ý��3, +,´9� t��* Pk� jk�

�¸ ¹P�# +,' ý«�ó� q�� )O�b h� triglyme(trieth-

ylene glycol dimethyl ether: Aldrich)' Pk� OP�# +,µÐ' 0

�� �. A¬�ì0. Copper chromite 20 g� triglyme 200 cc' +,

b� Ò«�R A^� 180oC�< 6�� `� ?$4 �, �5� ò

9� �ò�� :#�0. KOCH3 5 g' %�& 65 cc� P��3 syringe

pump' .P�# +,b� ÕÖ�R ò9� 180oC¦§ ���3 +,

' �¹�ì0. Fig. 4�< �� î� �., triglyme' Pk� OP4 D

 � o��� +,´9� %�&. Pk� ¹Pf ô �0 20%o9

¾^®' V A /0. .� %�&. ����+,� +,5�9 ¹P

�C� triglyme. Pk� OPZG %�&� �9� ¾^�# ���

�+,� ´9� l�Zb ôÛ�� �ª�0.

%�T%.� 1�� no� Pk� triglyme' OP�G +,´9�

� xuX� �J. /� , �F4 D 9 /' A /0. �P %�

Fig. 2. Effect of copper chromite milling on methanol synthesis rate(copper chromite 20 g, KOCH3 5 g in 250 cc methanol, 260 Ncm3/min, H2/CO=2, 180oC, 900 psi).

Fig. 3. Effect of H2/CO ratio on methanol synthesis rate over Cu/MgOcatalyst(Cu/MgO 40 g, KOCH3 10 g in 250cc methanol, 260 Ncm3/min, 180oC, 900 psi).

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001

Page 5: Methyl Formate Process Study of Methyl Formate ...cheric.org/PDF/HHKH/HK39/HK39-3-0272.pdf · 272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute

276 ����� �����

T%.� 1�� no�<� +,��5� %�&� %�T%.�

�5. ���� +,b °� c=�C�, ���� (*�#v 40.

. D  ��5� (*� jk9 �. (*ZC�, jk� +,b� =

>?�3 Õuv 40. +,b�� �´' ý��óR +,b� ò9�

� ���óG, +,��5. y+, b�� ®¯ (*ZC� jk�

=>? @È�. �u§] �0. �, triglyme' Pk� OP�# no

' �>��4 A /0.

4-2-2. jk� 3

_54 î� �. ����+,� A^���+,. L6� �u

C� u7 4 +,� jkÄ. 8�G . +,� ´9� _� +,�

´9� ´9 �o �i� �0.

²� -u +, (5)�< k3(copper chromite� 3)� �o�R k1(KOCH3

� 3). ý��G A^���+, (2)� ´9 �o �i� Zu, ��

�< %�T%.�� �9� +, (1)� 9��9� Mÿ�] �0. ¤

¥< . D �� _� +,´9� eA� 1/k1� p��] �0.

+,ò9 150oC�< copper chromite� 20 g�� Ro�R KOCH3

� 3' ý��óG< �2 +,´9 �� ��� Fig. 5� ·°�0.

�$�< �� î� �. KOCH3� 3. 0.83 g¦§� jkÄ� ý�

� �� +,´9� ��4 ý�� /�� , ý�Ú� <<� :�Z

u 2.33 g .��<� jkÄ� ý�� �4 +,´9� ��� *� �

�0. � KOCH3� 3. 2.33 g �0 /u G _�+,� ´9� A^

���+,� �� §Ø;' V A /0.

4<, KOCH3� 3. 2.33 g .��< KOCH3� �9 ý�� ¤¥

+,´9� �!�] ý�Zuv � +,´9� ý�� *� �u,

²â�� ¼F _� +,´9� eA� 1/k1� p��§ á�' �#Õ

�0(Fig. 5� =�$). � .�� KOCH3� �9� s2 *e�< �

0� c=�� VÞF� copper chromite�� A^��� site� �

í��3< _�B� +,´9� l��ób ôÛ�� #o�0.

A^���+,� jk� copper chromite� 3 ý�� 4 ���

Fig. 6� ·°�0. >�< Ò�4 3�� '(« KOCH3 5 g� �

# 180oC� +,ò9�< copper chromite� 3' 20 g�< 40 g��

2Ø ý���� +,´9� øL 13.7% ý�� �- 20 g .�� 3

ý�� +,´9 ��� ? *t' yw§ 0�� ��� ·º0. ¤

¥< 250 cm3� %�&. Ò«� 500 cc +,b� zB jkÄ2 KOCH3

2.3-5 g, �FR copper chromite� 20-40 g�� ��Z�0.

4-2-3. +,��� �´

180oC� +,ò9�< zBÄ� jk� Ò«�# +,b� ÕÖZ�

��(H2/CO=2)� �Ä ��� 4 *t' V;�b h�# �Ä'

250 Ncm3/min�< 1,000 N cm3/min¦§ ���óG< +,´9 � _?

r� ��� )O�ì0. Ò«� zB jk� 32 copper chromite 20 g

� KOCH3 5 g.�0.

�´. 250 Ncm3/min(GHSV=750 L/kgñhr)�< 500 Ncm3/min(GHSV

=1,500 L/kgñhr)�� 2Ø ý��G +,´9� 35% ý�� , +,�

�� ��_?r2 67%�< 45%� ¾^�ì0. �+B�� 5"_¼

l,(mass transfer resistance). �� ���<� �´ý�� ¤½ +,

´9 ý�� Í�Z§ á�0. . µÐ)±�<� +,b� Ó+ ´9

� 500 rpm .��� 5"_¼l,2 ²�Z§ á�0. �� Fig. 7�

< �� î� �., �´. ý�®� ¤¥ 1��� %�T%.�� �

9� ��� ý�®' V A /0. ¤¥< �´. 500 Ncm3/min¦§ ý

��G +,��� ��_?r. ¾^�] ZR y+,��� �Ä. ý

�40. y+,��� .��� ̂Y� �2 ����+,� Ψ5'

Fig. 4. Effect of Triglyme as a solvent(copper chromite 20 g, KOCH35 g in 250 cc liquid, 260 Ncm3/min, H2/CO=2, 180oC, 900 psi).

Fig. 5. Change of methanol synthesis rate at various loadings of KOCH3

(copper chromite 20 g in 250 cc methanol, 260 Ncm3/min, H2/CO=2, 150oC, 900 psi).

Fig. 6. Change of methanol synthesis rate at different amounts of cop-per chromite catalyst(KOCH3 5 g in 250 cc methanol, 260 Ncm3/min, H2/CO=2, 180oC, 900 psi).

���� �39� �3� 2001� 6�

Page 6: Methyl Formate Process Study of Methyl Formate ...cheric.org/PDF/HHKH/HK39/HK39-3-0272.pdf · 272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute

���� ��� Methyl Formate � ��� ���� �� �� 277

`+�# +,b� @� �C� ����+,� ́ 9� ý��# %�

T%.�� �9� ý��R �A2 _� +,´9� ý�� .u«0.

+,��� �´. 750 Ncm3/min(GHSV=2,250 L/kgñhr) .���

ý��G .���^� (*� 4i� .H] ZR, %�T%.� 1�

�� �9 � +,´9� ��� �u«0. zþ �´� 1,000 Ncm3/min

(GHSV=3,000L/kgñhr)�<� ��_?r. 29%� :;§ +,´9

� ý�9 ��C� 750 Ncm3/min .�� +,�� �´ ý�� qP

�. �� ��� ·º0.

4-2-4. ����� )�(H2/CO)

%�& () no� OPZ� ����� )�2 � () ��� ¤¥

í.� �0. zB� +,)±(180oC, copper chromite 20 g, KOCH3 5 g,

250 cc methanol, �´ 260 Ncm3/min, 900 psi)�< ����� )� �

�� ¤½ %�T%.� 1�� no� BCh BP���' )O4 �

�� Fig. 8� ·°�0. ����� H2/COp� 0.5�< 1� ý��

õ ��, +,´9� 86.3% ý��0. H2/COp� 1�< 2� ý��G

+,´9� ��� *� ��0. �, ���� )�. ����� ü

B� H2/COpr� 1�< %�T%.� 1�� no. s2 +,´9

� �# no� ������ �4 ����� BP���. s�' g

��ì0.

CO� �9� s2 D , jk� p¢��� �u b \0. H2/COp

r. 1� D � jk p¢�� )O� h� copper chromite jkÄ'

zB Ch� 20 g� 40 g� � þD� D � jki(catalytic system)

� H2/CO=2� ���< o���� 9¼4 �( 45��), H2/COp�

1� îEu jki� �o�' )O4 ��� Fig. 9� ·°�0. �

$�< �� î� �. copper chromite jkÄ. 40 g� D  p¢�

�´9� 4.17%/�� copper chromite 20 g� D � 7.81%/�� p�

# �. !7� ��� · Ä� A^�jk� �� p¢���

¶�] f A /�' V)0.

4-2-5. .���^� *t

zB jkÄ� copper chromite 20 g' Ò«�R .���^� T®

Z§ á2 ����� OP�# +,. o���� 9¼4 �, ÕÖZ

� +,��� .���^� 0.5% � 1.0%� Fu< +,' «¬4 �

�� Fig. 10� ·°�0. . D , .���^� 0.5% T®� ���

ÕÖZG +,´9(K� CO _?r)� 43% ¾^�R jk� ¢�9 §

´B�� ¾^�ì0. .���^� 1.0% T®� ��� ÕÖZG +,

´9� Jí ¾^�# %�& �� +,. �_� 1�Z�0. .� 0.5%

.�� CO2� ����+,� jk� KOCH3� p¢���ób ôÛ

� ����+,� ́ 9� ¾^�# _� +,´9� ¾^�b ôÛ.0.

+,b °� ����' ��4 ��, 1��� %�T%.�� �

99 ¾^�# .���^� �� ����+,� jk� KOCH3� Î

¨;' g��ì0(Fig. 10). � 0.5%� CO2� T®� ��� �� +

,´9� � ¾^� +,. i´ «¬Z� Ï�2 copper chromite

� �� CO2� KOCH3� +,�# ��� KOCOOCH3� 0� KOCH3

� =�Zb ôÛ.0. 0.5%� CO2� +,b� Ò«� KOCH3 jk�

60% �Ä' Ψ�R, .ô copper chromite� i´ Ψ� KOCH3 jk

� �� =�� , 1.0%� CO2� +,b� ҫ� KOCH3 jk _

Ä� ¢�' (*�# 1��� %�T%.�� �9� 0. ZR _�

+,. 1�Z�0(copper chromite� �4 Ψ KOCH3 jk� =�

´9�0 CO2� �4 KOCH3� Ψ ´9� ¶ G).

Copper chromite� 3' 2Ø� 40 g�� /�< Ò«4 D �� .

���^� 0.5% T®� ��� ÕÖZu9 +,´9� ¾^� 28%�

Fig. 7. Change of concentration of methyl formate and rate of metha-nol synthesis at various flow rates of feed gas(copper chromite20 g, KOCH3 5 g in 250 cc methanol, H2/CO=2, 180oC, 900 psi).

Fig. 8. Effect of H2/CO ratio of feed gas mixture on methanol synthesisrate(copper chromite 20g, KOCH3 5g in 250 cc methanol, 260Ncm3/min, 180oC, 900 psi).

Fig. 9. Effect of H2/CO ratio of feed gas mixture on methanol synthesisrate at two different loadings of catalysts(250 cc methanol, 260 Ncm3/min, 180oC, 900 psi).

HWAHAK KONGHAK Vol. 39, No. 3, June, 2001

Page 7: Methyl Formate Process Study of Methyl Formate ...cheric.org/PDF/HHKH/HK39/HK39-3-0272.pdf · 272 HWAHAK KONGHAK Vol. 39, No. 3, June, 2001, pp. 272-278 (Journal of the Korean Institute

278 ����� �����

nt,

-

,

e-

isa,

^Ä! ¾^4 ��� jk� ¢�. ¾^�§ áR i´ �§Z� Ï

�' ͳ�ì0(Fig. 11). K4 CO2� 1% T®� ��� ÕÖ�#9

+,´9� Ô+�� ¾^4 +G¢�2 �§�ì0. >� copper

chromite 20 g D �� ¼F ¢�. �§Z� �2 CO2� KOCH3�

Ψ�� ´9�0 �2 3� copper chromite� Ψ� KOCH3� =

��� ´9� H< �oÄ� KOCH3� +,i� c=�] �b ôÛ

.0. .�� ��� %�T%.� 1�� no. .���^� T®�

��� OP�� B��0� �J' ÁI�R 0.5% .�� CO2� T

®� ��� OP9 ���0� J' �O40. �, A^��� ¢�.

�u� jk K� �2 3� copper chromite� OP�G CO2� ��

Ψ� KOCH3� in situ� +,b°�< i´ =��C� s2 CO2�

99 Û(Z§ á' �.0.

5. �

%�T%.� 1�� %�&�� no� !7' h� Rqr jk�

!Í � no �A� ��� )O4 ��� 0�� �0. bc� copper

chromite jk� ��� ÆÇ�� �b� +�� ,P4 Cu/MgO�

copper chromite� p� ��. s§ á)R, p¢��� Â�0. ��

��+, jk� Pk� %�&� �#< �. OPZ� KOCH3� p

�"��b h� polyanilinei¿� �.òÓ?A§� ()�# BP4

��, ¢�2 �ì� jk� %�&� �� Y �oB.§ á)0. Ï

=¦§� zB� jki� copper chromite + KOCH3.R, . jki�

OP�# zB� +,)±' )O4 ��, 250 cc� %�& ��Pk�

20-40 g� copper chromite � 5 g� KOCH3� JÖ�R 180oC � 61

bm�< 1,000 L/kgñhr� �´� ����� ÕÖ�� ��� ��Z

�0. . )±�< Á^Ä� CO2� �4 jk p¢��� ÁIZu 1%

� CO2� T®� ����� OP�#9 jki� ¢�. �§Z�0.

�� ��� ���� �� ()Z� ����� )�� H2/CO� p

� 1 .�� ��� A^_?r. 70%� .H[ +,´9� 6 gmole/

kgñhr .�.�0. %�& 1 triglyme' Pk� OP4 �� ��

+,´9 ¾^�9 EÉ�R, +,��5� �A� P.4 IJ. /u

�P no� BP. ��f �.' g��ì0.

� ��

1. Christiansen, J. R.: US Patent, 1,302,011(1919).

2. Tonner, S. P., Trimm, D. L., Wainwright, M. S. and Cant, N. W.: J.

Mol. Catal., 18, 215(1983).

3. Choi, S� J�, Lee, J� S� and Kim, Y. G.: HWAHAK KONGHAK, 32,

317(1994).

4. Liu, Z., Tierney, J. W., Shah, Y. T. and Wender, I.: Fuel Processing

Technol., 18, 185(1988).

5. Liu, Z., Tierney, J. W., Shah, Y. T. and Wender, I.: Fuel Processing

Technol., 23, 149(1989).

6. Evans, J. W., Casey, P. S., Wainwright, M. S., Trimm, D. L. and Ca

N.W.: Appl. Catal., 7, 31(1983).

7. Monti, D. M., Kohler, M. A., Wainwright, M. S., Trimm, D. L. and

Cant, N. W.: Appl. Catal., 22, 123(1986).

8. Kim, Y. G., Lee, J. S., Kim, J. C., Lee, S. H. and Kim, K. M.: HWA-

HAK KONGHAK, 27, 396(1989).

9. Kim, K. M., Kim, J. C., Cheong, M., Lee, J. S. and Kim, Y. G.: Korean

J. Chem. Eng., 7, 259(1990).

10. Onsager, O. T.: Canadian Patent, 1,175,798(1984).

11. Aker Engineering, Petrole Informations, May 13(1982).

12. Palekar, V. M., Jung, H., Tiemey, J. W. and Wender, I.: Appl. Catal.

A: Gen., 102, 13(1993).

13. Palekar, V. M., Tiemey, J. W. and Wender, I.: Appl. Catal. A: Gen.,

103, 105(1993).

14. Shin, J.-S., Jung, H. and Lee, J.-D.: HWAHAK KONGHAK, 39,

150(2001)�

15. Seiichi, O. and Haruo, K.: Appl. Catal. A: Gen., 184, 239(1999).

16. Darensbourg, D. J., Gray, R. L., Ovalles C. and Pala, M.: J. Mol.

Catal., 29, 285(1985).

17. Di Girolamo, M., Lami, M., Marchionna, M., Sanfilippo, D., Andre

oni, M., Raspolli Galletti, A. M. and Sbrana, G.: Catalysis Letter, 38,

127(1996).

18. Trimm, D. L. and Wainwright, D.S.: M. S. Catal. Today, 6, 261(1990).

19. Di Girolamo, M., Cornaro, U., Micheli, E., Machionna, M., Braca

G., Raspolli Galletti, A. M., Laniyonu, L. N. and Sbrana, G.: Pr

sented at the 10th National Congress of Industrial Chemistry, P

Italy, 62(1994).

Fig. 10. Effect of CO2 of feed gas mixture(copper chromite 20 g, KOCH35 g in 250 cc methanol, 500 Ncm3/min, H2/CO=2, 180oC, 900 psi).

Fig. 11. Change of methanol synthesis rate at different concentrationsof CO2 of feed gas(copper chromite 40 g, KOCH3 5 g in 250 ccmethanol, 260 Ncm3/min, H2/CO=2, 180oC, 900 psi).

���� �39� �3� 2001� 6�