109
University of Wisconsin and Georgia Institute of Technology PSERC Robert H. Lasseter University of Wisconsin Giri Venkataramanan University of Wisconsin A. P. Sakis Meliopoulos Georgia Institute of Technology © 2001 University of Wisconsin Board of Regents HICSS-34 Tutorial 14 January 3, 2001 mGrid Operation and Control

mGrid Operation and Control - Power Systems Engineering

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

1University of Wisconsin and Georgia Institute of Technology

PSERC

Robert H. LasseterUniversity of Wisconsin

Giri VenkataramananUniversity of Wisconsin

A. P. Sakis MeliopoulosGeorgia Institute of Technology© 2001 University of Wisconsin Board of Regents

HICSS-34 Tutorial 14 January 3, 2001mGrid Operation and Control

PSERCR.H.Lasseter University-of-Wisconsin

HICSSHICSS--34 34 Tutorial 14Tutorial 14

MicroMicro--Grid Operation and ControlGrid Operation and Control

Robert H. Lasseter University of Robert H. Lasseter University of WisconsinWisconsin

A.P.Sakis Meliopoulos Georgia Institute of A.P.Sakis Meliopoulos Georgia Institute of TechnologyTechnology

Giri Venkataramanan Giri Venkataramanan University of University of WisconsinWisconsin

PSERCR.H.Lasseter University-of-Wisconsin

OutlineOutline1.1. Overview of MicroOverview of Micro--sources (1/2 hr)sources (1/2 hr)

2.2. Problems and Issues related to Problems and Issues related to Distribution Systems (1 hr)Distribution Systems (1 hr)

3.3. Power Electronics (1hr)Power Electronics (1hr)

4.4. Operation and Control of MicroOperation and Control of Micro--Grids Grids Needs and Challenges (1/2Hr)Needs and Challenges (1/2Hr)

PSERCR.H.Lasseter University-of-Wisconsin

Power Generation ApplicationsPower Generation ApplicationsPower Generation

Central Plant Distributed Generation

•Peaking units:•Cost deferrals:•Voltage support:

On site generationT/D grid•Back-up power •Local power & heat•Isolated site•Local voltage support•Cost reduction•Load management

100s MWs kWs

1 MW

Micro Grid

PSERCR.H.Lasseter University-of-Wisconsin

Power electronics

MicroMicro--Turbine Basics Turbine Basics

GeneratorGenerator Air

CompressorCompressor

TurbineTurbine

RecuperatorRecuperator

3 Phase ~ 480V AC3 Phase ~ 480V AC

HotHot AirAir

PSERCR.H.Lasseter University-of-Wisconsin

70kW Micro turbine70kW Micro turbine

••Installed at $1000/kW Installed at $1000/kW (target is $350/kW)(target is $350/kW)••Efficiency 30%Efficiency 30%

••Air foil bearingsAir foil bearings••expect in excess of expect in excess of 40,000 hours of 40,000 hours of reliable operation.reliable operation.••Operation speed Operation speed 90,00090,000--100,000 RPMs100,000 RPMs

PSERCR.H.Lasseter University-of-Wisconsin

Fuel cell SystemFuel cell System

PSERCR.H.Lasseter University-of-Wisconsin

Automotive Influence on Fuel Cell Automotive Influence on Fuel Cell DevelopmentDevelopment

Car Fuel Cells must be under Car Fuel Cells must be under $100/kW$100/kW

Experimental F.C. car (Toyota)

Prototype F.C. cars (G.M., D-C., Toyota)

20001997 2005

Production of F.C. vehicles

Daimler-Chrysler $324 million investment

Fuel cell buses commonplace

PSERCR.H.Lasseter University-of-Wisconsin

Ballard PEM Fuel CellBallard PEM Fuel Cell

PSERCR.H.Lasseter University-of-Wisconsin

7 kW Plug Power System7 kW Plug Power SystemPEM Fuel Cell/water heaterPEM Fuel Cell/water heater

QuickTime™ and aPhoto - JPEG decompressor

are needed to see this picture.

PSERCR.H.Lasseter University-of-Wisconsin

Distributed Generation Distributed Generation Business CharacterizationBusiness CharacterizationU. S. Electricity Market $250 Billion Per YearU. S. Electricity Market $250 Billion Per YearDistributed Generation Expected to Capture 10Distributed Generation Expected to Capture 10--

20% of Market in 10 years20% of Market in 10 yearsPlayers Players -- Illustrative ListIllustrative List

AlliedAllied--SignalSignal• Micro-Turbines

SiemensSiemens• Fuel Cells

Solar Turbine/Caterpillar TractorSolar Turbine/Caterpillar Tractor• Engines/turbines

Capstone TurbineCapstone Turbine• Micro-Turbines

GEGE• Fuel Cells/Turbines

Others Others -- Ballard, Allison, Williams, Plug Power, Ballard, Allison, Williams, Plug Power, PowerCellPowerCellCommercial Units/Packaged Solutions Coming to MarketCommercial Units/Packaged Solutions Coming to Market

PSERCR.H.Lasseter University-of-Wisconsin

Generation EfficienciesGeneration Efficiencies

10kW 100kW 1 MW 10MW 100MW 1000MW 20%

30%

40%

50%

60%

70%

Micro Turbine

CHP

Fuel Cell

WithCHP

HybridFuel cell

ReciprocatingEngines

CCTGCCTG

GasGasTurbineTurbine

Oldsteam

1 MW

PSERCR.H.Lasseter University-of-Wisconsin

MicroturbineMicroturbine

PA Fuel CellsPA Fuel Cells

PEM Fuel CellsPEM Fuel Cells

Hybrid FC/MTHybrid FC/MT

Roof top PVRoof top PV

Recip EngineRecip Engine

On Site GenerationOn Site Generation

3030--200 kW200 kW

200200--2000 kW2000 kW

55--250 kW250 kW

200200--2500 kW2500 kW

11--10 kW10 kW

0.50.5--4 MW4 MW

EfficienciesEfficiencies30/80%30/80%

40/78%40/78%

40/78%40/78%

<70%<70%

38/80%38/80%

Power Power Electronic Electronic interfaceinterface

PSERCR.H.Lasseter University-of-Wisconsin

Factors Impacting Grid Factors Impacting Grid ConnectivityConnectivity

GENERATOR TYPEGENERATOR TYPE

INTERCONNECTIONINTERCONNECTIONVOLTAGEVOLTAGE

GENERATORGENERATORELECTRICELECTRICCHARACTERISTICSCHARACTERISTICS

Synchronous Synchronous -- hydro, enginehydro, engine--drivendrivenInduction Induction -- wind turbines, small hydrowind turbines, small hydroPower electronic Power electronic -- micro turbines, fuel cells, micro turbines, fuel cells,

selfself--commutatedcommutatedlineline--commutedcommuted

TransmissionTransmission > 66 kV> 66 kVSub transmissionSub transmission 2424--66 kV66 kVDistributionDistribution 44--16 kV16 kVCustomerCustomer 120120--480 V480 V

Rating SmallRating SmallFault CurrentFault CurrentIslandingIslandingVoltage ControlVoltage Control

PSERCR.H.Lasseter University-of-Wisconsin

MicroMicro--source Issuessource Issues•• Low power < 100Low power < 100 kwkw•• Low voltage 120Low voltage 120--480 volts480 volts•• InertiaInertia--lessless•• Power electronic interfacePower electronic interface•• Interconnection costInterconnection cost•• Control (large numbers)Control (large numbers)•• Market interactionsMarket interactions

PSERCR.H.Lasseter University-of-Wisconsin

Micro Source Dynamics Micro Source Dynamics

•• Type of InverterType of Inverter•• Response of “Prime Mover”Response of “Prime Mover”

AC

DC

DC BusDC Bus ACAC

GeneratorGenerator

PSERCR.H.Lasseter University-of-Wisconsin

Inverter PInverter P--Q response Q response

Line

CSI CSI -- LineLineCommutatedCommutated

VSI VSI -- PWMPWMwithwith

Voltage controlVoltage control

Line Commutated

Time secondsTime seconds

pupu

PP&&QQ

PSERCR.H.Lasseter University-of-Wisconsin

20 sec

PSERCR.H.Lasseter University-of-Wisconsin

MicroMicro--Source DynamicsSource Dynamics

ACPower SourcePower SourceDC

DC BusDC Bus ACAC

Power 1.0

0.5

10time sec.

0.020

Fuel Cells Fuel Cells 2020--100 seconds100 seconds

Micro-turbine

PSERCR.H.Lasseter University-of-Wisconsin

Load Tracking ProblemLoad Tracking ProblemPower electronicsPower electronics

–– InertiaInertia--less systemless system–– Fast responseFast response

Instantaneous power balanceInstantaneous power balance–– Connect to gridConnect to grid–– Use storage on dc busUse storage on dc bus–– Storage on the ac busStorage on the ac bus–– Include rotating machines in MicroInclude rotating machines in Micro--gridgrid

PSERCR.H.Lasseter University-of-Wisconsin

Quality of Power PerspectivesQuality of Power PerspectivesUTILITIESUTILITIESThere are less than four There are less than four interruptionsinterruptions per year per year with a cumulative with a cumulative interrupted average of interrupted average of less than 2less than 2--hours/yearhours/year95 percent of 95 percent of interruptions are due to interruptions are due to faults or outages on the faults or outages on the T/D systemT/D system80 percent of the 80 percent of the interruptions are due to interruptions are due to distribution system distribution system componentscomponents

CUSTOMER’SCUSTOMER’SElectricity problems Electricity problems disrupting equipment and disrupting equipment and production are originated production are originated by by voltage sags, voltage sags, with with duration less than 1/2 duration less than 1/2 secondsecondThere are about 10There are about 10--15 15 times per year that voltage times per year that voltage sags occur with the sags occur with the voltage dropping below voltage dropping below 70%70%Production equipment Production equipment contains electronics contains electronics sensitive to power quality sensitive to power quality problemsproblems

PSERCR.H.Lasseter University-of-Wisconsin

MicroMicro--grid concept assumes:grid concept assumes:•• Large clusters of microLarge clusters of micro--sources and sources and

storage systemsstorage systems•• Close to loads with possible CHP Close to loads with possible CHP

applicationsapplications•• Provide Quality of Power required by Provide Quality of Power required by

CustomerCustomer•• Presented to the grid as a single Presented to the grid as a single

controllable unit (load & source)controllable unit (load & source)

PSERCR.H.Lasseter University-of-Wisconsin

Load Control using a Load Control using a Connected Micro GridConnected Micro Grid

Load control

Control P set point

Pload

PSERCR.H.Lasseter University-of-Wisconsin

NextNext

1.1. Problems and Issues related to Problems and Issues related to Distribution Systems Power Distribution Systems Power

2.2. Power Electronics SourcesPower Electronics Sources

1Georgia TechPSERC

Problems and IssuesRelated toDistribution Systems

A. P. Sakis MeliopoulosGeorgia Institute of Technology

mGrid Operation and Control

Tutorial 14HICSS-34Jan 3, 2001

2Georgia TechPSERC

Converter

InterfaceProtection

Photovoltaics

Micro-Grid ManagementSystem

CATV&Communications

VariableSpeedDrives

Sensitive Load

StaticConditioner

InterfaceProtection

Converter

Fuel Cell

InterfaceProtection

Converter Microturbine / Generator

RTU

RTU

RTU

RTU

DataAqcuisitionControl

The mGRID Concept – Distribution System Backbone

3Georgia TechPSERC

Distribution System Backbone Issues

SafetyVoltage ProfilePower QualityReliabilityProtectionUnbalance/AsymmetryStray Voltages and CurrentsElectromagnetic Compatibility IssuesNon-autonomous/Autonomous Operation

4Georgia TechPSERC

Let-Go Current

Ventricular Fibrillation

5 10 50 100 500 1000 50000

20

40

60

80

100

Dangerous Current

Let-Go Threshold

Safe Current

Frequency (Hz)

Let-G

o C

urre

nt (M

illiam

pere

s) -

RM

S

99.5%

50% 0.5%

Body Weight (kg)

Fibr

illatin

g C

urre

nt (m

A R

MS)

0

100

200

300

0 10020 40 60 80

MaximumNon-FibrillatingCurrent (0.5%)

MinimumFibrillatingCurrent (0.5%)

Dog

s

shee

pca

lves

pigs

Kise

lev

Dog

s

Ferri

s D

ogs

Safety

5Georgia TechPSERC

A2A1

B

The Electrocution Parameters

A2A1

Veq

req

B

rbody

6Georgia TechPSERC

Applicable Standards (IEEE & IEC):Non-Fibrillating Body Current as a Function of Shock Duration

7Georgia TechPSERC

P ro g r a m X F M - P a g e 1 o f 1

c : \w m a s te r \ ig s \d a ta u \g p r _ e x 0 1 - M a y 1 4 , 2 0 0 0 , 0 1 :5 1 :4 4 . 0 0 0 0 0 0 - 2 0 0 0 0 0 .0 s a m p le s /s e c - 2 4 0 0 0 S a m p le s

4 4 .0 2 0 4 4 .0 4 0 4 4 . 0 6 0 4 4 .0 8 0 4 4 .1 0 0

-3 .9 5 2

-3 .1 4 6

-2 .3 3 9

-1 .5 3 2

-7 2 5 .8 m

8 0 .7 6 m

8 8 7 .3 m

1 .6 9 4

2 .5 0 1 P h a s e _ A _ L in e _ C u r re n t_ _ B U S 1 0 (k A )

-1 .6 2 5

-1 .2 9 1

-9 5 6 .1 m

-6 2 1 .5 m

-2 8 6 .8 m

4 7 .8 1 m

3 8 2 .5 m

7 1 7 .1 m

1 .0 5 2 E a r th _ C u r r e n t_ _ G r o u n d _ a t_ B U S 2 0 (k A )

Earth Current / GPR / Worst Case ConditionEarth Current / GPR / Worst Case Condition

Important IssuesImportant IssuesGrounding and BondingGrounding and BondingSingle Ground/Multi GroundSingle Ground/Multi GroundLoad/DER ConfigurationLoad/DER ConfigurationTransmission InterconnectionTransmission Interconnection

8Georgia TechPSERC

Power Quality

Design OptionsDesign OptionsConfigurationConfigurationGroundingGroundingOvervoltageOvervoltage Protection (arresters), Fault ProtectionProtection (arresters), Fault ProtectionUse of Steel/Aluminum conduit, Etc.Use of Steel/Aluminum conduit, Etc.

DisturbancesDisturbancesLightningLightningSwitchingSwitchingPower FaultsPower FaultsFeeder Feeder Energization Energization inrush currents, Motor Startinrush currents, Motor StartLoading imbalanceLoading imbalanceHarmonics, ResonanceHarmonics, ResonanceEMIEMI

Impact on End UserImpact on End UserVoltage Distortion, Sags, Swells, Outages and ImbalancesVoltage Distortion, Sags, Swells, Outages and Imbalances

9Georgia TechPSERC

NA B C

S

wf

D

S

S

dt

Lightning Caused Voltage Sags, Swells and OutagesLightning Caused Voltage Sags, Swells and Outages

10Georgia TechPSERC

Lightning Caused Voltage Sags, Swells and Lightning Caused Voltage Sags, Swells and OutagesOutages

Effects of Grounding and ProtectionEffects of Grounding and Protection

11Georgia TechPSERC

Voltage Sags & Swells and GroundingVoltage Sags & Swells and Grounding

0 2 3 4 5 6

6

5

4

3

2

1

100/17395/164

90/155

85/147

80/138

75/129

70/121

65/11757/100

X0/X1

R0/X1

1

alnoLG

actualLG

g VVC min=

Coefficient ofGrounding

12Georgia TechPSERC

Voltage Sags & Swells During a Ground Fault

Transmission Line Voltage & Current Profile Close

0.00 0.75 1.50 2.25 3.00 3.75Distance (miles)

-8.00

-6.00

-4.00

-2.00

0.00

2.00

Volta

ge (k

V)

_A_B_C_N

Absolute Deviation

Remote Earth Neutral Ground

Voltage Reference

6.92 Volt age Volt age Volt age Volt age Current Current Current Current

Displayed Quantity Nominal Voltage

kV (L-L)

Plot ModeDistribution Line, 12 kV

1.250

-5.810

Distance

_A

0.3334

0.9744

_B

_C

0.00_N

BUS40 BUS50Program IGS - Form CODE_102AProgram IGS - Form CODE_102AProgram IGS - Form CODE_102AProgram IGS - Form CODE_102A

B U S 10 B U S 20 B U S 30 B U S 40

G

V

V

V

A

A

A

V

V

V

A

A

A

A

A

A

A

L R

CommentsCommentsThe Data of the Figure can The Data of the Figure can be used to generate be used to generate nomogramsnomograms and statistical and statistical distributions of voltage sags distributions of voltage sags and swells for a specific and swells for a specific location (IEEE P1346)location (IEEE P1346)

A better approach is outlined A better approach is outlined nextnext

13Georgia TechPSERCFrequency (Hz)

Volta

ge (k

V)

106 105 103104 10102 0.11 0.01

1.0

2.0

3.0

4.0

Transformer

Arrester Fuse

Ground Rods

L1

L2N

G

Ground Loop

SensitiveElectronicEquipment

Probabilistic Approach to Power Quality Probabilistic Approach to Power Quality AnalysisAnalysis

PQ CharacterizationPQ Characterization

Design Options for PQ EnhancementDesign Options for PQ Enhancement

Statistical Distribution of Voltage Sags/Swells

14Georgia TechPSERC

0.1 1 10 100 10000

1

2

3

4

5

2 PHASESENERGIZED

Capacitive/Inductive Impedance Ratio

Max

imum

Ove

rvol

tage

(pu)

1 PHASEENERGIZED

Ferroresonance

CommentsCommentsResonance Between the Resonance Between the Inductance of a Steel Core Inductance of a Steel Core and the Circuit Capacitanceand the Circuit Capacitance

Vulnerable Systems: Vulnerable Systems: Medium Voltage Cable with Medium Voltage Cable with Transformers/RegulatorsTransformers/Regulators

Cases of “Stuck” Pole Cases of “Stuck” Pole ––Single Phase ProtectionSingle Phase Protection

15Georgia TechPSERC

Harmonic Resonance CommentsCommentsHarmonic Resonance Has Harmonic Resonance Has Multiple Modes and Multiple Modes and Resonance FrequenciesResonance Frequencies

System May Be Vulnerable System May Be Vulnerable When Resonance Coincides When Resonance Coincides with a Harmonic Frequencywith a Harmonic Frequency

When Problem is Known, When Problem is Known, Solution is Very Simple Solution is Very Simple --DetuningDetuning

Close

0.00 400 800 1200 1600 2000Frequency (Hz)

0.100

1.00

10.0

100

1000

Mag

nitu

de (O

hms)

Impedance Magnitude

Positive Sequence Frequency Scan at Bus BUS70/ P

0.00 400 800 1200 1600 2000Frequency (Hz)

-225

-150

-75.0

0.00

75.0

150

Phas

e (D

eg)

Impedance Phase

Table

872.1

Magnitude(Ohms)

Phase(Degrees)

Frequency(Hz)

334.5

Frequency(Hz)

Program WinIGS - Fo rm FSCAN_RESProgram WinIGS - Fo rm FSCAN_RESProgram WinIGS - Fo rm FSCAN_RESProgram WinIGS - Fo rm FSCAN_RES

Close

0.00 400 800 1200 1600 2000Frequency (Hz)

1.00

10.0

100

1000

Mag

nitu

de (O

hms)

Impedance Magnitude

Frequency Scan At 2-Node Port: BUS70_A to BUS70_N

0.00 400 800 1200 1600 2000Frequency (Hz)

-80.0

-40.0

0.00

40.0

80.0

120

Phas

e (D

eg)

Impedance Phase

Table

163.4

Magnitude(Ohms)

Phase(Degrees)

Frequency(Hz)

334.5

Frequency(Hz)

5.501

334.5

Program WinIGS - Fo rm FSCAN_RESProgram WinIGS - Fo rm FSCAN_RESProgram WinIGS - Fo rm FSCAN_RESProgram WinIGS - Fo rm FSCAN_RES

BUS30 BUS40

BUS50

BUS60

BUS70

BUS80

BUS90

BUS100

BUS110BUS1201 2

16Georgia TechPSERC

ReliabilityReliability Indices for Distribution Systems(Utility Perspective)

SAIFI: System Average Interruption Frequency Index (interruptions/year and customer)

SAIDI: System Average Interruption Duration Index (hours/year and customer)

CAIDI: Customer Average Interruption Duration Index (hours/interruption)

ASAI: Average Service Availability Index

ServedCustomersofNumberTotalYearperonsInterruptiCustomerofNumberTotalSAIFI =

ServedCustomersofNumberTotalYearperDurationsonsInterruptiCustomerofNumberTotalSAIDI =

onsInterruptiCustomerofNumberTotalYearperDurationsonInterruptiCustomerofNumberTotalCAIDI =

DemandServiceHoursCustomerYearpertyAvailabiliServiceHoursCustomerTotalASAI =

Reliability Measures Reliability Measures (Customer Perspective)(Customer Perspective)

Voltage SagsVoltage SagsVoltage SwellsVoltage SwellsMomentary OutagesMomentary OutagesLoad InterruptionLoad InterruptionEMIEMI

CommentsCommentsGood Methods for UtilityGood Methods for UtilityApplications Exists Applications Exists ((MarkovianMarkovian))

End User/DER Methods End User/DER Methods Needs Further ResearchNeeds Further Research((NonMarkovian NonMarkovian Processes)Processes)

17Georgia TechPSERC

Sector\Duration Mom 1 Min 20 min 1 hr 4 hr 8 hr 24 hrsResidential 0 0 0.1 0.4 3.0 6.0 20Commercial 1.0 1.0 3.0 10.0 36.0 74.0 94.0

Industrial 6.0 6.0 13.0 24.0 64.0 106.0 135.0Large User 2.0 2.0 2.0 3.0 3.0 4.0 5.0

Cost of Reliability

Survey of Cost of Interruption Sector Customer Damage Function (Survey of Cost of Interruption Sector Customer Damage Function ($/$/MWhrMWhr))

ExamplePower requirements: 3000 VA powerAverage power consumption is 2000 WattsPower utility reliability: SAIFI = 1.5, SAIDI = 45, Momentary = 30Sector customer damage function: commercial per Table Below

CalculationsMWhrs consumed: 17.52Cost of two 20 minute outages: (3.0)(17.52)(2) = 105.12Cost of five 1 minute outages: (1.0)(17.52)(5) = 87.60Cost of momentary: (1.0)(17.52)(30) = 525.60Annual cost of interruptions: 718.32

CommentsCost of utility power (assuming $0.10 pwr kWhr): $1,752 per year

18Georgia TechPSERC

Reliability Research Issues

Cap Cap Prob Prob Freq Freq DurDur0 5e0 5e--4 13.0 0.34 13.0 0.3

300 3e300 3e--6 9e6 9e--4 304 30600 3e600 3e--3 0.46 583 0.46 58900 0.996 13.5 648900 0.996 13.5 648

Cap Cap Prob Prob Freq Freq DurDur0 7.2e0 7.2e--5 13.0 0.35 13.0 0.3

300 2.7e300 2.7e--5 5e5 5e--3 473 47600 3.8e600 3.8e--3 0.52 653 0.52 65900 0.9961 13.5 648900 0.9961 13.5 648

Battery Energy = 15 minBattery Energy = 15 min

Battery Energy = 30 minBattery Energy = 30 min

R

I

R

I

R

I

19Georgia TechPSERC

ProtectionProtection IssuesProtection IssuesFault Protection (Current Limited Fault Protection (Current Limited DERsDERs, Remote Contribution, , Remote Contribution, Ground Impedance, etc.)Ground Impedance, etc.)

Faulted Circuit IndicationFaulted Circuit Indication

Fault Location and IsolationFault Location and Isolation

Detection of Hot “Down” Detection of Hot “Down” ConductorsConductors

Typical Typical DERsDERs ProtectionProtection

20Georgia TechPSERC

Unbalance/Asymmetry

180 660 1140 1620 2100

0.06

0.04

0.02

0.0

Series AdmittanceShunt Admittance

Frequency (Hz)As

ymm

etry

Fac

tor

1

minmax1 2

1z

zzS

−=

1

minmax2 2

1y

yyS

−=Most Power Circuits Are AsymmetricMost Power Circuits Are Asymmetric

Other SourcesOther SourcesSingle Phase LoadsSingle Phase LoadsEnd Use EquipmentEnd Use EquipmentInduction MotorsInduction Motors

21Georgia TechPSERC

Induction Motor Response to Unbalance/Asymmetry

Close

System Asymmetry and Imbalance Example

P 367.6 kW, Q 178.3 kVarS = 408.5 kVA, PF = 89.97 %

S

Pa 120.2 kW, Qa 69.04 kVarPb 114 .8 kW, Qb 50.20 kVarPc 132.5 kW, Qc 59.09 kVarSa

SbSc Va = 255.2 V, 55.34 DegVb = 245.3 V, -63.85 DegVc = 249.0 V, 175.7 Deg

Va

Vb

VcIa = 543.0 A, 25.47 DegIb = 510.9 A, -87.46 DegIc = 582.9 A, 151.6 Deg

Ia

Ib

Ic

Induction MotorCase:

Device:

MCLOAD1_A VaMCLOAD1_B VbMCLOAD1_C Vc

MCLOAD1_A IaMCLOAD1_B IbMCLOAD1_C

Voltages

Currents

Total Power Voltage Current Per Phase Power

Ic

Phase Quantities Symmetric Comp

RGROUND Ref

Device Terminal Multimeter

L-G L-L

Program WinIGS - Form FDR_M ULTIM ETERProgram WinIGS - Form FDR_M ULTIM ETERProgram WinIGS - Form FDR_M ULTIM ETERProgram WinIGS - Form FDR_M ULTIM ETER

BUS30 BUS40

BUS50

BUS60

BUS70

BUS80

BUS90

BUS100

BUS110BUS120

MCBUS1

MCLOAD1

ANGSPEED1

MCLOAD2

ANGSPEED2

1 2

1 2

IM

IM

Typical Distribution System ExampleTypical Distribution System Example

CommentsCommentsCombined Effects of System Combined Effects of System Component Asymmetry and Component Asymmetry and Imbalanced LoadsImbalanced Loads

Important Factors:Important Factors:ConfigurationConfigurationTransformersTransformersLoad Balancing Load Balancing

22Georgia TechPSERC

Stray Voltages and CurrentsSky Wire

HA

HB

HC

I sky

neutralI

Neutral

Counterpoise Ground Rod Ground Rod

I earth~

LA

LB

LC

Ground Mat

~

~

counterpoiseI~

CATV

CommentsCommentsSingle Phase Loads Generate Single Phase Loads Generate Current Flow in the Parallel Path of Current Flow in the Parallel Path of Neutral and Soil/GroundsNeutral and Soil/Grounds

Typical Distribution 50Typical Distribution 50--70% in 70% in Neutral, 50Neutral, 50--30% in Soil/Grounds30% in Soil/Grounds

Neutral Voltage Typically 2 to 12 Neutral Voltage Typically 2 to 12 Volts Volts

Properly Designed Properly Designed mGRIDsmGRIDs can Practically Eliminate Stray Voltages and Currentscan Practically Eliminate Stray Voltages and Currents

23Georgia TechPSERC

SOURCEBUS10

BUS200

BUS400

BUS100G

1Ph

Return

Update

0.00 90.0 180 270 360Angle (Degrees)

0.00

75.0

150

225

300

375

Mill

iGau

ss

Magnetic Field

0.500Plot Circle Radius

Magnetic Field Near Nonmagnetic Conduit Enclosed Circuit

6.00 inches

Plot Along Straight Line Plot Along Conduit Centered Circle Feet

Zoom In Zoom Out Zoom All 365.9Field319.1AngleProgram GEM I - Form EM F_CI RCLEProgram GEM I - Form EM F_CI RCLEProgram GEM I - Form EM F_CI RCLEProgram GEM I - Form EM F_CI RCLE

Return

Update

0.00 90.0 180 270 360Angle (Degrees)

56.0

60.0

64.0

68.0

72.0

76.0

Mill

iGau

ss

Magnetic Field

0.50Plot Circle Radius

Magnetic Field Near Steel Conduit Enclosed Power Circuit (ID=3)

6.00 inches

Plot Along Straight Line Plot Along Conduit Centered Circle Feet

Zoom In Zoom Out Zoom All 75.81Field244.1AngleProgram GEM I - Form EM F_CI RCLEProgram GEM I - Form EM F_CI RCLEProgram GEM I - Form EM F_CI RCLEProgram GEM I - Form EM F_CI RCLE

Electromagnetic Compatibility Issues

Example of Two Series Example of Two Series Circuits in Magnetic and Circuits in Magnetic and Aluminum ConduitsAluminum Conduits

CommentsComments

EMI can generate serious EMI can generate serious problemsproblems

The The mGRIDmGRID concept offers an concept offers an opportunity to rethink design opportunity to rethink design issues and optimize EMI issues and optimize EMI performanceperformance

3 Jan 2001

WEMPEC

GV 1Microgrids Short Course

Inverters in Microgrids

[email protected]

Giri VenkataramananDepartment of Electrical and Computer Engineering

University of Wisconsin-Madison

3 Jan 2001

3 Jan 2001

WEMPEC

GV 2Microgrids Short Course

Outline

• Description of inverter types and characteristics

• Inverter control objectives• Inverter dynamic modeling• Summary

3 Jan 2001

WEMPEC

GV 3Microgrids Short Course

Inverter types

PWM inverterMultilevel inverterNaturally commutated current source inverter

3 Jan 2001

WEMPEC

GV 4Microgrids Short Course

PWM Synthesis – A, B & C phases

Vdc

Va Vb Vc

• Phase shift between waveforms may be varied• Amplitude of waveforms may be dissimilar• All the three phase voltages could have an average Vdc/2 common mode voltage• Causes a neutral shift• Will cancel out in the line-line voltages

3 Jan 2001

WEMPEC

GV 5Microgrids Short Course

Realization using IGBTs

Va Vb VcVdc

3 Jan 2001

WEMPEC

GV 6Microgrids Short Course

Multilevel Inverters

Vdc

Vdc

+ other phases

Vdc

Vdc

+ other phases

3 Jan 2001

WEMPEC

GV 7Microgrids Short Course

Typical waveforms

Vdc

Vdc/2

Pole voltage

Line-Line Voltage

Stepped synthesis also possible

3 Jan 2001

WEMPEC

GV 8Microgrids Short Course

Three Phase Current Source Inverter• Two Pole Three Throw Switches

1P3T

1P3TStiff Current

3 Jan 2001

WEMPEC

GV 9Microgrids Short Course

CSI Converter Realization (Thyristors)

1P3T

1P3T

Stiff current

Three phase avoltages

Natural commutationLeading power factor load

3 Jan 2001

WEMPEC

GV 10Microgrids Short Course

3 wire direct output

• DC voltage level has to be bigger than peak line-line voltage

• No path for zero sequence currents from inverter

3 Jan 2001

WEMPEC

GV 11Microgrids Short Course

4 wire interface using star-delta transformer

• DC voltage level free variable because of transformer turns ratio

• Zero sequence currents on star side circulates within the loop of the delta side

3 Jan 2001

WEMPEC

GV 12Microgrids Short Course

Single line equivalent circuit and phasor diagram

ViIL Vo

ItVac

Vi

IL

Vo

ItVac

• Vac – PCC voltage• Vo – Point of Load (POL) Voltage

3 Jan 2001

WEMPEC

GV 13Microgrids Short Course

Microgrid Energy and Power Quality Management Functions

• Load profile control• Source utilization• Peak-shaving• Reactive power injection

• POL voltage control• Voltage imbalance correction

3 Jan 2001

WEMPEC

GV 14Microgrids Short Course

Voltage sag correction

Vi

IL

Vo

ItVac

Nominal condition

Operation under sag (Same real power transfer level)

Operation under sag (Reduced real power to grid)

3 Jan 2001

WEMPEC

GV 15Microgrids Short Course

Voltage imbalance correction

• Input voltage – Brown• Output voltage – Cyan• Phase currents – Green

• Note increase in current stress on phases with large sag

3 Jan 2001

WEMPEC

GV 16Microgrids Short Course

Fault Management

Vi

IL

Vo

ItVac

Fault

3 Jan 2001

WEMPEC

GV 17Microgrids Short Course

Operation under transients

Load transientsSystem transients – Capacitor switching– Power quality events

Delayed source responseIslandingReconnection

3 Jan 2001

WEMPEC

GV 18Microgrids Short Course

Key Control Issues

Power flow controlFrequency controlLocal voltage controlReactive power control

Power sharingFrequency matching

3 Jan 2001

WEMPEC

GV 19Microgrids Short Course

Power throughput of inverter

δsint

oac

XVVP =

δcos2

t

oac

t

o

XVV

XVQ −=

• Angle between Vac and Vo determines power flow

• Magnitude of Vodetermines reactive power flow

3 Jan 2001

WEMPEC

GV 20Microgrids Short Course

Modeling objectives

• Need to model dynamic properties • Control input and real power flow or power angle• Control input and reactive power flow or voltage magnitude

3 Jan 2001

WEMPEC

GV 21Microgrids Short Course

Typical controller structure(classical)

Voltagecommand

PWMConverter

andLC Filter

Vo

Voltage feeback

+

-

VoltageController

Currentfeedback

CurrentRegulator

+

-

Vac

It

1

L s

+

-

Vi

IL

3 Jan 2001

WEMPEC

GV 22Microgrids Short Course

Typical controller structureFlux vector

ViIL Vo

ItVac

λ i

Fluxcommand

PWMConverter

andLC Filter

Vo

Fluxfeedback

FluxRegulator

+

-

Vac

It

1

L s

+

-

Vi

1

sλλλλi

3 Jan 2001

WEMPEC

GV 23Microgrids Short Course

Key control variables

Magnitude and Phase angle

Modulation inputInverter outputFilter inductor current outputCapacitor voltage output

3 Jan 2001

WEMPEC

GV 24Microgrids Short Course

Key control variables)()()( tmjetmtm ∠=)()()( tvj

iiietvtv ∠=

)()()( tijLL

Letiti ∠=)()()( tvj

oooetvtv ∠=

Instantaneous phase quantities are projections of the rotating vectors on appropriate axes

3 Jan 2001

WEMPEC

GV 25Microgrids Short Course

Dynamic Equations

)cos()cos( LooLdcL ivvimmvidtdL ∠−∠−∠−∠=

)sin()sin( LooLdcLL ivvimmvidtdiL ∠−∠−∠−∠=∠

Rv

viivdtdC o

oLLo −∠−∠= )cos(

Rv

viivdtdvC o

oLLoo −∠−∠=∠ )sin(

3 Jan 2001

WEMPEC

GV 26Microgrids Short Course

Steady state operating condition

)cos()cos(0 oooLdc IVVIMMV ∠−∠−∠−∠=

)sin()sin( LooLdcL IVVIMMVIL ∠−∠−∠−∠=ω

RV

VII ooLL −∠−∠= )cos(0

RV

VIIVC ooLLo −∠−∠= )sin(ω

3 Jan 2001

WEMPEC

GV 27Microgrids Short Course

Steady state operating condition

LoL ivomidc VMV φφ cos)cos(0 −=

LoL ivomidcL VMVIL φφω sinsin −=

RV

I oviL oL

−= φcos0

RV

IVC oviLo oL

−= φω sin

Classical phasor solution

3 Jan 2001

WEMPEC

GV 28Microgrids Short Course

Small signal model at operating point

FuExyBuAxx

+=+=&

−−

−−

−−−

−−

=

RCVRCI

VRC

VIRC

VILR

VLIVC

I

LIVC

ILRV

I

A

oL

ooL

o

L

o

L

o

L

L

o

L

oL

11

1

0

0

2

2

2

2

2

ωω

ωω

ωω

ωω

=

00

sin

cos

L

midc

midc

ILV

LV

B L

L

φ

φ

∠=

o

o

L

L

vvi

i

x

~~

~~

mu ~=

3 Jan 2001

WEMPEC

GV 29Microgrids Short Course

Transfer functionMagnitude of modulation to output voltage

10 100 1 .103 1 .1040

20

40

60

MG fk( )

fk

10 100 1 .103 1 .104180

90

0

AG fk( )

fk

3 Jan 2001

WEMPEC

GV 30Microgrids Short Course

Perturbations in time domain

0 1 2 3 4 5 6 7 8 9 10200

0

200

Voac t 1000,( )

Voa t 1000,( )

t 1000⋅

0 1 2 3 4 5 6 7 8 9 1050

0

50

Ioa t 1000,( )

Ioac t 1000,( )

t 1000⋅

3 Jan 2001

WEMPEC

GV 31Microgrids Short Course

Vectors on the Complex Plane

300 200 100 0 100 200 300300

200

100

0

100

200

300

Im Vocomplex t 1000,( )( )

Re Vocomplex t 1000,( )( )

60 40 20 0 20 40 6060

40

20

0

20

40

60

Im Iocomplex t 500,( )( )

Re Iocomplex t 500,( )( )

Output current complex vector

3 Jan 2001

WEMPEC

GV 32Microgrids Short Course

Properties of the dynamic modelEigen frequencies of small signal model

Eigen frequencies of LC filter = 569 Hz(incl. damping effects)

Excitation frequency = 60 Hz

313.396− 629.17i+

313.396− 629.17i−

313.396− 509.17i+

313.396− 509.17i−

3 Jan 2001

WEMPEC

GV 33Microgrids Short Course

Dynamic interaction issues

Angle input to output transfer functionsCross coupling transfer functionsSelection of controllers and tuningOuter loop effects (Real and reactive power, droop, etc.)Frequency synchronizationInteractions between multiple parallel unitsEMI filter interactions

3 Jan 2001

WEMPEC

GV 34Microgrids Short Course

SummaryInverter modeling important aspect of microgrid designStiff dc bus with adequate storage decouples prime mover dynamicsInverter dynamic model based on rotating vectorsModel reduces to phasor model at steady stateSmall signal model properties outlinedVarious transfer functions can be determined, (esp. angle and frequency)Extend and integrate into system models

PSERCR.H.Lasseter University-of-Wisconsin

Robert H. Lasseter Robert H. Lasseter University of Wisconsin University of Wisconsin

Operation and Control of Micro-Grids

PSERCR.H.Lasseter University-of-Wisconsin

MicroMicro--grid concept assumes:grid concept assumes:•• Large clusters of microLarge clusters of micro--sources and sources and

storage systemsstorage systems•• Close to loads with possible CHP Close to loads with possible CHP

applicationsapplications•• Customer Quality of PowerCustomer Quality of Power•• Presented to the grid as a single Presented to the grid as a single

controllable unit (load & source)controllable unit (load & source)

PSERCR.H.Lasseter University-of-Wisconsin

Micro GridMicro Grid • Solid state breaker• Generation & storage• Motor Loads

5

8

M8

M5

6

9

480V

M9

open

480V480V

13.8 kV

PSERCR.H.Lasseter University-of-Wisconsin

Control of P &Q using PWM Control of P &Q using PWM InvertersInverters

EE

VVinvinv

δδδδδδδδ��00

VVinvinv EE

InverterInverterP ∝ δp0

Q ∝ Vinv

PSERCR.H.Lasseter University-of-Wisconsin

Basic P Q ControllerBasic P Q ControllerVaV

bVc

EaEbEc

r

e

ψv

ψE

δv

δE

δP o

ψv o

IaI bIc

EaEbEc

Q

P _

_

+

+

Po

Qo

ψv o

δP o

Inverter

Switch

FluxVectorCalculator

FluxVectorCalculator

P & QCalculation

InverterFluxVectorControl

p-i

p-i

PSERCR.H.Lasseter University-of-Wisconsin

Basic P & Q ResponseBasic P & Q Response

Q

P

Current

PSERCR.H.Lasseter University-of-Wisconsin

Micro Grid connected to T/D GridMicro Grid connected to T/D Grid

MicroMicro--Sources ProvideSources Provide•• Control of local bus voltageControl of local bus voltage•• Control of base power flowControl of base power flow

Fast Load tracking is provided by the gridFast Load tracking is provided by the grid

Micro Grid: Dispatchable load to the gridMicro Grid: Dispatchable load to the grid

PSERCR.H.Lasseter University-of-Wisconsin

Micro GridMicro Grid• P control• V control of 8 & 9

5

8

M8

M5

6

9

480V

M9

480V480V

13.8 kV

PSERCR.H.Lasseter University-of-Wisconsin

P V controllerP V controller 8 on

9 on

Bus 8

Bus 9

PSERCR.H.Lasseter University-of-Wisconsin

Isolated Micro GridIsolated Micro GridIssuesIssues•• Instantaneous power balanceInstantaneous power balance

–– Use storage on dc busUse storage on dc bus–– Storage on the ac busStorage on the ac bus–– Include rotating machines in MicroInclude rotating machines in Micro--gridgrid

•• Load SharingLoad Sharing•• Frequency ControlFrequency Control

PSERCR.H.Lasseter University-of-Wisconsin

Island SystemIsland System

L1L2

δ2V / 2 δ1V/ 1

P ~ Sin( − )δ

2δ1

Increase L2

PSERCR.H.Lasseter University-of-Wisconsin

ωωωω0 ωωωω1 ωωωω2> >ωωωω0

V1

V2

P ~ Sin( − )δ1 δ2

δ2

PSERCR.H.Lasseter University-of-Wisconsin

Frequency DroopFrequency Droop

P

ω

ωo

ωmin

ω1

P1max

P01P02

P2max

PSERCR.H.Lasseter University-of-Wisconsin

Power DroopPower Droop

ωo

s

ks"

k'

m 1s

-

δE

δP o

Po

P

+

++

++ +

_ _

_

_Pc

ω_

p-i

ωi( t) =ω0 − mi(Pc,i − Pi ( t))

PSERCR.H.Lasseter University-of-Wisconsin

P V Controller with DroopP V Controller with Droop

s

1

ω ω I

P & QCalculation

FluxVector

Calculation

InverterFlux

VectorControl

ωoPo

P

QE

I

E

V

Power with droop

δv

ψv

ψE

δE

+_

δP o

ψv o

ψEo

E0p-i

PSERCR.H.Lasseter University-of-Wisconsin

IslandIslandMicro GridMicro Grid

• Solid state breaker• Generation & storage• Motor Loads

Non-critical Loads

Critical Loads

5

8

M8

M5

Critical Loads

6

9

480V

M9

open

480V480V

13.8 kV

PSERCR.H.Lasseter University-of-Wisconsin

Voltage on Buses 8 & 9Voltage on Buses 8 & 9

PSERCR.H.Lasseter University-of-Wisconsin

Injected P & Q Buses 8 & 9Injected P & Q Buses 8 & 9

PSERCR.H.Lasseter University-of-Wisconsin

Frequency DroopFrequency Droop

P

ω

ωo

ωmin

ω1

P1max

P01P02

P2max

PSERCR.H.Lasseter University-of-Wisconsin

Frequency at bus 8Frequency at bus 8

Time seconds

Freq

uenc

y H

z

PSERCR.H.Lasseter University-of-Wisconsin

Power Quality is the attribute of Power Quality is the attribute of electric power which enables electric power which enables utility customers’ electrical and utility customers’ electrical and electronic equipment to operate electronic equipment to operate as intendedas intended

Sensitive loads Sensitive loads (Quality & Service(Quality & Service))

PSERCR.H.Lasseter University-of-Wisconsin

Voltage SensitivityVoltage Sensitivity

1 5 0

1 0 0

5 0

0

1 0 - 1 1 0 0 1 0 1 1 0 2 1 0 3

Durat ion ( 6 0 Hz Cycles)

5-10 cycles

CBEMA

CBEMA

Type 2

Type 1

PSERCR.H.Lasseter University-of-Wisconsin

Shunt current injectionShunt current injection

Critical Load

Voltage Sag1.0

-1.0

0

Restored Voltage

1.0

-1.0

0

injected current

PSERCR.H.Lasseter University-of-Wisconsin

Power Source ACDC

DCDC

••PowerPower••UPS UPS ••Voltage controlVoltage controlunbalanceunbalancefrequencyfrequency

Premium Power Micro SourcePremium Power Micro Source

PSERCR.H.Lasseter University-of-Wisconsin

Voltage Sag Regulator

-

sV-*

dq abc

dq+

Vs

abc

dq+

Vd

+

Vq

+

dq

abc

dq-

Vd

-

Vq

-

dq

Vs-

Øs-

dq abc

dq-

Vc-

Vc

+Inverter

PID

Vs+

Vs+ *

Øs+

PID

=0 Negative component

Positive component

PSERCR.H.Lasseter University-of-Wisconsin

Inverter Response to SLG

PSERCR.H.Lasseter University-of-Wisconsin

Micro Grids & Premium PowerMicro Grids & Premium Power

•• Generation Close to loadsGeneration Close to loads–– Local reliabilityLocal reliability–– Possible CHP applicationsPossible CHP applications

•• Premium PowerPremium Power–– UPS functionsUPS functions–– BackBack--up serviceup service–– Custom Power functionsCustom Power functions

PSERCR.H.Lasseter University-of-Wisconsin

Research NeedsResearch Needs

1.1. Clear interfaces/functions to the Clear interfaces/functions to the GridGrid

2.2. MicroMicro--Grid protectionGrid protection3.3. Plug & play controlsPlug & play controls4.4. Placement tools including CHP.Placement tools including CHP.