33
3/7/02 MEIT-2002 / Section 19 / Page 1 ISS Measured Microgravity Environment – Quasi-steady: Increments 2 and 3 Microgravity Acceleration Environment of the International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center

Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 1

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Microgravity Acceleration Environment of the International Space Station

Quasi-steady Regime

Eric KellyPIMS Data Analyst

ZIN Technologies / NASA Glenn Research Center

Page 2: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 2

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Components of Quasi-steady Environment

• Frequency content: DC to 0.01 Hz • Magnitude typically 5 µµµµg or less.• Three main components of QS Vector

• Aerodynamic Drag - Attitude - Atmospheric density (time and altitude dependent)- ISS Configuration

• Rotational Effects- Attitude- Angular velocity- Position relative to ISS Center of Mass

• Gravity Gradient- Attitude- Position relative to ISS Center of Mass

• Disturbances in the Quasi-Steady Environment• Crew Activity Effects• Air and Water Venting• EVA/SSRMBS Operations• Miscellaneous

Page 3: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 3

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Space Station Analysis Coordinate System

• PIMS uses Space Station Analysis Coordinate System (SSA) as a reference to define all its coordinate systems and sensor locations.

• Quasi-steady plots for Increment Reports are generally displayed in SSA coordinates.

• Definition of the SSA coordinate system found in Figure 1. • Taken from SSP 30219, Rev F, “Space Station Reference

Coordinate Systems”.

Page 4: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 4

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Torque Equilibrium Attitude

• Torque Equilibrium Attitude (TEA) is an “airplane like” attitude maintained relative to Local Vertical Local Horizontal (LVLH), a rotating coordinate system. (Figure 2)

• +XVV +ZLV, Station X-axis towards velocity vector, station Z-axis towards nadir.

• Actual orientation is dependent on ISS configuration.• For Increments 2 and 3 YPR ≈≈≈≈ (350,350,0).

Page 5: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 5

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Plots of Torque Equilibrium Attitude

• Figure 3 is a time series from a TEA period during crew sleep.• Quasi-steady acceleration magnitude about 1-2 µµµµg• Distance from Center of Mass = [49.9 -0.8 2.7] (ft) • Z axis component primarily due to rotational effects

• In Figure 4 the x-axis accelerations for the MAMS location and the ISS CM are nearly identical. This lends support to the theory that in the flight direction of TEA, the gravity gradient component cancels out the rotational component.

Page 6: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 6

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

X-axis Perpendicular to Orbital Plane (XPOP)

• ISS orientation is maintained relative to an inertial frame of reference. X-axis is perpendicular to orbital plane (Figure 5).

• Necessary for power generation and Beta Gimbal Assembly life. (BGA rotates the solar arrays)

• Rotational components are small compared to gravity gradient and drag.

Page 7: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 7

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Plots from XPOP

• Figure 6 is a time series during crew sleep when the ISS was in XPOP attitude. Y and Z components show cyclical variation as they are alternately subjected to the drag and gravity gradient vectors.

• Comparing the CM location to the MAMS OSS location in Figure 7, it can be seen that the X-direction component is almost completely due to gravity gradient effects.

• X component dominates mean (~2 µµµµg)

• Y and Z vary between ± 1 µµµµg

Page 8: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 8

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Effect of Crew Activity•Crew activity masks the quasi-steady vector.

• Crew activity causes increased variation in quasi-steady vector.

•Figure 8: QTH Summary Plot of Crew Active Periods for TEA•Figure 9: QTH of a Compilation of Crew Sleep Periods for TEA•Figure 10: QTH Summary Plot of Crew Active Periods for XPOP•Figure 11: QTH of a Compilation of Crew Sleep Periods for XPOP.

• Without crew effects the characteristic “ring” profile is seen in the YZ plane

Page 9: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 9

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Effect of Crew Activity

•Extravehicular Activities (EVA) • EVAs seen to date have many disturbances yet to be characterized.

These disturbances are can be seen in Figure 12 to be on the order of 10-20 µµµµg in the Y and Z axes.

• Dependent on activities performed- Attitude changes- Space Station Remote Manipulator System (SSRMBS or Canadarm)- Airlock depressurization - Crew motion

• Prior to Russian EVA 2 During Increment 3, an SSRMBS maneuver, seen in X and Z axes of Time Series plot in Figure 13.

• DC-1 Airlock depressurization is evident in X axis of Figure 13.

Page 10: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 10

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Venting Operations•10.2 Orbiter Cabin Depressurization (Figure 14)

• In preparation for EVA during STS-104 Joint operations

• Cabin pressure dropped from 14.7 psi to 10.2 psi

• Venting in +/- Station X-axis. (Orbiter +/- Z-axis)

• ~4µµµµg disturbance in X-axis, vector magnitude unchanged (Figure 15)

• Venting Operations sometimes accompanying by attitude maneuvers.

• Progress 5P fuel line purge (Figure 16)• Two stages

- fuel purge - oxygen purge

• Attitude hold• 3-4 µµµµg transient disturbances in Y and Z axes.

Page 11: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 11

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Vehicle Dockings

• ISS has frequent visitors• Russian Vehicles (Progress and Soyuz) and STS (Shuttle)

• Large disturbances during attitude maneuvers to docking attitude.

• Progress and Soyuz have small Center of Mass change (1-2 ft).• Shuttle has large CM change.

• Grab bag of Vehicle Dockings• Soyuz TM-31 Undocking (Figure 17)

- Attitude change from +XVV/+ZLV to –XVV/+ZLV (180 degree yaw)• Soyuz TM-33 Docking (Figure 18)

- Attitude change to an inertial attitude• STS-104 Docking Event (Figure 19)

- Largest change in Z-axis, approximately ~3.4µg

Page 12: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 12

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Docked Operations

•STS-105 Docking/Joint Operations (Figure 20)•Differences in Quasi-steady vector due to increased drag, change in center of mass, new attitude.

• ∆∆∆∆ g = [-1.08 0.85 2.58] µµµµg• ∆∆∆∆grss = 2.87 µµµµg.

• Nominal Attitude • Before docking YPR = (350,351,0). • After docking YPR = (0,23,0).

-21.30.4-36.0Net Difference-19.6-1.317.4STS-105 Joint Ops

Center of mass information from http://sspweb.jsc.nasa.gov/vcdb. For preliminary assessments only.

1.7-1.753.47A Configuration

ZA (ft)YA (ft)XA (ft)Distance to Center of Mass

Page 13: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

3/7/02 MEIT-2002 / Section 19 / Page 13

ISS Measured Microgravity Environment –Quasi-steady: Increments 2 and 3

Summary of Quasi-steady Environment Findings for Increments 2 and 3.

Source Effect GMTSoyuz TM-31 Undocking 12 µg peak magnitude in X-axis 06-May-200100:19:58Progress (4P) Docking 10 µg peak magnitude in X, Y-axes 23-May-200100:24:23STS-104 (7A)Docking 6 µg peak magnitude 14-Jul-2001, 3:21:04

STS-105 (7A.1)Docking 5 µg peak magnitude 12-Aug-2001, 19:02STS-105 (7A.1)Undocking 6 µg peak magnitude 20-Aug-2001, 14:5210.2 Cabin DepressuriZtion 2.5 µg peak in X axis 14-Jul-2001, 10:05:00

STS-105 Joint Ops 2.9 µg mean magnitue 12-Aug-2001, 19:02:00Progress 4P Undocking 10-20 µg peak in - X direction 22-August-2001, 234/06:07:00

DC1 Docking 10-25 µg in - X direction 17-September-2001, 260/01:05:00CMG 2 Testing Increased variation on X, Y, and Z axes. 11-October-2001, 283/04:50:00

Soyuz 2 Relocation 8-10 µg peak in - X direction 19-October-2001, 291/07:58:00

EVA Activities 12-18 µg peak in -Y, and -Z directions. 08-October-2001, 281/14:2312-November-2001, 316/21:41

SSRMBS Maneuvers 7-13 µg in the -X, and -Z directions. 08-October-2001, 281/14:23

DC1/PkhO DepressuriZtion 4 µg peak in -X direction 1.5 µg peak in -Y direction

08-October-2001, 281/14:2312-November-2001, 316/02:35

Thrusters Inhibited Recovery 10-20 µg in -X direction for extended period 03-December-2001, 337/13:20Progress 5P Prop Purge 3.5 -5.7 µg in Y, and -Z directions. 20-November-2001, GMT 234/19:10

TEA Attitude -0.80 µg mean in Z axis0.94 µg mean magnitude

Various

XPOP Attitude 1.89 µg mean in X axis

2.05 µg mean magnitude Various

Page 14: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

SS

P 30219 R

evision F26 O

ctober 2001

4 – 2

NA

ME

: S

pace Station A

nalysis Coordinate S

ystem

TY

PE

: R

ight–Handed C

artesian, Body–F

ixed

DE

SC

RIP

TIO

N:

This coordinate system

is derived using the Local Vertical Local H

orizontal(LV

LH)

flight orientation.

W

hen defining

the relationship

between

thiscoordinate system

and another, the Euler angle sequence to be used is a yaw

,pitch, roll sequence around the Z

A , YA

, and XA axes, respectively.

OR

IGIN

: T

he origin is located at the geometric center of Integrated Truss S

egment

(ITS

) S0 and is coincident w

ith the S0 C

oordinate frame. S

ee figure 5.0–12,S

0 coordinate frame for a m

ore detailed description of the S0 geom

etriccenter.

OR

IEN

TAT

ION

: X

AT

he X–axis is parallel to the longitudinal axis of the m

odule cluster.T

he positive X–axis is in the forw

ard direction.

YA

The Y

axis is identical with the S

O axis. T

he nominal alpha joint

rotational axis is parallel with Y

A . The positive Y

–axis is in the starboarddirection.

ZA

The positive Z

–axis is in the direction of nadir and completes the

right–handed Cartesian system

.

L, M, N

: Mom

ents about XA

, YA

, and ZA

axes, respectively.

p, q, r: Body rates about X

A, Y

A, and Z

A axes, respectively.

Angular body acceleration about X

A, Y

A, and Z

A axes,

respectively.

SU

BS

CR

IPT:

A

p, q, r:

Eric M Kelly
MEIT 2002 Figure19-1: Space Station Analysis Coordinate System
Page 15: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

PIMS ISS Increment-2 Microgravity Environment Summary Report: May to August 2001

Figure 2.2-1 Space Station Analysis Coordinate System

Eric M Kelly
Eric M Kelly
Eric M Kelly
MEIT 2002 Figure 19-2: Local Vertical Local Horizontal (LVLH) Attitude
Page 16: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

01

23

45

67

−2

−1.5 −1

−0.5 0

0.5 1

1.5 2

Z−Axis Acceleration ( µg)

RMS = 1.1201 µg

Original Mean = − 1.1070 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 10−O

ct−2001,10:06:56.310

−2

−1.5

−1

−0.5 0

0.5 1

1.5 2

Y− Axis Acceleration (µg)

RMS = 0.5267 µg

Original Mean = − 0.5191 µg

−2

−1.5

−1

−0.5 0

0.5 1

1.5 2

X− Axis Acceleration (µg)

RMS = 0.2411 µg

Original Mean = − 0.1954 µg

Start GM

T 07−

May−

2001,22:30:04.122

+Z

LV

+X

VV

Torque E

quilibrium A

ttitudeSSA

nalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

Eric M Kelly
MEIT 2002 Figure 19-3: Quasi-steady Vector During TEA
Eric M Kelly
Page 17: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

01

23

45

67

8−2

−1.5 −1

−0.5 0

0.5 1

1.5 2

Z−Axis Acceleration ( µg)

OSS Mean = − 0.8031 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 14−Jan−

2002,13:28:17.340

−2

−1.5

−1

−0.5 0

0.5 1

1.5 2

Y− Axis Acceleration (µg)

OSS Mean = − 0.4002 µg

−2

−1.5

−1

−0.5 0

0.5 1

1.5 2

X− Axis Acceleration (µg)

CM Mean = 0.1106 µg

OSS Mean = − 0.2168 µg

Start GM

T 21−

September−

2001, 264/00:00:11.642

Quasi−

Steady Vector at M

AM

S OSS L

ocation and Center of M

ass During T

orque Equilibrium

Attitude

SSAnalysis[ 0.0 0.0 0.0]

Increment: 3, Flight: 7A

.1

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf

OSS L

ocation C

enter of Mass

CM Mean = − 0.1623 µgCM Mean = 0.0095 µg

Eric M Kelly
MEIT 2002 Figure 19-4: Quasi-steady Vector at MAMS OSS and Center of Mass During TEA
Page 18: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

Orbital Noon

Orbital Midnight

b

Z

Inertial Attitude With The X Principal Axis Perpendicular to Orbit Plane, Z Nadir At Noon

+Z Body Axis Is Down/Nadir At Orbital Noon+X Body Axis Opposite Sun Side Of Orbit Plane(+b = +90 Yaw, -90 Yaw, For Yaw, Pitch, Roll LVLH Euler Sequence)

Sun

Positive Solar BetaAngle Shown

Y

X

(90º Before Orbital Noon)

(90º After Orbital Noon)

Eric M Kelly
MEIT 2002 Figure 19-5: X-Axis Perpendicular to Orbital Plane (XPOP) Attitude
Page 19: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

01

23

45

67

8−4 −3 −2 −1 0 1 2 3 4

Z−Axis Acceleration ( µg)

RMS = 0.4879 µg

Original Mean = − 0.1573 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 06−Sep−

2001,13:40:53.770

−4

−3

−2

−1 0 1 2 3 4

Y− Axis Acceleration (µg)

RMS = 0.4944 µg

Original Mean = − 0.1652 µg

−4

−3

−2

−1 0 1 2 3 4

X− Axis Acceleration (µg)

RMS = 2.0057 µg

Original Mean = 2.0026 µg

Start GM

T 25−

May−

2001,00:15:07.965

Crew

Sleep Period During X

POP A

ttitudeSSA

nalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

Eric M Kelly
MEIT 2002 Figure 19-6: Quasi-steady Vector During XPOP
Page 20: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

01

23

45

67

8−4 −3 −2 −1 0 1 2 3 4

Z−Axis Acceleration ( µg)

CM Mean = − 0.0113 µg

OSS Mean = − 0.2677 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 11−Jan−

2002,16:15:04.710

−4

−3

−2

−1 0 1 2 3 4

Y− Axis Acceleration (µg)

CM Mean = − 0.0090 µg

OSS Mean =− 0.0004 µg

−4

−3

−2

−1 0 1 2 3 4

X− Axis Acceleration (µg)

OSS Mean = 1.8901 µg

Start GM

T 05−

Novem

ber−2001, 309/22:00:08.236

Quasi−

steady Vector at M

AM

S OSS L

ocation and Center of M

ass During X

POP

SSAnalysis[ 0.0 0.0 0.0]

Increment: 3, Flight: 7A

.1

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf

OSS L

ocation C

enter of Mass

CM Mean = − 0.1293 µg

To consider only com

plete cycles, means calculated w

ith data up until 7:41.

Eric M Kelly
MEIT 2002 Figure 19-7: Quasi-steady Vector at MAMS OSS and Center of Mass During XPOP
Page 21: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

Summary of Quasi−Steady Vector During Torque Equilibrium AttitudeSSAnalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

Time Span = 354.9911 hours0.0625 sa/sec (1.0 Hz)mams, ossbtmf at LAB1O2, ER1, Lockers 3,4:[135.28 10.68 132.12]

from: t:\pub\pad\, $Name: $, 06− Sep− 2001,11:56:23.860

Centroid: Xct = − 0.165 (µg) Yct = − 0.899 (µg) Zct = − 0.862 (µg)

Perc

enta

ge o

f T

ime

0.2

0.4

0.6

0.8

1

1.2

X− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Y− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

X− Axis Accel. (µg)

Y−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Eric M Kelly
RSSct = 1.256 (µg)
Eric M Kelly
MEIT 2002 Figure 19-8: Summary of Quasi-steady Vector During TEA
Page 22: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

Compilation of Sleep Periods During Torque Equilibrium AttitudeSSAnalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

Time Span = 82.8000 hours0.0625 sa/sec (1.0 Hz)mams, ossbtmf at LAB1O2, ER1, Lockers 3,4:[135.28 10.68 132.12]

from: t:\pub\pad\, $Name: $, 06− Sep− 2001,11:56:23.860

Centroid: Xct = − 0.232 (µg) Yct = − 0.888 (µg) Zct = − 0.887 (µg)

Perc

enta

ge o

f T

ime

0

0.2

0.4

0.6

0.8

1

1.2

X− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Y− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

X− Axis Accel. (µg)

Y−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Eric M Kelly
MEIT 2002 Figure 19-9: Compilation of Quasi-steady Vector During TEA for Crew Sleep Periods
Page 23: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

Compilation of Quasi−Steady Vector During XPOP AttitudeSSAnalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

Time Span = 375.9867 hours0.0625 sa/sec (1.0 Hz)mams, ossbtmf at S0, Geom. Ctr. ITA:[135.28 − 10.68 132.12]

from: t:\pub\pad\, $Name: $, 06− Sep− 2001,11:56:23.860

Centroid: Xct = +1.954 (µg) Yct = − 0.451 (µg) Zct = − 0.297 (µg)

Perc

enta

ge o

f T

ime

0

0.05

0.1

0.15

0.2

0.25

0.3

X− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Y− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

X− Axis Accel. (µg)

Y−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Eric M Kelly
MEIT 2002 Figure 19-10: Summary of Quasi-steady Vector During TEA
Page 24: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

Compilation of Crew Sleep Periods During XPOP AttitiudeSSAnalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

Time Span = 74.2622 hours0.0625 sa/sec (1.0 Hz)mams, ossbtmf at S0, Geom. Ctr. ITA:[135.28 −10.68 132.12]

from: t:\pub\pad\, $Name: $, 06− Sep− 2001,11:56:23.860

Centroid: Xct = +1.984 (µg) Yct = − 0.364 (µg) Zct = − 0.248 (µg)

Perc

enta

ge o

f T

ime

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

X− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Y− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

X− Axis Accel. (µg)

Y−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Eric M Kelly
MEIT 2002 Figure 19-11: Compilation of Quasi-steady Vector During XPOP for Crew Sleep Periods
Page 25: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

01

23

45

67

89

1011

−18

−12 −6 0 6 12 18

Z−Axis Acceleration ( µg)

RMS = 4.3232 µg

Original Mean = − 2.7741 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 28−D

ec−2001,14:41:56.860

−18

−12

−6 0 6 12 18

Y− Axis Acceleration (µg)

RMS = 2.6767 µg

Original Mean = − 1.5075 µg

−18

−12

−6 0 6 12 18

X− Axis Acceleration (µg)

RMS = 0.7467 µg

Original Mean = − 0.3188 µg

Start GM

T 08−

October−

2001, 281/12:00:10.369

Russian E

VA

, RS−

EV

A−

2SSA

nalysis[ 0.0 0.0 0.0]

Increment: 3, Flight: 7A

.1

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

EV

A D

uration

Eric M Kelly
MEIT 2002 Figure 19-12: Russian EVA-2
Page 26: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

020

4060

80100

120140

−16

−12 −8 −4 0 4 8 12 16

Z−Axis Acceleration ( µg)

RMS = 4.8957 µg

Original Mean = − 3.2999 µg

Tim

e (minutes)

from: t:\pub\pad\, $N

ame: $, 28−

Dec−

2001,14:37:07.570

−16

−12

−8

−4 0 4 8 12 16

Y− Axis Acceleration (µg)

RMS = 3.0733 µg

Original Mean = − 1.8416 µg

−16

−12

−8

−4 0 4 8 12 16

X− Axis Acceleration (µg)

RMS = 0.7890 µg

Original Mean = − 0.3127 µg

Start GM

T 08−

October−

2001, 281/12:00:10.369

SSRM

S Maneuver and D

C1 D

epressurization in Preparation for RS−

EV

A−

2SSA

nalysis[ 0.0 0.0 0.0]

Increment: 3, Flight: 7A

.1

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

SS

RM

S M

aneuver

DC

1/PkhO

Depressurization

Eric M Kelly
MEIT 2002 Figure 19-13: SSRMBS Maneuver and DC1 Depressurization
Page 27: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

00.5

11.5

22.5

33.5

−4 −3 −2 −1 0 1 2 3 4

Z−Axis Acceleration ( µg)

RMS = 2.5253 µg

Original Mean = 2.4784 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 10−Sep−

2001,15:15:40.430

−4

−3

−2

−1 0 1 2 3 4

Y− Axis Acceleration (µg)

RMS = 0.5199 µg

Original Mean = − 0.3333 µg

−4

−3

−2

−1 0 1 2 3 4

X− Axis Acceleration (µg)

RMS = 1.5137 µg

Original Mean = − 1.0118 µg

Start GM

T 14−

Jul−2001,08:00:14.645

10.2 Orbiter C

abin Depressurization D

uring STS−

104SSA

nalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

Eric M Kelly
MEIT 2002 Figure 19-14: 10.2 Orbiter Cabin Depressurization
Page 28: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

0 0.5 1 1.5 2 2.5 3 3.5 40

1

2

3

4

5

6A

ccel

erat

ion

Vec

tor

Mag

nitu

de (

µg)

RM

S =

2.9

897

µgM

ean

= 2

.970

7 µg

Time (hours) from: t:\pub\pad\, $Name: $, 17−Sep−2001,15:57:54.360

Start GMT 14− Jul− 2001,08:00:14.64510.2 Orbiter Cabin Depressurization During STS− 104

Vector MagnitudeIncrement: 2, Flight: 6A

0.0625 sa/sec (1.0 Hz)mams, ossbtmf at LAB1O2, ER1, Lockers 3,4:[135.28 − 10.68 132.12]

Eric M Kelly
MEIT 2002 Figure 19-15: Vector Magnitude of 10.2 Cabin Depressurization
Page 29: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

00.5

11.5

22.5

33.5

4−10 −5 0 5 10

Z−Axis Acceleration ( µg)

RMS = 1.7905 µg

Original Mean = − 1.2287 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 31−D

ec−2001,14:26:24.120

−10

−5 0 5 10

Y− Axis Acceleration (µg)

RMS = 0.8510 µg

Original Mean = − 0.4620 µg

−10

−5 0 5 10

X− Axis Acceleration (µg)

RMS = 0.5568 µg

Original Mean = − 0.2678 µg

Start GM

T 20−

Novem

ber−2001, 324/18:00:03.569

Progress 5P Propellant Line Purge

SSAnalysis[ 0.0 0.0 0.0]

Increment: 3, Flight: 7A

.1

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

Attitude

hold

Begin O

xygen Purge

Begin F

uel Purge

Mom

entum M

anagement

Eric M Kelly
MEIT 2002 Figure 19-16: Progress 5P Prop Purge
Page 30: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

00.5

11.5

22.5

33.5

44.5

5−25

−20

−15

−10 −5 0 5 10 15 20 25

Z−Axis Acceleration ( µg)

RMS = 2.5002 µg

Original Mean = − 1.4522 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 17−Sep−

2001,08:43:32.600

−25

−20

−15

−10

−5 0 5 10 15 20 25

Y− Axis Acceleration (µg)

RMS = 2.3141 µg

Original Mean = − 0.7918 µg

−25

−20

−15

−10

−5 0 5 10 15 20 25

X− Axis Acceleration (µg)

RMS = 3.8516 µg

Original Mean = − 1.3318 µg

Start GM

T 2001:125:23:00:00.805

Soyuz TM

−31 U

ndockingSSA

nalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

+XV

V/+Z

LV − X

VV

/+ZLV

+XV

V/+Z

LV

Eric M Kelly
MEIT 2002 Figure 19-17: Soyuz TM-31 Undocking
Page 31: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

00.5

11.5

22.5

33.5

−20

−15

−10 −5 0 5 10 15 20

Z−Axis Acceleration ( µg)

RMS = 4.2707 µg

Original Mean = − 1.1879 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 31−D

ec−2001,12:32:10.410

−20

−15

−10

−5 0 5 10 15 20

Y− Axis Acceleration (µg)

RMS = 3.0118 µg

Original Mean = − 0.5724 µg

−20

−15

−10

−5 0 5 10 15 20

X− Axis Acceleration (µg)

RMS = 3.1023 µg

Original Mean = − 0.7135 µg

Start GM

T 23−

October−

2001, 296/08:00:07.886

Soyuz TM

−33 D

ocking SSA

nalysis[ 0.0 0.0 0.0]

Increment: 3, Flight: 7A

.1

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

Maneuver to

docking attitude M

aneuver to X

PO

P attitude

Soyuz T

M−33 docking

Eric M Kelly
MEIT 2002 Figure 19-18: Soyuz TM-33 Docking
Page 32: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

01

23

45

67

−6 −4 −2 0 2 4 6

Z−Axis Acceleration ( µg)

RMS = 2.1603 µg

Original Mean = 0.3050 µg

Tim

e (hours)from

: t:\pub\pad\, $Nam

e: $, 17−Sep−

2001,10:03:51.430

−6

−4

−2 0 2 4 6

Y− Axis Acceleration (µg)

RMS = 1.6303 µg

Original Mean = − 0.7183 µg

−6

−4

−2 0 2 4 6

X− Axis Acceleration (µg)

RMS = 6.4219 µg

Original Mean = − 1.0389 µg

Start GM

T 13−

Jul−2001,22:00:00.512

STS−

104 Docking E

ventsSSA

nalysis[ 0.0 0.0 0.0]

Increment: 2, Flight: 6A

0.0625 sa/sec (1.0 Hz)

mam

s, ossbtmf at L

AB

1O2, E

R1, L

ockers 3,4:[135.28 −10.68 132.12]

Man

euver to

Do

cking

Attitu

de

Man

euver to

TE

A

Eric M Kelly
MEIT 2002 Figure 19-19: STS-104 Docking
Page 33: Microgravity Acceleration Environment of the …...International Space Station Quasi-steady Regime Eric Kelly PIMS Data Analyst ZIN Technologies / NASA Glenn Research Center 3/7/02

Start GMT 12−Aug−2001,19:00:01.578Summary of Quasi−Steady Vector during STS−105 Joint Operations

SSAnalysis[ 0.0 0.0 0.0]Increment: 2, Flight: 7A

Time Span = 187.5022 hours0.0625 sa/sec (1.0 Hz)mams, ossbtmf at LAB1O2, ER1, Lockers 3,4:[135.28 10.68 132.12]

from: t:\pub\pad\.test\, $Name: $, 10− Sep− 2001,10:20:00.700

Centroid: Xct = − 1.244 (µg) Yct = − 0.049 (µg) Zct = +2.578 (µg)

X− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Y− Axis Accel. (µg)

Z−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

X− Axis Accel. (µg)

Y−

Axi

s A

ccel

. (µg

)

− 4 − 2 0 2 4− 4

− 3

− 2

− 1

0

1

2

3

4

Perc

enta

ge o

f T

ime

0

0.2

0.4

0.6

0.8

1

1.2

1.4

default
RSSct=4.129 (µg)
Eric M Kelly
MEIT 2002 Figure 19-20: Summary of STS-105 Joint Operations