48
MeV Dark Matter in the 3+1+1 Model Jinrui Huang Collaboration with Ann E. Nelson arXiv: 1306.6079 P-25 Seminar August 20 th 2013

MeV Dark Matter in the 3+1+1 Model - LANL

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: MeV Dark Matter in the 3+1+1 Model - LANL

MeV Dark Matter in the 3+1+1 Model

Jinrui Huang

Collaboration with Ann E. Nelson

arXiv: 1306.6079

P-25 Seminar August 20th 2013

Page 2: MeV Dark Matter in the 3+1+1 Model - LANL

Outline

• Motivation • Current Status of Light Sterile Neutrinos

– Neutrino Experiments – Cosmology

• Dark 3+1+1 Model – BBN and Supernovae Bounds

• Other implications – Dark Matter – Explanation of INTEGRAL 511 keV Gamma Line – Fermion Mass Hierarchy and Mixings: U(1)’ Family Symmetry – Baryon Number Asymmetry: Dirac leptogenesis

• Conclusion

2

Page 3: MeV Dark Matter in the 3+1+1 Model - LANL

Motivation

• LSND + MiniBooNE, reactor antineutrino anomaly, Gallium anomaly indicate one light (~eV) sterile neutrino

• 3+1 model disfavored by global fit with null results disappearance neutrino exps.

• The 3+1+1 model constrained by cosmology, collider exps., but viable in MeV region

• Natural MeV dark matter candidate in the 3+1+1 model to explain INTEGRAL

• With additional U(1) family symmetry, all fermion mass hierarchy and mixings can be explained

• Bonus: Dirac leptogenesis to explain Baryon Number Asymmetry

3

Page 4: MeV Dark Matter in the 3+1+1 Model - LANL

Hints of Sterile Neutrino

• LSND, MiniBooNE, 3.8 σ of ~eV sterile neutrino

A. Aguilar-Arevalo et al. [LSND Collaboration], PRD 64, 112007 (2001)

A. Aguilar-Arevalo et al. [MiniBooNE Collabroation], PRL 98, 231801 (2007);

PRL 102, 101802 (2009); PRL 105, 181801 (2010); arXiv:1303.2588

• Reactor Antineutrino Anomaly, 2 σ |Δm2

new|>1.5 eV2 and sin2(2θnew)=0.14+/-0.08

Mention, G. et al. Phys. Rev. D 83 (2011) 073006

Huber, Patrick Phys. Rev. C 84 (2011) 024617, Erratum-ibid. C85 (2012) 029901

4

Page 5: MeV Dark Matter in the 3+1+1 Model - LANL

Sterile Neutrino Models

• 3+1 Model: one additional flavor eV scale sterile neutrino

• 3+2 Model: two additional flavors eV scale sterile neutrinos, Δm41

2 > 0 and Δm512 > 0

• 1+3+1 Model: two additional flavors eV scale sterile neutrinos, Δm41

2 < 0 or Δm512 < 0

• 3+1+1 Model: two additional flavors sterile neutrinos, one eV scale and one 33 eV~40 GeV scale

• 3+s (s>2) Model: more than two additional flavors sterile neutrinos

5

Page 6: MeV Dark Matter in the 3+1+1 Model - LANL

3+1 Model In Tension

6

J. Kopp, et al, JHEP 1305 (2013) 050

Appearance: LSND, MiniBooNE appearance, NOMAD, KARMEN, ICARUS, E776

Disappearance: atmospheric, solar, reactors, Gallium, CDHS, MINOS,

MiniBooNE disappearance, KARMEN, LSND νe- 12C scattering

Page 7: MeV Dark Matter in the 3+1+1 Model - LANL

Masses in 3+2 and 1+3+1 Models

7

J. Kopp, et al, JHEP 1305 (2013) 050

Page 8: MeV Dark Matter in the 3+1+1 Model - LANL

Mixings in 3+2 Model

8

J. Kopp, et al, JHEP 1305 (2013) 050

Page 9: MeV Dark Matter in the 3+1+1 Model - LANL

Mixings in 1+3+1 Model

9

J. Kopp, et al, JHEP 1305 (2013) 050

Page 10: MeV Dark Matter in the 3+1+1 Model - LANL

Oscillation Probability in 3+1+1 Model

10

a: phase space parameter associated with ν5 production β: CP odd parameter associated with CP violation

A. E. Nelson, PRD 84 (2011) 053001 E.Kuflik, S. D. McDermott, K.M.Zurek PRD 86 (2012) 033015

Page 11: MeV Dark Matter in the 3+1+1 Model - LANL

Fitting in 3+1+1 Model

11

Appearance: KARMEN,

E776, NOMAD, CCFR, NuTeV;

νe disappearance: SBL

reactor experiments with new reactor flux predictions; ratio of flux observed in the Bugey 40 m and 15 m detectors;

νμ disappearance: CDHS,

CCFR, atmospheric at Super-Kamiokande.

E.Kuflik, S. D. McDermott, K.M.Zurek PRD 86 (2012) 033015

Page 12: MeV Dark Matter in the 3+1+1 Model - LANL

12

Fitting in 3+1+1 Model-Cont. E.Kuflik, S. D. McDermott, K.M.Zurek PRD 86 (2012) 033015

Page 13: MeV Dark Matter in the 3+1+1 Model - LANL

Summary: Sterile Neutrino Models

• 3+1 Model: tension between appearance and disappearance neutrino exps.

• 3+2 Model: allowed, eV scale, O(0.1) mixings

• 1+3+1 Model: allowed, eV scale, O(0.1)mixings

• 3+1+1 Model: allowed, one eV scale, one heavier, O(0.1) mixings

• 3+s (s>2) Model: allowed, no qualitatively difference compared to two sterile neutrino scenarios M. Maltoni, T. Schwetz, PRD (2007) 093005

13

Page 14: MeV Dark Matter in the 3+1+1 Model - LANL

Dark Radiation

• BBN: Y. I. Izotov, T. X. Thuan, Astrophys. J. 710, L67 (2010)

– Neff = 3.68+0.80-0.70 (2 σ); Neff = 3.80+0.80

-0.70 (2 σ)

• Nine-year WMAP: C. L. Bennett et al. [WMAP Collaboration], arXiv:1212.5225; arXiv:1212.5226

– Neff > 1.7 (2 σ); Neff=3.84+/-0.40 (1 σ) (WMAP + ACT+SPT + BAO + H0)

• High resolution ground-base CMB experiments: – Atacama Cosmology Telescope (ACT)

• Neff=2.79+/-0.56 (2 σ) J. L. Sievers et al., arXiv:1301.0824

– South Pole Telescope (SPT) • Neff=3.71+/-0.35 (1.9 σ) (SPT+WMAP7+H0+BAO) S. Zhou,

arXiv:1212.6267

14

Page 15: MeV Dark Matter in the 3+1+1 Model - LANL

PLANCK

• Combine Planck, nine-year WMAP, Baryon Acoustic Oscillations (BAO), ACT, SPT:

Neff = 3.30+0.54-0.51 (2 σ)

• Include additional direct measurements of the Hubble Constant H0:

Neff = 3.52+0.48-0.45 (2 σ)

15

P. A. R. Ade et al. [Planck Collaboration], arXiv:1303.5076

Page 16: MeV Dark Matter in the 3+1+1 Model - LANL

Planck Result on Sterile Neutrino

16

Planck Collaboration, arXiv:1303.5076

There is still room for one sub-eV sterile neutrino (~0.6 eV).

Page 17: MeV Dark Matter in the 3+1+1 Model - LANL

More Constraints on 3+1+1 Model

Hierarchical: νs1~ eV, νs2~[33eV, 10GeV] Mixing: θ ~ O(0.1) for LSND, MiniBooNE

Ruled out by exps.

E.Kuflik, S. D. McDermott, K.M.Zurek PRD 86 (2012) 033015

17

|Ue5Uμ5|

Page 18: MeV Dark Matter in the 3+1+1 Model - LANL

Dark 3+1+1 Model

Dark Sector Visible Sector νs1: subeV~eV sterile neutrino νs2: [1,34]MeV sterile neutrino φ: [1,7]MeV scalar νa: active neutrino

X: Mixing between active and sterile neutrinos; Particles in Dark Sector scatter among themselves.

Introduce additional φ field and new interaction

Lead to invisible decay ν5 → ν4 φ, Γinvν5 ≈ λ2m5 /(16π)

18

JH, A E Nelson arXiv: 1306.6079

Page 19: MeV Dark Matter in the 3+1+1 Model - LANL

Constraints on Dark 3+1+1Model

SN1987A, BBN controlled region can be open up MeV φ field: dark matter candidate; explain 511keV INTEGRAL

E. Kuflik, S. D. McDermott, K.M.Zurek PRD86 (2012) 033015

19

Page 20: MeV Dark Matter in the 3+1+1 Model - LANL

BBN Constraint on Dark 3+1+1 Model

ν5 → νa e+ e- decay modifies the Helium abundance:

20

A. D. Dolgov, S. H. Hansen, G. Raelt D. V. Semikoz, Nucl. Phys. B 590, 562 (2000); A. D. Dolgov, F. L. Villante, Nucl. Phys. B 679, 261 (2004);

O. Ruchayskiy, A. Ivashko, JCAP 1210, 014 (2012)

Weak lower bound on λ

short lifetime avoid the bound:

θ m5

λ λ

10-11 10-11

Page 21: MeV Dark Matter in the 3+1+1 Model - LANL

SN1987a Constraint-I

ν5 ν4 φ: well trapped inside the supernovae core

Ruled out

21

G. Raelt, D. Seckel, PRL 60, 1793 K. Kainulainen, J. Maalampi, J. T. Peltoniemi,

Nucl. Phys. B 358, 435

In general, require new particle: 1) well trapped inside the supernovae: interaction length lν5 ≤ 1.5 m; Or 2) escape the supernovae: interaction length lν5 ≥ 4.6X104 km

Γ νs νa ≥ ΓνaN

Page 22: MeV Dark Matter in the 3+1+1 Model - LANL

22

SN1987a Constraint-II

Γφ νa ≤ ΓEW

Interaction between dark sector/visible sector modifies active neutrino mean free path, needs weaker than EW interaction.

Page 23: MeV Dark Matter in the 3+1+1 Model - LANL

Dark Matter

Evidences of DM: – Motion of Galaxy – Structure simulations – Temperature fluctuations in

CMB – Gravitational lensing – Cooling clusters

23

Properties of DM:

– Not Luminous

– Long Lived

– Not Hot

– Not dissipational

Page 24: MeV Dark Matter in the 3+1+1 Model - LANL

Neutrinophilic MeV DM

• No confirmed signals of DM yet;

• Current DM direct detections not sensitive to MeV region;

• Detections assume DM interacting with quarks;

• Light MeV DM or neutrinophilic DM:

– NOT covered in the current DM detection experiments.

24

Page 25: MeV Dark Matter in the 3+1+1 Model - LANL

Constraints on Neutrinophilic MeV DM from Supernovae

25

• cross section of DM annihilating into active neutrinos

~104 stronger than the weak interaction

interaction length of the active neutrino too short; ruled out by Supernovae SN1987a

[1, 30] MeV DM region ruled out.

• In dark 3+1+1 Model, DM annihilates into sterile neutrino pairs dominantly,

cross section of the DM annihilation into active neutrino pairs suppressed by the mixing angles 10-4

Avoid the supernovae bound.

P. Fayet, D. Hooper , G. Sigl, PRL 96, 211302 (2006)

Page 26: MeV Dark Matter in the 3+1+1 Model - LANL

DM Relic Abundance

DM annihilates into sterile neutrino pair

26

For right relic abundance,

Page 27: MeV Dark Matter in the 3+1+1 Model - LANL

511 keV INTEGRAL Gamma-Ray Line

27

P. Jean et al, Astron.Astrophys.407:L55,2003

Flux: Centroid: Width:

Page 28: MeV Dark Matter in the 3+1+1 Model - LANL

MeV DM and 511 keV INTEGRAL

• DM annihilation into electron pair: C. Boehm, P. Fayet, Nucl. Phys. B 683, 219 (2004);

C. Boehm, et al, PRL 92, 101301 (2004)

• DM decay into electron pair: C. Picciotto, M. Pospelov, PLB 605, 15 (2005)

M. Pospelov, A. Ritz, PLB 651, 208 (2007)

• Excited DM with MeV mass splitting: M. Pospelov, A. Ritz, PLB 651, 208 (2007);

D. P. Finkbeiner, N.Weiner, PRD 76, 083519 (2007);

N. Arkani-Hamed, D. P. Finkbeiner, T. R. Slatyer, N. Weiner, PRD79 (2009) 015014;

J. M. Cline, A. R. Frey, F. Chen, PRD 83, 083511 (2011);

Y. Bai, M. Su, Y. Zhao, JHEP 1302, 097 (2013)

28

Page 29: MeV Dark Matter in the 3+1+1 Model - LANL

INTEGRAL Constraints on DM Models

• To fit the continuum photon energy spectrum of 511 keV INTEGRAL gamma line: – mDM < 30 MeV N. Prantzos et al., arXiv:1009.4620

• Avoid Internal Bremsstrahlung with positron production violating the COMPTEL and EGRET diffuse gamma-ray observation: – mDM < 20 MeV J. F. Beacom, N. F. Bell, G. Bertone, PRL 94, 171301 (2005)

• DM annihilating into electron pair through new interaction can modify the fine structure constant: – mDM < 7 MeV C. Boehm, Y. Ascasibar, PRD 70, 115013

• Be consistent with the diffuse Galactic gamma-ray data – Positron injection energy < 3MeV J. F. Beacom, H. Yuksel, PRL 97, 071102 (2006)

29

Page 30: MeV Dark Matter in the 3+1+1 Model - LANL

30

Explain INTEGRAL in Dark 3+1+1 Model

(GeV)

Page 31: MeV Dark Matter in the 3+1+1 Model - LANL

Explain INTEGRAL in Dark 3+1+1 Model-Cont.

31

for and

(GeV)

Page 32: MeV Dark Matter in the 3+1+1 Model - LANL

Fermion Masses, Mixings

Quark sector: CKM matrix small mixing; Lepton sector: PMNS matrix large mixing.

32

mb : ms : md 1 : 2 : 4

m : m : me 1 : 2 : 4

mt : mc : mu 1 : 4 : 8 Cabbibo angle: 0.22 m2

2 -m2

1 = 7.5810-5 eV2 |m2

3 -m2

1| = 2.3510-3 eV2 m4 ~ sub-eV m5 ~ MeV

P. Ramond, R. G. Roberts, G. G. Ross, Nucl. Phys. B406 (1993) 19

Page 33: MeV Dark Matter in the 3+1+1 Model - LANL

Models to Explain Fermion Masses, Mixings

• Family Symmetries – Continuous Symmetry

• U(1), SU(2), SU(3) etc

– Discrete Symmetry • A4, T’, A5, S4 etc

• To explain small neutrino masses, – popular approach: seesaw mechanism

• In Dark 3+1+1 Model, all fermions are Dirac Particles, – no canonical seesaw mechanism,

– one natural approach: higher dimensional operators with U(1)’ symmetry

33

Page 34: MeV Dark Matter in the 3+1+1 Model - LANL

Froggatt-Nielsen Mechanism

34

D. D. Froggatt, H. B. Nielsen, Nucl. Phys. B147, 277 (1979)

U(1) charges suppression power Yeff pattern, eff

uHLY ||

||

~~ Hji

Hji

qqq

ij

qqq

ijij yyY

η: flavon field; : vector like fermions

Integer number of η fields inserted!

l =h

L@ 0.22

Higher dimension operator

Page 35: MeV Dark Matter in the 3+1+1 Model - LANL

U(1)’ Charges

35

Page 36: MeV Dark Matter in the 3+1+1 Model - LANL

Mass Matrices

36

Up-type Quark Down-type Quark

Charged Lepton

Active Neutrino Sterile Neutrino

SU(5) embed

Page 37: MeV Dark Matter in the 3+1+1 Model - LANL

K. Dick, M. Linder, M. Ratz, D. Wright, PRL 84, 4039 (2000)

H. Murayama, A. Pierce, PRL 89, 271601 (2002)

Ll + Lr = 0

Ll Bl

LR Equilibration

Dirac Leptogenesis

37

Page 38: MeV Dark Matter in the 3+1+1 Model - LANL

E. Kolb, M. Turner, The Early Universe M.-C. Chen, TASI 2006 hep-ph/0703087

ln(M /T)

n out of equilibrium

Freeze out

38

Page 39: MeV Dark Matter in the 3+1+1 Model - LANL

212211

2222 |||| mmL

CP Asymmetry:

Once out of equilibrium, 1, 2 further decay to leptons

2

2

2

2

2

1 ]Im[]Im[8

I

)(~~ RnBB Asymmetry:

Interference CP Asymmetry

Abundance

Baryon Number Asymmetry

39

M-C Chen, JH, W. Shepherd, JHEP 1211 (2012) 059

Page 40: MeV Dark Matter in the 3+1+1 Model - LANL

Wash Out Effects Annihilation:

Inverse Decay:

40

M-C Chen, JH, W. Shepherd, JHEP 1211 (2012) 059

Page 41: MeV Dark Matter in the 3+1+1 Model - LANL

Numerical Result

41

M-C Chen, JH, W. Shepherd, JHEP 1211 (2012) 059

Parameters: 1 = 2 = 0.4 e-i/8 ; m1 = m2 = 0.4mΞ; = 0.8.

Purple region: ηB ≥ 6.19×10-5 Red region: ηB ≥ 6.19×10-6 Green region: ηB ≥ 6.19×10-8 Blue region: ηB ≥ 6.19×10-10

Page 42: MeV Dark Matter in the 3+1+1 Model - LANL

Conclusion

• The Dark 3+1+1 model can accommodate with the LSND, MiniBoone sterile neutrino exps. Anomaly

• It can satisfy various cosmology, collider, muon decay constraints etc.

• MeV scalar can be the dark matter candidate to explain the 511keV INTEGRAL gamma line

• With additional U(1)’ family symmetry, all fermion masses and mixings can be generated naturally

• Realistic Dirac Leptogenesis can be realized

42

Page 43: MeV Dark Matter in the 3+1+1 Model - LANL
Page 44: MeV Dark Matter in the 3+1+1 Model - LANL

Back Up

44

Page 45: MeV Dark Matter in the 3+1+1 Model - LANL

Parameter Counting

45

Page 46: MeV Dark Matter in the 3+1+1 Model - LANL

Parameters of Neutrino Exps.

46

Page 47: MeV Dark Matter in the 3+1+1 Model - LANL

CKM Matrix

132313231223121323122312

132313231223121323122312

1313121312

1313

1313

13

ccescsscesccss

csesssccessccs

escscc

Vii

ii

i

ijijijij sc sin,cos ij : Mixing angle; 13: CP-violating phase

Definition:

Standard Parameterization:

Experimental Results:

d

d

u

u

Yukawa HdQYHuQYL

),)(2/( dufVYVM f

R

ff

L

f

diag d

L

u

LCKM VVV

UTfit 2010 47

)0.39.69(;10)12.061.3(sin

;10)045.0115.4(sin;0006.02255.0sin

13

3

13

2

2312

Page 48: MeV Dark Matter in the 3+1+1 Model - LANL

PMNS Matrix

21 31: Majorana CP-violating phase

Definition:

Standard Parameterization:

Experimental Results:

uu

LL

RRud

e

Yukawa HLLHY

MHLYHeLYL

),( efVMVM f

R

f

eff

f

L

f

diag e

LLPMNS VVU

G. Fogli et al., PRD84, 053007(2011)

48

),,1( 22

3121 ii

PMNS eediagVU

)(005.0)(016.0092.02sin 13

2 syststat

.021.0sin;42.0sin;306.0sin 007.0

008.013

208.0

03.023

2018.0

015.012

2

Daya Bay @ 5.2

T2K, Double Chooz, Daya Bay, etc indicate non-zero 13 , Large 13: