61
Umeå University Medical Dissertations New Series No 1264 ISSN 0346-6612 ISBN 978-91-7264-782- 4 Midgut and muscle development in Drosophila melanogaster Margret Shirinian Department of Molecular Biology Umeå University Umeå 2009

Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

Umeå University Medical Dissertations

New Series No 1264 ISSN 0346-6612 ISBN 978-91-7264-782- 4

 

 

 

 

Midgut and muscle development in Drosophila melanogaster

Margret Shirinian

 

 

 

 

 

 

 

 

 

 

 

 

Department of Molecular Biology Umeå University

Umeå 2009

Page 2: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

Copyright © 2009 by Margret Shirinian

ISBN: 978-91-7264-782- 4

Print by Arkitektkopia

Umeå, Sweden 2009

Page 3: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

 

 

 

 

 

 

 

To my Family

 

 

 

 

 

 

 

“I prefer to be a dreamer among the humblest, with visions to be realized, than lord among those without dreams and desires.”

Khalil Gibran

 

 

Page 4: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

TABLE OF CONTENTS  

ABSTRACT …………………………………………………………………………………..4

PAPERS IN THIS THESIS ………………………………………………………….............6

ABBREVIATIONS …………………………………………………………………………..7

INTRODUCTION …………………………………………………………………………..10

Drosophila as a model system to study midgut development ……………………………….10

Genetic tools in Drosophila …………………………………………………………............10

How it all starts - Drosophila gastrulation …………………………………………………12

Endoderm development in Drosophila………………………………………………............14

Formation of the midgut endoderm…………………………………………….14

Molecular signals driving the midgut endoderm formation ……………...........16

Formation of the midgut visceral muscles……………………………………………..........18

The Receptor Tyrosine kinase Alk and its role in cell specification in the visceral

Mesoderm ……………………………………………………………………...22

Molecular targets of the RTK ALK in the embryonic midgut ………………...24

Alk in human disease ………………………………………………………….25

Development of the somatic muscles in Drosophila……………………………………….25

Architecture of the larval somatic muscle and muscle attachment sites……...25

The sarcomeric structure of muscles …………………………………………29

Guanine exchange factors and their role as regulators of small GTPases ………………31

Rap GTPases and their effectors ……………………………………………..32

Page 5: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

TABLE OF CONTENTS  AIMS ………………………………………………………………………………………...35

RESULTS AND DISCUSSION…………………………………………………………….36

Drosophila Anaplastic Lymphoma Kinase regulates Dpp signalling in the

developing embryonic gut (Paper I)……………………………………………36

Fusion of circular and longitudinal visceral muscles in Drosophila is

independent of the endoderm but further visceral muscle differentiation requires

a close contact between mesoderm and endoderm (Paper II).............................41

Mutational analysis of the Guanine Nucleotide Exchange Factor C3G in

Drosophila melanogaster reveals a role for C3G in larval muscle development

(Paper III)………………………………………………………………………45

CONCLUSIONS ……………………………………………………………………………48

ACKNOWLEDGEMENTS ………………………………………………………………..49

REFERENCES ......................................................................................................................52

 

Page 6: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

ABSTRACT 

The fully developed and functional Drosophila midgut comprises two layers, the visceral

mesoderm and the endoderm. The visceral muscle of the midgut is formed by the fusion of

founder cells with fusion competent cells to form the muscle syncytia. The specification of

these cells and thus the fusion and the formation of the midgut muscle is dependent on the

Receptor tyrosine kinase (RTK) Alk (Loren et al., 2003). The endoderm underlies the visceral

muscle and is formed from cells that originate from the anterior and the posterior parts of the

embryo. These cells use the visceral mesoderm as a substrate for their migration. Using Alk

mutant animals, we have studied endoderm migration during embryonic development. While

the initial migration of the endoderm is not affected in the absence of the visceral mesoderm,

we observe that the later dorsal-ventral endodermal migration does not take place.

The development of the visceral muscle and its dependence on the endoderm is poorly

understood. We have analysed gürtelchen (gurt) mutant animals, originally identified in a

genetic screen for mutations affecting visceral muscle formation. Gurt mutants are so named

due to their belt-like phenotype of the visceral muscle (gürtelchen is German for belt).

Mapping of the genomic locus identified gurt as a mutation in a previously described gene -

huckebein (hkb) which is known to have an important function in endoderm development.

Gurt (hkb) mutants were used to further study the interaction between the endoderm and the

visceral muscle during development. The initial specification of founder cells and fusion

competent myoblasts as well as fusion events are unaffected in gurt (hkb) mutants, however,

the elongation and stretching of the visceral muscle does not proceed as normal. Moreover,

ablation of the visceral mesoderm disrupts endoderm migration, while ablation of the

endoderm results in a delayed disruption of visceral muscle formation.

Signaling between the two tissues was investigated in detail. Since Alk is a critical player

in visceral muscle development, we employed Alk mutant embryos for this task. In addition to

the role of Alk in specifying the founder cells and initiating the visceral muscle fusion, we

have shown that Alk mediated signaling has a role in the induction of the midgut constriction

process by regulating dpp expression in the developing embryonic gut.

4  

Page 7: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

ABSTRACT 

5  

Finally, we wished to identify genes in the founder cells/fusion competent myoblasts that

might be regulated by Alk. C3G is a gunaine nucleotide exchange factor expressed in the

visceral muscle founder cells. Deletion of the Drosophila C3G locus resulted in the

generation of null mutants in C3G which are viable, but display decreased longevity, fitness

and are semi-lethal. Further analysis of C3G mutants indicated that C3G is essential for

normal larval musculature development, in part by regulating integrin localization at muscle

attachment sites.

Page 8: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

PAPERS IN THIS THESIS 

This thesis is based on the following articles and manuscript, which will be referred to in the

text by their Roman numerals:

Paper I

Margret Shrinian, Gaurav K. Varshney, Christina Loren, Caroline Grabbe and Ruth Palmer.

(2007): Drosophila Anaplastic Lymphoma Kinase regulates Dpp signalling in the developing

embryonic gut. Differentiation Jun; 75(5):418-26).

Paper II

Georg Wolfstetter *, Margret Shirinian *, Christiana Stute, Caroline Grabbe, Thomas

Hummel, Stefan Baumgartner, Ruth H. Palmer and Anne Holz. (2009): Fusion of circular and

longitudinal visceral muscles in Drosophila is independent of the endoderm but further

visceral muscle differentiation requires a close contact between mesoderm and endoderm.

Mechanisms of Development (Under revision). *Joint first authors.

Paper III

Margret Shirinian, Gaurav Varshney and Ruth H. Palmer. (2009): Mutational analysis of the

Guanine Nucleotide Exchange Factor C3G in Drosophila melanogaster reveals a role for

C3G in larval muscle development. Manuscript.

6  

Page 9: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

ABBREVIATIONS 

Alk Anaplastic Lymphoma Kinase

ALCL Anaplastic Large Cell Lymphoma

AMG Anterior midgut primodium

Ant Antennapedia

Abd A Abdominal A

AMP Anterior midgut precursor

ADD Adducin

Bap Bagpipe

Bin Binou

Byn Brachyenteron

CNS Central Nervous System

Duf Dumbfounded

DO Dorsal Oblique

DAD Daughters against Dpp

DBCL Diffuse B-cell Lymphoma

ECM Extracellular Matrix

EXD Extradenticle

ERK Extracellular signal regulated kinase

FC Founder Cell

FCM Fusion Competent Myoblast

FAS II/III Fasciclin II/III

Fkh Fork head

GAP GTPase activating protein

GEF Guanine Nucleotide Exchange Factor

Gurt Gürtelchen

7  

Page 10: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

ABBREVIATIONS 

GFP Green Fluorescent Protein

GTP Guanosine Triphosphate

GDP Guanosine Diphosphate

Hbs Hibris

Hkb Huckebein

HAJ Hemiadherence

HVM Hindgut visceral mesoderm

ISH In situ hybridization

Jeb Jelly Belly

Kirre Kin of irregular chaism-C

LO Lateral Oblique

LL Lateral Longitudinal

LBC Large Basophilic Cells

Mad Mothers against Dpp

Mbc Myoblast city

MAPK Mitogen activated protein kinase

Mef-2 Myocyte specific enhancer factor-2

NDG Nidogen

NGS Normal goat serum

PMG Posterior midgut primodium

PS Position Specific

PMEC Principle midgut epithelial cells

Pros Prospero

R-Smad Receptor-regulated Smad

RTK Receptor Tyrosine Kinase

8  

Page 11: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

ABBREVIATIONS 

9  

SCC Non-small cell lung cancer

Scr Sex combs reduced

SBM Segment Border Muscle

Sns Sticks and stones

Srp Serpent

TGFβ Transforming growth factor β

Tor Torso

Tll Tailless

Twi Twist

Tin Tinman

TUNEL Terminal deoxynucleotidyl transferase dUTP nick end labeling

Ubx Ultrabithorax

UAS Upstream activating sequence

VA Ventral acute

VT Ventral Transverse

VL Ventral Lateral

VO Ventral Oblique

VM Visceral mesoderm

Wg

ps

Wingless

Parasegment

DAPI 4’,6-diamidino-2-phenylindole

Page 12: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Drosophila as a model system to study midgut development

The little insect 3mm long, living on spoiled food first used as an experimental model by

Thomas Hunt Morgan in 1910 has become a very important model organism. Initially,

Drosophila melanogaster was used to study the rules of genetic inheritance and later

thousands of researchers around the world used this model organism to study rules of

development from a simple fertilized egg into an adult. This process of development, which is

similar to the one taking place in us, has made the fruitfly a popular model to study complex

biological processes and answer difficult developmental questions. Development of the gut

and its two components - the muscle and the epithelium - which I will describe below is very

complex and involves tightly regulated tissue-tissue interactions, which are demanding to

study in higher organisms. The short life cycle, the ability to perform genetic manipulations

and the large collection of mutants has together with other advantages made Drosophila an

attractive system with which to study gut development.

Genetic tools in Drosophila

The constant advancement of genetic tools and techniques has facilitated the study of

developmental processes and cell fate determination in Drosophila. The introduction of the

UAS/GAL4 system by Brand and Perrimon (Brand and Perrimon, 1993) made it possible to

express genes in a directed fashion. This is achieved by overexpressing the gene of interest in

a desired tissue or cell type and analyzing its effects at different developmental stages. This is

done by generating transgenic flies expressing a yeast transcriptional activator (GAL4) under

the control of a tissue specific promoter regulatory region. This transgenic animal is

subsequently crossed to another transgenic fly that contains binding sites for GAL4, known as

UAS (Upstream Activating Sequence) sites. UAS sites are coupled to the gene of interest,

which will then be expressed in a specific tissue (Figure 1). During the course of my studies, I

have utilized this system for two main purposes. Firstly, to allow expression of my gene of

interest in specific tissues, and more specifically in the visceral mesoderm, endoderm and the

somatic muscles. The second purpose has been to specifically ablate tissues of interest, and

study the resultant effect on neighboring tissues. To accomplish that, I have used a method

10  

Page 13: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

developed by Hidalgo and coworkers (Hidalgo et al., 1995). This method is based on the

ectopic expression of a cytotoxin (RicinA) in a tissue specific manner. Ricin consists of two

polypeptide chains; the B chain binds to the cell surface and allows the toxin to be

internalized, while the A chain inactivates eukaryotic ribosomes by disrupting the 28S

ribosomal RNA, which irreversibly inhibits protein translation (Moffat et al., 1992). By

employing only the Ricin A chain in this experimental strategy we are able to kill cells, while

preventing Ricin from entering neighbouring cells. In addition to the above mentioned genetic

methods, I have also used the enhancer trap strategy to follow the endogenous expression of

specific genes. This method utilizes a P element which contains a reporter gene inserted

nearby the enhancer of a gene (Bellen et al., 1989).

In order to appreciate the function of one of my favorite genes (C3G), creation of a

deletion mutant allele was one way of providing clues about its physiological role. There are

many different ways of creating mutants in Drosophila (Golic et al., 1997; Gong and Golic,

2003; Ryder et al., 2004; Ryder and Russell, 2003). One recently developed method which is

efficient and less time consuming compared to other P-element based methods, is the FRT

based deletion approach provided by the PiggyBac insertions made by the Exelixis

consortium (Thibault et al., 2004). A large number of PiggyBac insertions have been

generated and mapped within the Drosophila genome and these are available upon request.

11  

Figure 1: Schematic representation of the UAS/GAL4 system in Drosophila. 

Page 14: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

How it all starts - Drosophila gastrulation

Before gastrulation, the embryo consists of a single epithelial sheet, the cellular blastoderm

which consists of about 6000 columnar cells enclosing the central yolk, and a group of

arround 30 germ line cells known as the pole cells lying on the surface of this sheet at the

posterior pole of the embryo. (Campos-Ortega, 1997; Turner and Mahowald, 1977) (Figure

2). Cells in the blastoderm are created by invagination of plasma membranes from the surface

of the egg (Foe and Alberts, 1983). Gastrulation begins as soon as the ventral cells are

formed, although the cellularization process is still taking place in the dorsal region of the

embryo. The term ‘gastrulation’ encompasses all of the morphogenetic changes that take

place between the blastoderm stage and the time when the three germ layers are

distinguishable (Figure 2). First the ventral furrow starts to invaginate and when this

invagination is complete, it gives rise to the mesoderm which in turn will develop into the

muscles, gonads and fat body. Next, the posterior pole of the embryo begins to shift dorsally,

carrying with it the pole cells, initiating the process of germ band extension.The posterior end

then folds inward to form the proctodeal invagination. The proctodeal invagination

internalizes the primodia for the posterior midgut (PMG) and the hindgut. At the anterior

pole, part of the anterior midgut primodia (AMG) invaginates together with the ventral

furrow. The more anterior region invaginates much later together with parts of the ectodermal

prospective foregut. A number of transcription factors determine the boundaries and the germ

layer fates of the blastoderm domains. twist (twi) and snail (sna), a bHLH transcription factor

and zinc finger transcription factor respectively, are expressed on the ventral side of the

embryo (Thisse et al., 1988) (Figure 3), where they are involved in determination of

mesodermal fate (Simpson, 1983). huckebein (hkb) is a zinc finger transcription factor which

is expressed in the anterior and posterior tips of the embryo (Figure 3) (Bronner and Jackle,

1991). hkb specifies the endodermal primodium (Bronner et al., 1994). tailless (tll), a zinc

finger transcription factor is also expressed at the posterior tip, but its expression extends

anteriorly beyond hkb expression into the hindgut primodium (Figure 3) (Pignoni et al.,

1990). tll is required for the development of the hindgut and for the proctodeal invagination

(Strecker et al., 1986). zerknüllt (zen), a

12  

Page 15: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

homeodomain protein, expressed on the dorsal side of the embryo determines the fate of the

amnioserosa. One of the downstream target genes for the twi, sna, tll and hkb transcription

factors is folded gastrulation (fog) (Sweeton et al., 1991; Zusman and Wieschaus, 1985). fog

encodes a secreted molecule first expressed in the mesoderm and then in the PMG primodium

as well as part of the hindgut primodium (Costa et al., 1994) (Figure 3). Embryos mutant for

fog exhibit defects in ventral furrow formation and PMG invagination (Sweeton et al., 1991).

 

Figure 2: The fate map of Drosophila melanogaster. Schematic representation of the Drosophila  fate map after gastrulation. AMG (Anterior midgut primodiun), PMG (Posterior midgut primodium), FG (Foregut), HG (Hindgut), PC (Pole cells). Adapted from (Hartenstein, 1993). 

13  

Page 16: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Figure 3: Gene expression patterns of the Drosophila melanogaster blastoderm 

Endoderm development in Drosophila

Formation of the midgut endoderm

In Drosophila, the midgut consists of two layers, the visceral mesoderm and the

endoderm. The endodermal midgut arises from two cell primodia, the anterior midgut

primodium (AMG) and the posterior midgut primodium (PMG), which are situated very close

to the ectodermally-derived primodia of the foregut and the hindgut (Figure 4A) (Hartenstein,

1993). The formation of the midgut endoderm is initiated by an epithelial-mesenchymal

transition. The underlying visceral mesoderm at this stage acts as a substratum for endodermal

cell migration and mutations in genes required for visceral mesoderm specification lead to a

failure of endodermal midgut migration (Reuter et al., 1993; Tepass and Hartenstein, 1994a;

Tepass and Hartenstein, 1994b). When the migrating primodia contact the underlying visceral

mesoderm, they undergo a mesenchymal to epithelial conversion, thereby forming two rows

of cells (Figure 4B). Together with the visceral mesoderm, the endoderm subsequently

14  

Page 17: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

extends dorsally-ventrally to enclose the yolk and form the midgut sac (Figure 4C). This

mesenchymal-epithelial conversion as well as endoderm migration depends on the visceral

mesoderm (Tepass and Hartenstein, 1994b). After the formation of the midgut sac, three

constrictions take place that generate four midgut lobes, The first of which will form the

anterior midgut, the second and the third will form the middle midgut, while the fourth lobe

will develop into the posterior midgut (Figure 4D).

Figure 4: Schematic representation of the midgut endoderm formation. The endodermal midgut  primodia  (magenta),  and  ectodermal  foregut  (fg)  and  hindgut  (hg)  primodia (blue) are  located at  the anterior and  the posterior ends of  the blastoderm embryo at stage  8  (A).  (B)  Endodermal  cells migrate  along  the  bands  of  the  visceral mesoderm (green) at stage 12. (C) Midgut primodia meet in the middle and form a single gut sac at stage 13/14. (D) At stage 16 three constrictions divide the midgut into four lobes. (am= anterior midgut, pv = proventriculus, pm = posterior midgut). 

 

15  

Page 18: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Molecular signals driving midgut endoderm formation

During gastrulation, the germ layers in Drosophila are formed by three morphogenetic

movements, ventral furrow formation, PMG (posterior midgut primodium) invagination

(which is also called proctodeal invagination) and germ band extension. The invagination of

the ventral furrow will give rise to the anterior endoderm, whereas the invagination of the

proctodeum will form the posterior endoderm. The primodium of the endoderm is set up by a

key regulator of the terminal system in Drosophila - the maternal effect gene torso (tor)

(Klingler et al., 1988; Nusslein-Volhard et al., 1987; Strecker et al., 1989) which encodes a

RTK (Sprenger et al., 1989). In embryos lacking maternal tor activity, structures posterior to

the seventh abdominal segment fail to develop (Schupbach and Wieschaus, 1986). Torso

activates the expression of two zygotic transcription factors hkb and tll described earlier.

(Casanova, 1990; Pignoni et al., 1990; Weigel et al., 1990). Hkb is expressed at the posterior

and the anterior cap of the blastoderm (Bronner and Jackle, 1991). In embryos lacking torso

function, hkb and tll expression is completely abolished at the posterior tip, but small patches

remain at the anterior tip (Casanova, 1990; Pignoni et al., 1990; Weigel et al., 1990). The

expression in these patches is controlled by the maternal anterior morphogen bicoid (bcd).

Embryos lacking both tor and bcd show no expression of either hkb or tll (Reuter and Leptin,

1994). Hkb is required for the specification and the invagination of the endodermal PMG

(Reuter and Leptin, 1994; Weigel et al., 1990). hkb mutant embryos fail to form the

endodermal midgut and they lose the expression of Prospero which is a marker for

endodermal cells (Bronner and Jackle, 1996), thus indicating a crucial role for hkb in

endodermal midgut development. Once the AMG and the PMG are formed, the endodermal

cells migrate along the two bands of the visceral mesoderm. Mutants in genes required for

visceral mesoderm specification such as twist (twi), tinman (tin), bagpipe (bap) also exhibit

defective endoderm migration (Azpiazu and Frasch, 1993; Lee et al., 1997; Leptin, 1991;

Tepass and Hartenstein, 1994b; Yin et al., 1997).

Integrins are cell surface extracellular matrix (ECM) receptors which play an important

role in endoderm migration. All integrins are αβ heterodimers, and the Drosophila genome

encodes five α subunits (αPS1-5) and two β subunits, βPS and βv (described in more detail

later). The βPS subunit is expressed broadly in the embryo, whereas the βv subunit is

primarily expressed in the midgut endoderm. Removal of both β subunits results in complete

16  

Page 19: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

block of midgut migration, indicating that integrin function is a requisite for midgut

migration (Devenport and Brown, 2004). In addition, four homeotic genes expressed in the

visceral mesoderm of the midgut are important for gut morphogenesis and the formation of

the midgut constrictions (Reuter and Scott, 1990; Tremml and Bienz, 1992). These are Sex

combs reduced (scr), Antennapedia (Ant), Ultrabithorax (Ubx) and Abdominal A (Abd

A)(Reuter and Scott, 1990; Tremml and Bienz, 1989). It has been shown that in the absence of

any of these genes, the midgut constriction is defective. However, the mechanisms by which

these four homeotic genes influence the formation of the constrictions are poorly understood.

Target genes that are regulated by these homeotic genes encode secreted signaling molecules

such as the Wingless (Wg) Wnt family of proteins and the TGFβ family ligand

Decapentaplegic (Dpp). Ubx expressed in the central region parasegment (ps7) of the visceral

mesoderm stimulates the expression of dpp in the same region (ps7) and wg in the adjacent

cells (ps8) (Figure 5). Dpp secreted from the visceral mesoderm will be detected by the apical

side of the endoderm (Panganiban et al., 1990; Reuter et al., 1990). Induction of Labial (Lab),

a homeotic protein expressed specifically in the endoderm is dependent on dpp and wg

expression in the visceral mesoderm (Panganiban et al., 1990; Reuter et al., 1990). The

upstream flanking sequence of lab contains both dpp and wg respose elements (Tremml and

Bienz, 1992). A simplified model of this signaling cascade concentrated at paragsegment

(ps6, ps7, and ps8) is represented in (Figure 5).

Ubx alone has been shown to be necessary but not sufficient for the full activation of Dpp

in the visceral mesoderm, indicating the requirement of another homeodomain protein (Sun et

al., 1995). This protein has been reported to be Extradenticle (Exd) (Stultz et al., 2006), which

belongs to the PBC family of homedomain proteins. In mammalians the Exd homologue is

known as Pbx (Burglin, 1997). To access the nucleus PBC family proteins associate with

members of another family of homeodomain proteins which belong to the MEIS family (Abu-

Shaar et al., 1999). In Drosophila homothorax (hth) belongs to this family (Burglin, 1997).

hth and exd have identical mutant phenotypes with severe head defects, including a failure of

head involution and transformation of the thoracic abdominal segment into a segment with a

more posterior identity (Rieckhof et al., 1997).

17  

Page 20: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Figure 5: Genetic interactions in the embryonic midgut at parasegments 6, 7and 8. 

Formation of the midgut visceral muscles

The Drosophila larval digestive tract is divided into the foregut, midgut and hindgut. The

midgut occupies the biggest portion of the digestive tract and consists of two tissue layers, the

visceral muscle layer and the epithelial layer. The visceral muscle is derived from the

mesoderm whereas the epithelial layer originates from the endoderm (Tepass and Hartenstein,

1994b). The midgut muscle is comprised of two types of muscles; the inner circular muscles

that are derived from the trunk mesoderm and the outer longitudinal muscles, derived from

the caudal mesoderm (Hartenstein, 1993). My focus in this thesis will be on the circular

muscles, but I will also briefly describe the longitudinal muscle, as well as the formation of

the hindgut and foregut in the following section.

One of the earliest known genes required for the formation of the trunk visceral mesoderm

is bagpipe (bap) which encodes a NK family homedomain containing transcription factor

(Azpiazu et al., 1996). Bap-expressing cells define the trunk

18  

Page 21: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

visceral mesoderm primodia which include the founder cells and fusion competent myoblasts

(Azpiazu and Frasch, 1993). The founder cells are columnar shaped cells that express

Dumbfounded (Duf)/ (Kin of irregular-chiasm-C) (Kirre), a transmembrane receptor that

belongs to the immunoglobulin superfamily (IgSF) (Ruiz-Gomez et al., 2000). They also

express Roughest (Rst)/ (Irregular-chiasm-C) (IrreC) (Strunkelnberg et al., 2001) which is a

paralogue of Duf/Kirre. Both Duf/Kirre and Rst have been shown to act as attractants for the

fusion competent myoblasts (Ruiz-Gomez, Coutts et al. 2000), (Strunkelnberg et al., 2001).

The fusion competent myoblasts exhibit a pebble-like morphology and are characterized by

the expression of another immunoglobulin superfamily protein called Sticks and stones (Sns)

(Bour et al., 2000). Hibris (Hbs) is a paralogue of Sns which is also expressed in the fusion

competent mysoblasts (Artero et al., 2003; Artero et al., 2001; Dworak et al., 2001). Both Sns

and Hbs are important for the fusion of the fusion competent myoblasts with the founder cells

(Artero et al., 2001; Bour et al., 2000; Dworak et al., 2001). This fusion of the visceral muscle

takes place during stage 12, and results in the formation of the circular visceral muscle

syncytium which is an elongated binucleated muscle (Martin et al., 2001) (see Tables 1 and 2

below).

19  

Page 22: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Table 1: Genes expressed early in the visceral mesoderm primodium

Genes expressed early in the visceral 

mesoderm primodium 

Protein class  Abbreviated phenotype in the visceral mesoderm 

Reference 

Twi (Twist)  Transcription Factor Mesodermal derivatives are abscent 

(Leptin, 1991), (Simpson, 1983) 

Tin (Tinman)  NK‐family homeodomain containing transcription factor 

Disrupted visceral mesoderm, absence of midgut muscles  

(Azpiazu and Frasch, 1993)

Bap (Bagpipe)  NK‐family homeodomain containing transcription factor 

Reduction/loss of midgut visceral muscles, loss of midgut constrictions 

(Azpiazu and Frasch, 1993),

Bin (Binou)  FoxF forkhead domain protein Disrupted visceral mesoderm, absence of midgut muscles 

(Zaffran et al., 2001)

Β3 Tub 60D ( Β3 Tubulin 60D)  GTP binding/GTPase activity Defects in midgut morphogenesis, failure of gut function  

(Dettman et al., 1996)

Fas III (Fasciclin III)  Transmembrane protein of the Ig (Immunoglobulin) family 

No visceral muscle phenotype reported 

(Patel et al., 1987)

Con (Connectin)  Adhesion molecule No visceral phenotype reported 

(Bilder and Scott, 1998)

Hh (Hedghog)  Secreted molecule  No visceral phenptype reported 

(Bilder and Scott, 1998)

20  

Page 23: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Table 2: Differential expression of genes in the founder cells and fusion competent

myoblasts in the visceral mesoderm

 

Genes expressed  in Founder cells (FC) 

Genes expressed in Fusion competent myoblasts (FCM) 

References 

Alk  Receptor Tyrosine kinase  Alk  Receptor Tyrosine kinase (Englund et al., 2003), (Loren et al., 2003), (Lee et al., 2003a) 

Duf/Kirre (Ig family transmembrane protein) 

  (Ruiz‐Gomez et al., 2000) 

Rst/IrreC (Ig family transmembrane protein) 

Rst/IrreC (Ig family transmembrane protein) 

(Strunkelnberg et al., 2001)

  Sns (Ig family transmembraneprotein) 

(Bour et al., 2000) 

  Hbs (Ig family transmembraneprotein) 

(Artero et al., 2001), (Dworak et al., 2001) 

Ants/rols  (Multidomain protein) (adaptor protein) 

  (Chen and Olson, 2001) 

Mbc (Multidomain protein) (SH3,GEF and CB) 

Mbc  (Multidomain protein) (SH3,GEF and CB) 

(Erickson et al., 1997) 

C3G  (GEF)    (Ishimaru et al., 1999), (Shirinian, M. unpublished) 

D‐Titin ( N terminal Ig, PEVK domain, C terminal FN‐III and  kinase activity), (muscle sarcomere binding  protein) 

D‐Titin ( N terminal Ig, PEVK domain, C terminal FN‐III and  kinase activity), (muscle sarcomere binding protein) 

(Machado and Andrew, 2000)

  Blown fuse (PH domain containing protein) 

(Doberstein et al., 1997) 

  

Sltr/Wip/Vrp (Wasp associated protein) 

(Massarwa et al., 2007),  (Kim et al., 2007), (Eriksson and Palmer unpublished) 

Dpp (TGF‐β family ligand)    (Shirinian et al., 2007) 

Hand (bHLH transcription factor)    (Varshney and Palmer, 2006), (Popichenko et al., 2007) 

  Lameduck (zinc finger transcription factor) * also known as minc 

(Duan et al., 2001) 

21  

Page 24: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

The longitudinal muscles of the visceral mesoderm are derived from the caudal visceral

mesoderm. At stage 11 of embryonic development, the caudal visceral muscle clusters

migrate towards the trunk mesoderm. Once they spread out over the visceral muscles the

longitudinal specific founders fuse with the remaining fusion competent myoblasts of the

visceral mesoderm to form the muscle syncytium (Klapper et al., 2002; Martin et al., 2001).

The caudal visceral mesoderm (CVM) can be visualized by reporter gene expression driven

by enhancer regions of crocodile (croc) and couch-potato (cpo). Brachyenteron (byn), a

Brachyury-related T-box gene, the transcription factor forkhead (fkh) and the Zn finger

homeodomain 1 (zfh-1) are required for caudal visceral mesoderm development. Mutations in

any of these genes result in disruption of caudal visceral mesoderm development (Kusch and

Reuter, 1999).

The hindgut primodium is situated at the posterior pole of the embryo. It is called the

proctodeal primodium (see Figure 2). The most ventral cells of this primodium will become

the hindgut visceral mesoderm (HVM) whereas the rest will form the hindgut epithelium.

During the invagination of the posterior midgut primodium (PMG), the hindgut primodium

simultaneously invaginates. After completion of germband extension, the malpighian tubules

evaginate from the proctodeal primodium. The hindgut visceral mesoderm remains associated

with the hindgut epithelium and begins to migrate around it. By the end of germband

retraction (stage 13) the hindgut elongates by cell rearrangement and is completely

surrounded by the hindgut visceral mesoderm (HVM) (reviewed in (Lengyel and Iwaki,

2002). The foregut primodium is located at the an.terior pole of the embryo which is also

called the stomodeum (see Figure 2). During gastrulation the stomodeum, containing the

foregut epithelium and the foregut visceral mesoderm invaginates and gives rise to the foregut

esophagus and proventriculus.

The Receptor Tyrosine kinase ALK and its role in early specification of visceral muscle

cell types

The signaling pathway regulating the specification of the founder cells and ultimately

controling the fusion process has been identified as the Jeb-Alk RTK signaling pathway, a

novel signaling pathway in Drosophila (Englund et al., 2003; Lee et al., 2003b; Stute et al.,

2004) (Figure 6). Jelly belly (Jeb) encodes a secreted molecule containing a LDL receptor

motif and is expressed in the somatic muscles adjacent to the visceral muscles (Weiss et al.,

22  

Page 25: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

2001). Jeb secreted from the somatic muscles is taken up by the visceral muscle cells which

express Alk (Figure 6). Alk is the Drosophila homologue of mammalian Anaplastic

Lymphoma Kinase (Alk), a receptor tyrosine kinase which belongs to the Insulin Receptor

superfamily. In the Drosophila embryo, Alk is expressed in all cells of the visceral muscle

(both founder cells and fusion competent myoblasts) (Loren et al., 2001). In both Alk and Jeb

mutants the visceral muscle founder cells do not specify, therefore visceral muscle fusion

does not take place. Consequently, mutants fail to develop a functional midgut musculature

(Lee et al., 2003a; Loren et al., 2003; Weiss et al., 2001).

Figure 6: Schematic figure representing the fusion of visceral muscle cells. The secreted molecule  Jelly Belly (Jeb) (green) produced by the somatic mesoderm binds to the Alk expressing visceral muscle cells (blue) and activates the receptor. This activation leads to  the  specification  of  the  founder  cells  (A).  (B)  Fusion  of  the  founder  cells  with  the fusion competent myoblasts generates a muscle fiber with two nuclei.  

23  

Page 26: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Molecular targets of the RTK ALK in the embryonic midgut

Alk has been shown to activate the RAS/MAPK signaling cascade in vivo in the embryonic

visceral mesoderm (Englund et al., 2003; Loren et al., 2001). It has also been shown to

activate transcriptional expression of duf/kirre and the T-Box gene org1 (Englund, 2003;(Lee

et al., 2003a). Our knowledge of downstream signaling molecules activated by Alk is

expanding constantly, and recent work has demonstrated that Alk activates transcription of the

bHLH transcription factor hand (Varshney and Palmer, 2006) as well as the TGFβ family

homologue in Drosophila – dpp - (Shirinian et al., 2007) in the visceral mesoderm (Figure

7).

Figure  7:  Schematic  representation  of  the  Jeb/Alk  signaling  pathway  and  its downstream targets. 

24  

Page 27: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Alk in human disease

Alk was originally identified in a chromosomal translocation resulting in an NPM-Alk

fusion protein, which is the causative agent of ALCL, Anaplastic Large Cell Lymphoma, a

subtype of non-Hodgkin’s lymphoma, arising in T-cells (Morris et al., 1994). Alk fusion

proteins have been also described in inflammatory myofibroblastic tumours (Griffin et al.,

1999), non-small cell lung cancer (SCC) (Soda et al., 2007), and diffuse B-cell lymphoma

(DBCL) (Arber et al., 1996). In a significant breakthough, a series of landmark articles in

2008 identifed gain-of function mutations in ALK in neuroblastoma (Caren et al., 2008; Chen

et al., 2008; George et al., 2008; Janoueix-Lerosey et al., 2008; Mosse et al., 2008). Studying

the function of this receptor in a simpler organism such as Drosophila will hopefully provide

some ground information which might explain its involvement in neuroblastoma and other

diseases.

Development of the somatic muscles in Drosophila

The architecture of larval somatic muscle

As soon as the mesodermal fate is specified after gastrulation, the mesoderm is divided

into two subdomains. A domain of low twist expression which will give rise to the visceral

mesoderm and the fat body, and a domain of high twist expression level which will give rise

to the somatic muscles and the heart. Low twist expression occurs in response to the

segmental gene even skipped (eve) whereas high twist expression is triggered by another

segmental gene, sloppy-paired (slp )(Azpiazu et al., 1996) (Riechmann et al., 1997). Within

the region of high expression there are clusters of cells which express Lethal-of-scute (LSc).

One cell in this population will be singled out by Notch and Delta-mediated lateral inhibition

(Baylies et al., 1998; Carmena et al., 1995). This cell will undergo asymmetric division to

form either two muscle founder cells or one muscle founder and one adult muscle precursor.

The remaining cells by default become fusion competent myoblasts (Carmena et al., 1995;

Ruiz Gomez and Bate, 1997). The development of the larval body wall musculature depends

on these two myoblast populations (Bate, 1990), which express a specific group of

transcriptional regulators that are called “identity genes” (Bourgouin et al., 1992; Dohrmann

et al., 1990; Jagla et al., 1998; Ruiz-Gomez et al., 1997). These transcription factors act

together to regulate specific target genes which in turn will control the unique morphology of

25  

Page 28: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

each muscle. For example founder cells differentially express apterous, even-skipped, kruppel

and ladybird (Dworak and Sink, 2002) whereas all fusion competent myoblasts express the

transcription factors lame duck, myoblast incompetent and gleeful (Duan et al., 2001; Furlong

et al., 2001; Ruiz-Gomez et al., 2002).

There are 30 larval body wall muscles in each abdominal hemisegment of Drosophila

melanogaster. All 30 mature muscles in each hemisegment share common physiological and

contractile properties. However, each muscle is distinct from the rest and can be recognized

by a unique set of morphological characteristics, including size, shape, orientation, attachment

within the epidermis and innervation by the central nervous system (reviewed in (Beckett and

Baylies, 2006). The 30 Drosophila larval muscles in each hemisegment are described below

(Figure 8). They consist of 3 DA (dorsal acute muscles), 1 LL (Lateral longitudinal), 1 LO

(lateral oblique), 4 VL (ventral longitudinal), 6 VO (ventral oblique), 4 DO (dorsal oblique),

4LT (lateral transverse), 1DT (Dorsal transverse), 2 SBM (segment border muscles), 3 VA

(ventral acute), and 1VT (ventral transverse) (Figure 8). In the larvae, the contractions of the

longitudinal muscles result in a shortening of the muscle fiber and forward movement of the

larvae. The musculature of the larvae is almost completely histolyzed during the

metamorphosis of the pupae. At this time a new set of adult muscles is formed from a pool of

myoblasts which remain undifferentiated during embryonic and larval life (Currie and Bate,

1991). The number of fusion events determines the size of an individual muscle, but the shape

is mostly controlled by muscle attachment. Muscles form attachments to specialized

epidermal cells called tendon cells (Figure 9), and also to each other (Schnorrer and Dickson,

2004). Where an individual muscle will attach is initially determined by the position of the

founder cell (FC). The FC determines the location of attachment while the fusion events

determine the muscle type whether longitudinal or transverse. As fusion proceeds, the

myotube extends filapodial extensions searching for a suitable attachment site. Once the

myotube reaches the tendon cell no more filapodia can be observed and the muscle becomes

smooth at both ends (Beckett and Baylies, 2006). This leads to the formation of (HAJs) hemi-

adherence junctions in both the myotube and the tendon cell. The HAJs are mediated by

heterodimeric transmembrane integrin receptors (described in detail in the following section)

which specifically bind to the intervening ECM. Within the cell, integrins recruit factors that

bind to and cause rearrangements of the cytoskeleton to form a strong

26  

Page 29: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

attachment between the inside and the outside of the cell (Brown, 2000; Brown et al., 2000).

Following integrin attachment to the ECM a large number of proteins become associated with

integrins. I will briefly describe some of best understood of these, such as Vinculin, Talin,

Paxillin and Tensin. Vinculin is a cytoskeletal protein which contains a central proline-rich

domain and a globular head domain that contains binding sites for Talin and α-actinin. The

tail region of vinculin contains binding sites for F-actin, Paxillin and lipids. In the nematode

Caenorhabditis elegans mutations in vinculin cause lethality (Barstead and Waterston, 1991).

However, in Drosophila, vinculin mutants are viable and fertile and have no vital importance

(Alatortsev et al., 1997). Talin is also recruited to the attachment sites by binding the

cytoplasmic tail of integrins (Horwitz et al., 1986; Patil et al., 1999). Talin deficient

Drosophila embryos exhibit failure in germ band retraction and muscle detachment, similar to

integrin null mutants (Brown et al., 2002). Paxillin is a LIM domain containing adaptor

protein which binds to integrin scaffolding proteins such as Src, Crk, Csk, FAK, vinculin etc

reviewed in (Turner, 1998). In Drosophila Paxillin has been shown to colocalize with

integrins at the muscle attachment sites (Wheeler and Hynes, 2001). To date, there is no

Drosophila paxillin mutant available to assess the functional importance of this protein.

Tensin is a multi-domain protein which binds the cytoplasmic tail of the integrin β-subunit via

its PTP domain (Lo, 2004). Drosophila tensin is encoded by the blistery locus and appears to

be required for the stabilization of adhesion in the wing since mutant animals exhibit a wing

blister phenotype (Lee et al., 2003b; Torgler et al., 2004).

27  

Page 30: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Figure 8: The Drosophila melanogaster larval body wall muscles. Cartoon showing the internal  (left)  and  external  (right) muscle  pattern  of  the Drosophila  larvae  (Reprinted from Karen Beckett  and Mary Baylies, 2006,  Int Rev Neurobiol) with permission  from Elsivier). Muscle  position  (D,  dorsal;  L,  lateral;  V,  ventral)  followed  by  orientation  (A, acute;  L,  longitudinal;  O,  oblique;  T,  transverse);  SBM,  segment  border  muscle. Motorneurons are also indicated in this picture. 

28  

Page 31: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Figure  9:  Schematic  representation  of  the  organization  of  muscle  attachment  sites. Muscles attach  to  specialized cells  called  tendon cells, which express  the  transcription factor  stripe.  Tendon  cells  express αPS1/βPS  integrins  and muscles  express αPS2/βPS integrins. At the attachment sites the extracellular domains of both integrin classes bind to the ECM (extracellular matrix). Within the cells integrins recruit factors that bind to and cause rearrangements of the cytoskeleton to form a strong connection between the outside and the inside of the cell (Reprinted from Karen Beckett and Mary Baylies, 2006, Int Rev Neurobiol) with permission from Elsivier).  

The Sarcomeric structure of muscles

The striated pattern of skeletal and cardiac muscles is due to sarcomeric protein

localization. Recent studies have shown that the localization of sarcomeric proteins is not

fixed. Proteins at the sarcomere and the cytosolic pool can dynamically move. There are for

instance proteins that localize at the Z band but are able to relocate to the A band or the

nucleus (Faul et al., 2007; Kadrmas and Beckerle, 2004; Wang et al., 2005) also reviewed in

(Kadrmas and Beckerle, 2004). The contractile units of the myofibrils are called sarcomeres.

The distribution of sarcomeres under light microscopy is visible as A, I and Z bands (Figure

29  

Page 32: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

10). The A band comprises thick filaments of myosin and proteins that bind myosin. The

middle part of the A band is called the M line (Figure 10). The I band is composed of thin

filaments of actin and proteins that bind actin. The Z-line is located at the middle of the I

band, and is also known as the Z discs (Figure 10). The Z bands also anchor at the ends of

myofibrils in specialized junctions called costameres. Many myopathies have been linked to

proteins associated with the Z bands (Frank et al., 2006) For example, a mutation within the

kinase domain of the Z band protein Titin is linked to the human muscle disease hereditary

myopathy with early respiratory failure (HMERF) (Frank et al., 2006). Moreover, a Q9R

mutation in α-Actinin - a major component of the Z-disc - causes dilated cardiomyopathy.

This mutation disrupts the interaction of α-Actinin with the muscle LIM protein (MLP)

(Frank et al., 2006). In addition to Titin and α-Actinin, many proteins exist which are

associated with Z bands that are implicated in different myopathies such as Ankyrin,

Myotilin, Zasp and PkD, CapZ, Nebulin, ϒ-Filamin, Myosin II, PDZ/LIM proteins,

Myopodin amoung others (Frank et al., 2006).

Figure 10:  Schematic representation of the sarcomere. 

 

30  

Page 33: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Guanine nucleotide exchange factors (GEFs) and their role as

regulators of small GTPases

Small G proteins have a typical size of 20-25 kDa and are important regulators of cellular

functions. They cycle between an inactive GDP bound conformation and an active GTP-

bound conformation. When they are in their active conformation, G proteins interact with

effectors proteins, which will then induce downstream signaling events (Kooistra et al., 2007).

The importance of proper regulation of small GTPases is illustrated by the fact that 15% of all

human tumors posses a mutation in the Ras family of small GTPases (Wennerberg et al.,

2005). Critical elements for the regulation of small GTPases are the GEFs (Guanine

nucleotide exchange factors) and GAPs (GTPase-activating proteins). Through the activity of

their catalytic domain GEFs stimulate dissociation of the nucleotide from the G protein by

modifying the nucleotide-binding site so that the affinity to GDP is decreased and replaced by

GTP (reviewed in (Bos et al., 2007) (Figure 11). In contrast, GAPs stimulate the intrinsic

ability of small GTPases to hydrolyze GTP.

 

Figure  11:  The  mechanism  of  GEF  ‐  induced  nucleotide  exchange.  The  nucleotide (yellow) interacts with the G protein (white) through its base and phosphate moieties. The GEF competes with the nucleotide for binding to the G protein thereby promoting nucleotide exchange. 

 

 

31  

Page 34: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Rap GTPases and their effectors

Rap proteins are members of the Ras-like small G-protein superfamily. The Rap family

includes Rap1 (A and B) and Rap2 (A, B and C). Rap1A was originally identified as a clone

in a revertent screen for cell transformation by oncogenic Ras (Bourne et al., 1990; Kitayama

et al., 1989). Rap1 is activated by various extracellular stimuli, such as RTKs, E-Cadherin and

GPCRs (G-protein coupled receptors), which induce the conversion of the inactive GDP-

bound form of Rap into the active GTP-bound form, via the stimulation of different GEFs. To

date six classes of GEFs are known to activate Rap1, including C3G, Epac, PDZ-GEFS,

RapGRPs and DOCK4 (Figure 12). Rap1A and Rap1B play important roles in cell polarity

(Schwamborn and Puschel, 2004), strengthening of cell attachments to the extracellular

matrix as well as to neighbouring cells (Bos, 2005), and cell-cell adhesion (Kooistra et al.,

2007). The above mentioned central functions of Rap1 explain its function as an inhibitor of

transformation induced by oncogenic Ras.

32  

Page 35: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

Figure 12:  Summary of the Rap1 signalling network. Reproduced from (Kooistra et al., 2007) with permission from the publisher. 

In Drosophila, elegant work linked Rap1 to adherence junctions function in vivo (AJs)

(Knox and Brown, 2002). Rap1 localizes at adherence junctions, particularly between newly

divided sister cells. Rap1 mutant cell clones lose their normal cohesion as well as their normal

hexagonal shape and detach from the surrounding wild-type tissue. In these cells proteins

localized at the adherence junctions such as DE-cadherin, α-catenin and β-catenin lose their

even distribution and localize at clusters in one side of the cells (Knox and Brown, 2002). A

variety of proteins are described to be activated upon Rap activation, including Integrins,

Cadherins, Rho GTPases, the Cdc42 small GTPases, and the small GTPase Rac, which in turn

influence actin remodeling and organization. I will briefly mention Cadherins and Integrins

which are of most relevance to this thesis.

33  

Page 36: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

INTRODUCTION 

34  

Cadherins are a large group of cell-cell adhesion molecules which mediate adhesion in a

calcium dependent manner. Classic Cadherins are by far the best understood in terms of

mechanism and function within a developing animal. The basic feature of this family is the

presence of a conserved intracellular domain that interacts with a set of cytoplasmic proteins

called catenins, which are concentrated at cell-cell adherence junctions. In Drosophila, there

are three classical Cadherins: DE-cadherin (DEcad), DN-cadherin (DNcad) and DN-cadherin

2 (DNcad2). In comparison, mammals have over 20 classic Cadherins (Nollet et al., 2000;

Tepass et al., 2000). DE-cadherin - Shotgun (shg) in Drosophila is a major epithelial cadherin

and is known to be required for maintaining epithelial cell integrity during cell

rearrangements (Tepass et al., 1996). DN-cadherin is the major Drosophila neural cadherin

and is required for axon patterning (Iwai et al., 1997) .

Integrins are a family of cell surface receptors that mediate cellular interactions with the

extracellular matrix. Each integrin is a heterodimer consisting of two transmembrane

subunits, α and β. Drosophila contains 2 β (βPS and βv) subunits and 5 α (αPS1-5) subunits

(Adams et al., 2000; Brown, 2000; Brown et al., 2000). Almost all mutations in PS integrin

genes cause lethality at late embryonic or early larval stages. Lethality is due to detachment of

somatic body wall muscles, failure of dorsal closure and defective germband retraction (Bokel

and Brown, 2002; Brown, 1994). Integrins bind their ligands in the extracellular matrix. The

αPS2βPS binds laminin and αPS1βPS bind RGD-containing ligands. In addition to the

integrin function in attaching the muscles to the epidermis, they have another role in linking

the actin-myosin contractile structures in the muscles. In both cases there is a requirement for

an ECM-dependent adhesion between two muscles or between the muscle and the epidermis.

Page 37: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

AIMS 

Aims of this thesis:

• To understand the interplay between the visceral mesoderm and the endoderm, which

together form the Drosophila midgut, during embryogenesis. This has been

approached as follows:

1. Analysing the importance of the visceral mesoderm for endodermal

development and migration during embryogenesis.

2. Genetic ablation of the visceral muscle and the endodermal epithelium

individually to analyse the function of each tissue.

3. Analysis of visceral muscle development in the absence of the

endoderm using mutants for the transcription factor huckebein .

• To understand the signaling events between the visceral mesoderm and the endoderm.

• To study the function of the founder cell specific Guanine nucleotide exchange factor

C3G in Drosophila melanogaster.

35  

Page 38: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

Drosophila Anaplastic Lymphoma Kinase regulates Dpp signaling in the developing

embryonic gut (Paper I).

Who is affecting whom and in what manner, when we consider the visceral muscle and the

endoderm during midgut development in Drosophila? What happens in the absence of either

tissue? How do these tissues communicate? In order to answer these questions we have taken

advantage of the simple model organism Drosophila to study gut development in different

aspects and conditions.

Migration of the endoderm is not complete in the absence of the visceral mesoderm.

Anaplastic lymphoma kinase Alk mutant embryos fail to specify founder cells in the

visceral mesoderm, and therefore do not form a midgut (Loren et al., 2003). Hence, these

mutant animals serve as a good model to examine the status of the endoderm in the absence of

the visceral mesoderm. Analysis of the endoderm in Alk mutants revealed that in the absence

of the visceral mesoderm, the initial anterior-posterior migration of the endoderm is not

affected but the later dorsal-ventral migration is blocked. This finding implies that founder

cells are not required to provide initial cues for the anterior-posterior migration of the

endoderm, and that the fusion competent myoblasts express those proteins required to provide

a ‘track’ such as the integrins that are essential for the migration of the midgut primodia

(Devenport and Brown, 2004; Martin-Bermudo et al., 1999; Roote and Zusman, 1995). This

interesting observation raised questions concerning the regulation of this event and the role of

the RTK Alk. Our investigations of both endodermal and visceral muscle markers have led us

to the following conclusions.

1- Dpp signaling in the midgut is impaired in Alk mutants.

Dpp belongs to the family of TGF-β related ligands and binds to a heteromeric receptor

complex of Type I and Type II transmembrane serine-threonine kinases (Figure 13). Ligand

binding to the type II receptor triggers association between the receptors leading to serine

phosphorylation of the type I receptor by the type II receptor. The activated Type I receptor

initiates pathway specific signaling by phosphorylating a distinct member of the receptor-

regulated Smad (R-Smad) family of cytosolic signal transduction proteins. Activated R-Smad

associates with a common Smad called (Co-Smad). The heterodimeric Smad/Co-Smad

36  

Page 39: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

complex subsequently translocates to the nucleus where it interacts with DNA-binding

cofactors to activate or repress expression of target genes. In Drosophila there are seven

TGF-β related ligands (including Dpp) (Doctor et al., 1992; Padgett et al., 1987), two R-

Smads (Mad and dSmad2) and one Co-Smad (Media) (Chen et al., 1996; Henderson and

Andrew, 1998; Newfeld et al., 1996; Raftery et al., 1995). There is also an inhibitory Smad

which inhibits the Smad/Co-smad complex known as Dad (Daughters against Dpp)

(Tsuneizumi et al., 1997) (Figure 13). Dpp is expressed in the founder cells of the visceral

mesoderm at early stages and in parasegment 7 of the developing midgut at late stages.

Analyzing dpp mRNA expression in Alk mutants by in situ hybridization revealed that the

expression of Dpp is dependent on Alk activity in the visceral mesoderm. Since the R-Smad

(Mad) becomes phosphorylated upon receptor activation, we employed phospho-Smad

specific antibodies that recognize activated Smad to analyse Mad activity. In Alk mutants

phospho-Mad staining was absent both in the visceral mesoderm and the endoderm

suggesting that normal Alk function is essential for Mad activation in the developing midgut

and endodermal cell population.

It has been previously shown that expression of the homeodomain protein Labial is

dependent on Dpp expression in the visceral mesoderm (Panganiban et al., 1990; Reuter et al.,

1990; Tremml and Bienz, 1992), and indeed in the absence of Alk no Labial expression could

be observed in the endoderm. Thus the expression of dpp in the visceral mesoderm and

consequently Labial in the endoderm is dependent on Alk in the visceral mesoderm. This

initial finding naturally led to further questions, such as how is the expression of dpp

regulated in the visceral mesoderm, as well as what role does Alk play in regulating this

expression?

37  

Page 40: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

 

Figure 13: Schematic of Dpp signaling pathway. The binding of Dpp to a type II receptor induces  a  structural  rearrangement  of  the  intracellular/cytoplasmic  kinase  domain, favoring  a  catalytically  active  conformation.  Upon  activating  the  type  II  receptor phosphorylates a serine residue on the type I receptor, leading to Mad recruitment and phosphorylation. Phosphorylated Mad subsequently associates with the co‐Smad Medea and the complex is translocated into the nucleus to regulate target gene expression. 

2- Drosophila Alk regulates the nuclear accumulation of Exd

Stultz and coworkers (Stultz et al., 2006) described an analysis of the activation of dpp

expression in parasegment 7 of the developing visceral mesoderm, in which they reported that

the homeodomain protein Exd (Rauskolb et al., 1993) has the ability to activate dpp

expression. Drosophila Exd is a homeodomain protein that translocates to the nucleus in a

regulated manner (Abu-Shaar et al., 1999; Aspland and White, 1997). Moreover, this study

further suggested that the nuclear localization of Exd is regulated by phosphorylation of as yet

38  

Page 41: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

unidentified residues. Given that Alk drives a signal transduction pathway that regulates the

activation of downstream components such as the protein kinase ERK (Englund et al., 2003;

Lee et al., 2003a; Stute et al., 2004), we were interested in examining Exd in the context of

Alk-mediated regulation of dpp. Interestingly, Exd accumulation was abolished in the visceral

mesoderm of Alk mutant embryos (Figure 14A, A’). Using a genetic trick of conversion of all

visceral mesoderm cells into founder cells by ectopically overexpressing Jeb, we observed an

accumulation of Exd in all cells (Figure 14B, B’). This suggests that the Jeb/Alk signaling

pathway regulates Exd accumulation in founder cells leading to dpp transcription in the

visceral muscles.

                       

39  

Page 42: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

 Figure  14:  Alk  regulates  the  nuclear  translocation  of  Exd.  Expression  of  the homeodomain protein Exd (red), the visceral mesoderm is visualized by anti‐Alk (green (A­C)),  DAPI  (blue) marks  the  nuclei  (A).  (A­B), nuclear  accumulation  of  Exd  in wild type embryos  (arrowheads  in A‐A’  indicate  the  founder cells).  In Alk mutant embryos, nuclear Exd is not observed (B). Conversion of FCMs to FCs by ectopically expressing the Alk ligand Jeb in the visceral mesoderm causes nuclear Exd accumulation in all the cells of  the  visceral  mesoderm  (C).  Schematic  demonstrating  the  conversion  of  visceral muscle cells into founder cells (D). 

  

40  

Page 43: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

Fusion of circular and longitudinal visceral muscles in Drosophila is independent of the

endoderm but further visceral muscle differentiation requires a close contact between

mesoderm and endoderm (Paper II)

We wished to understand the visceral mesoderm-endoderm interaction more thoroughly. In

the previous article we used Alk mutants as a model system in which the visceral muscle is

not formed, allowing us to study the endoderm epithelium formation and migration. In this

article we continued to analyze the interaction between these tissues, with focus on the effect

of the absence of the endoderm on the formation of the visceral mesoderm. We have

performed this by the following methods.

1. Ablation of the endoderm

We have performed tissue specific expression of the toxin Ricin using the UAS-GAL4

system (Hidalgo et al., 1995). Ricin binds irreversibly to the ribosome and thereby inhibits

protein synthesis. By utilizing tissue-specific GAL4 drivers, we have thereby ablated one

tissue of the digestive system at a time (Figure 15 A). Ablation of the endoderm caused a

severe disruption of the visceral mesoderm architecture (Figure 15B). Careful examination

revealed that the visceral muscle attempts to migrate dorsally and ventrally to form an

enclosed gut tube, but it never succeeds.

41  

Page 44: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

A

Figure  15:  The  endoderm  is  required  for  visceral  muscle  stretching  and  gut  tube formation.  Schematic  representing  the  endoderm  ablation  experiment  (A).    (B­E) Embryos  stained  with  anti.Alk  antibody  to  visualize  the  visceral  mesoderm.  (B)  wild type  embryo  (arrowhead,  indicates  the  visceral  mesoderm).  (C­E)  Confocal  sections through  embryos  expressing  Ricin  in  the  developing  endoderm.  Alk  positive  visceral mesoderm attempts to migrate dorsally and ventrally to creat a gut tube, but is unable to do so (arrowheads in E). 

42  

Page 45: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

2. Analyzing (gurt) gürtelchen mutants

The visceral muscle phenotype observed upon ablating the endoderm strengthened our

assumptions that there is a reciprocal need for both tissues in order to develop a normal

midgut. To genetically test the dependence of the visceral muscle on the underlying

endoderm, we wished to use a mutant that does not develop an endoderm. At this point, our

findings overlapped with those of our collaborators. They had identified a mutant from an

EMS screen for mutants with visceral muscle defects which exhibited a phenotype very

similar to that observed upon ablation of the endoderm with Ricin. This mutant was named

Gurt; due to the belt-like phenotype of the visceral muscle (gürtelchen is German for belt).

Gurt is a new allele of the huckebein (hkb) gene, a transcription factor known to be

required for endodermal midgut development (Bronner and Jackle, 1996). The endodermal

phenotype of the new huckbeingurt mutants phenocopies the endodermal ablation experiment

in that the visceral muscle is unable to stretch and form the midgut tube (Figure 16), instead

forming belt like phenotype.

 

Figure 16: Gurt mutant embryos display a belt like phenotype due to defects in visceral muscle stretching.Embryos are stained with Fas III to visualize visceral muscles. (B) Belt like  gut morphology  compared  to  properly  developed  gut  compartments  in wild  type embryos (A). 

 

43  

Page 46: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

Careful analysis of these mutants revealed that the phenotype observed is neither due to

visceral cell specification nor muscle fusion defects since founder cells and fusion competent

myoblasts are correctly specified and fused efficiently in huckbein gurt mutants. Furthermore,

our morphological analysis of genes required for hindgut development did not reveal any

influence of the ectoderm in visceral muscle stretching, indicating that stretching and

outgrowth of the visceral muscle is predominantly dependent on the endoderm.

 

44  

Page 47: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

Mutational analysis of the Guanine Nucleotide Exchange Factor C3G in Drosophila

melanogaster reveals a role for C3G in larval muscle development. (Paper III)

The guanine nucleotide exchange factor C3G was originally isolated as a binding partner

for the SH3 domain of the v-CRK adaptor molecule (Knudsen et al., 1994). C3G binds to Crk

through four proline rich regions situated within the central region of the molecule (Knudsen

et al., 1994; Tanaka et al., 1994). Further, the CDC25 catalytic region of C3G has been shown

in vitro to stimulate guanine nucleotide exchange on at least two Ras family members, RAP1

and R-RAS (Gotoh et al., 1995; Gotoh et al., 1997).

Identifying molecules that are downstream of Alk is one approach through which we

would like to explore the key players in this signaling cascade to better understand its

function. Given that Alk is expressed in both founder cells and fusion competent myoblasts,

we naturally wished to analyze genes that are expressed in these cells as potential targets.

C3G was shown previously to be expressed in the founder cells (Ishimaru et al., 1999) and

this expression was further verified by our in situ hybridization analysis, thus making C3G

one possible attractive candidate as an Alk target.

In this study we generated a Drosophila C3G null mutant in order to understand the C3G

function. ∆C3GMS flies are semi-lethal and have shorter life span suggesting that C3G clearly

has a role in the fitness and longevity of flies. C3G is expressed in embryonic CNS, somatic

and visceral muscles. Embryonic somatic and visceral muscles in ∆C3GMS mutants had no

obvious defects. However upon looking closely at the larval muscles we identified a

characteristic morphological defect specifically in the ventral longitudinal muscle 3 and 4.

Furthermore, monitoring of larval movements in vivo revealed defective propagation of

muscle movements (data not shown).The limiting factor in this analysis is the fact that C3G is

also expressed in the CNS, and therefore it is difficult to distinguish if the defect is due to the

function of C3G in the muscle or the brain. To overcome this problem rescue experiments

should be performed by overexpressing C3G specifically in the CNS or the muscles and

scoring for movement defects. More detailed analysis of larval muscle in ∆C3GMS mutant

animals revealed defects in integrin localization at the attachment sites in addition to

irregularities in the distribution of the Z-band specific protein Zasp. Zasp is a PDZ-LIM

domain containing protein that have been shown in Drosophila to genetically interact with

integrins (Jani and Schock, 2007). This suggests that the integrin phenotype in ∆C3GMS

45  

Page 48: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

mutant flies could be due to defective anchorage of the actin filaments to Z lines.

Overexpressing activated C3G in the somatic muscles caused severe defects in the actin

architecture of the larval muscle further strengthening the hypothesis that C3G is required for

the preservation of muscle integrity presumably by regulating integrins in larval muscles.

However, further studies will be required to better characterize these defects in the muscles

and the muscle attachment sites in relation to key proteins that regulate muscle attachment

integrity, contractility and muscle maintenance.

The muscle phenotype observed in ∆C3GMS mutants is also found in genes which are

required for maintaining muscle integrity and preventing muscle degeneration such as the

Dystrophin family of proteins (Blake et al., 2002; Hoffman et al., 1987). Strikingly,

Dystrophin RNAi knockdown has a similar phenotype in the muscles as ∆C3GMS mutants

including the VL3/VL4 muscles (van der Plas et al., 2007). To ask whether the similarity of

the phenotypes at the tissue level is maintained at the cellular level, we assayed for apoptosis

in ∆C3GMS mutants. We were not able to detect any apoptotic features in the larva of ∆C3GMS

mutants as it was the case also in Dystrophin RNAi knockdown. Muscle degeneration in

Dystrophin RNAi knockdown resulted in muscle necrosis characterized as (swollen

mitochondria) rather that apoptosis (van der Plas et al., 2007). Therefore, it is possible that a

similar phenomenon is taking place in ∆C3GMS mutants. A characteristic feature of muscular

dystrophy is that the disease progresses by time when the muscles are used and contracted

more often. A potential role for C3G in progressive muscle degeneration is plausible since the

phenotypes of ∆C3GMS and the RNAi knockdown of dystrophin in larval muscles is very

similar.

Mechanism of action of C3G is another branch of this project which will be very

interesting to address. In the mammalian system C3G has been shown to be mostly activating

the Rap1 GTPase (Balzac et al., 2005; Fukuyama et al., 2005). In Drosophila, Ishimaru and

coworkers (Ishimaru et al., 1999) have shown that Rap1 can rescue the rough eye phenotype

observed by overexpressing C3G, suggesting a genetic interaction between C3G and Rap1.

Double mutants between Rap1 and ∆C3GMS will be useful to test if there is any synergistic

effect. In Drosophila as second member of the Rap family of GTPases – Rap2L – has not

been characterized but is assumed to function in a similar way as Rap1, although there is no

data yet verifying this possibility. Double ∆C3GMS and Rap2L mutants will help us identify

46  

Page 49: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

RESULTS AND DISCUSSION 

47  

any genetic interaction. Moreover, GEF activity assays should be performed in vitro to further

confirm C3G as a GEF for the Rap small GTPases in Drosophila.

Page 50: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

CONCLUSIONS 

  The development of the visceral mesoderm and the endoderm are interdependent:

• Late endoderm migration and the formation of the endodermal midgut is dependent on

the visceral mesoderm (Paper I). 

• The receptor tyrosine kinase Alk regulates the transcription of dpp in the visceral

mesoderm (Paper I). 

• Ablation of the endoderm affects the stretching and the outgrowth of the visceral

mesoderm (Paper II) 

• The visceral mesoderm and the endoderm are interdependent and the normal

development of both tissues is required to achieve a proper midgut (Paper I and II) 

Analysis of the Guanine Nucleotide Exchange Factor C3G in Drosophila

melanogaster:

• ∆C3GMS mutants are semi-lethal and exhibit a shortened life span.  

• ∆C3GMS mutants exhibit a characteristic larval somatic muscle phenotype,

specifically at VL 3, 4 (ventral lateral muscles 3 and 4).  

• We suggest that C3G regulates the proper localization of integrins, thereby

regulating muscle integrity.  

 

 

       

48  

Page 51: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

ACKNOWLEDGEMENTS 

 I would like to express my sincere gratitude to all friends and colleagues that contributed in one way or another to this thesis and made my years in Umeå to be fun and warm (As opposed to cold Umeå’s nature).

My supervisor Ruth Palmer, thanks for introducing me to the world of scientific research and most importantly to my dear friends (the flies). I will never forget your first funny comment when you showed me the flies under the microscope (Margret, you should remember not to sneeze when you are pushing the flies☺ ). Thanks for your continuous encouragement in my projects, endless support, your caring attitude towards scientific or life related matters, your constant excitement which was always successful in motivating me. I will always value you!

Camilla, thanks for listening to all my stories from Lebanon and daily life matters. You were always generous when I needed help.

To members of Ruth Palmer’s laboratory, which I have shared a lot of time with.

Gaurav, thanks for sharing projects together, introducing me to the Indian culture and all the fun barbeques, jokes and nice time. Therese thanks for awakening the painting hobby in me, the most effective (in forcing) IKSU companion. I am sure you will finally run 3 Km in 20 minutes! And now I know that tables with lines are old fashion. Fredrik, it is so fun to have you in the lab; thanks for letting me share your scientific enthusiasm and the happy atmosphere you have created. Caroline, thanks for your help and most importantly for the fun we had during these years (Dubrovnik, Concerts, and Parties), for reading the thesis and thanks for introducing me to your wonderful parents Ann-Britt and Gunnar, for giving me some parental touch in Umeå.Olga thanks for introducing me to the Samba Orchestra. Dimitri, it was nice to talk with you about your hobbies and fishing experiences, good luck in your project. Joel, you have been a nice “visitor” to our lab, good luck with your studies.Yasuo, it is nice to meet you and looking forward to learn some Japanese, good luck!

Thanks to all the former members of the Ruth Palmer laboratory

Christina, working with you was fun during the start of my PhD. Thanks for introducing me to the magic confocal! Jana, thanks for your positive attitude and good luck with your big family.Anna, it was wonderful experience to teach genetics with you. Ludmilla, Therese Norsken, Mattias, it was really great to share these years with you!

Bengt Hallberg, thanks for your support, encouragement and your nice suggestions concerning my C3G project.

49  

Page 52: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

ACKNOWLEDGEMENTS 

Members of Bengt Hallbergs group are specially appreciated for the Friday Journal Clubs and Project presentations and the FIKA! Christina, Björn, Cecelia and the former members Emma, Lubna, Hai-Ling, Charlotte…

Group Jan Larsson, you create happy and nice atmosphere in the floor, Lina, thanks for joining us to IKSU.Group Dan Hultmark, thanks for making everyday life enjoyable. Group Åssa Rasmuson-Lestander, it was nice to have another fly group in our floor. Erik squash was fun and I would like to do it again!

Maria Westling, your help is highly appreciated, big Thanks for you!

Anne Holz and Georg Wolfstetter, thanks for the fruitful collaboration in the endoderm project.

Simon Tuck and Anna Berghard, thanks for following my progress every year.

Lars, Rahul, Ming, Agneta and Eva, it was fun to be around you also during my Masters work.

Fly food facility, Media and Dishes, we are very grateful to you, thanks for making our life easier. Kai, where did you disappear? It was always fun to chat with you.

Freddie, without you many things would not have happened! Thanks for your friendship and the great times we spent in Umeå, Stockholm and traveling.

Tobias, they say real friends share not only the happiness but also the tough times. You have been a real friend , thanks for your friendship, for the fun times, for endless laughter’s, for listening even to my non sense, for the memorable trips, for making Umeå enjoyable, for all the hobbies and scientific discussion.

Gautam thanks for your companion and for all sort of activities, cultural, Canary Islands travelling (will you forget the sunset from the mountains and the Veniguera road?). Thanks for your friendship and affection you always showed concerning all matters. I enjoyed discussing science with you and thanks for reading my thesis.

The Lithuanian gang: Jurate and Darius thanks for the Skiing experience and the great dinners at your place! Ignas, Rima, Karolis for the nice parties, ski trips and wonderful time. Marija P, thanks for introducing me to snowboarding which did not end up to be so successful but was fun.

Olena and Patrik, thanks for the nice FIKAs, Skiing trips, and special thanks to Patrik for updating us with the Palestinian activities in Umeå.

Azade, Saeed and Fremi we met in the student corridor and shared many social activities thanks for the great time.

50  

Page 53: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

ACKNOWLEDGEMENTS 

51  

Andreas, thanks for not giving up in teaching me Swedish! Jag tror att nu är Jag redo att prata svenska!

Aron, Tanushri and Jonathan, thanks for your company and good luck for the future.

The German gang: Chritina, Franziska, Alexandra, I enjoyed all the activities and parties with you. Barbara, I was going to do a mistake and put you together with the German gang!

My Parents Robinson and Melvina: Em serelines, arants tser kachaleranken, arants tser kourkouranken, arants tser anverch serov angareli er vor yes garenaye eraganatsenel yerazes. Shad shenorhagalem tsez! Tsez shad ge serem, as kerke ge neverem tsez yev yeghpayrnerous! Nazareth yev Garen, ankin, anneman yeghpayrneres, inch pakhdavor em yes tsez bes tangakin yeghpayrner ounenlous, Shnorhagalem tsez.

Mazen, There is definitely not enough space in this book to thank you. Thanks for your support and encouragement. What would one ever want more than love, care and someone to share the dreams with? That’s all what I wanted and luckily have!

For all those whose name is not mentioned, you should forgive me and you are all appreciated!

 

Page 54: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

REFERENCES 

 Abu‐Shaar, M., H.D. Ryoo, and R.S. Mann. 1999. Control of the nuclear  localization of Extradenticle 

by competing nuclear import and export signals. Genes Dev. 13:935‐45. Adams, M.D., S.E. Celniker, R.A. Holt, C.A. Evans, J.D. Gocayne, P.G. Amanatides, S.E. Scherer, P.W. Li, 

R.A. Hoskins, R.F. Galle, R.A. George, S.E. Lewis, S. Richards, M. Ashburner, S.N. Henderson, G.G. Sutton, J.R. Wortman, M.D. Yandell, Q. Zhang, L.X. Chen, R.C. Brandon, Y.H. Rogers, R.G. Blazej, M. Champe, B.D. Pfeiffer, K.H. Wan, C. Doyle, E.G. Baxter, G. Helt, C.R. Nelson, G.L. Gabor,  J.F. Abril, A. Agbayani, H.J. An, C. Andrews‐Pfannkoch, D. Baldwin, R.M. Ballew, A. Basu, J. Baxendale, L. Bayraktaroglu, E.M. Beasley, K.Y. Beeson, P.V. Benos, B.P. Berman, D. Bhandari,  S.  Bolshakov, D.  Borkova, M.R.  Botchan,  J.  Bouck,  P.  Brokstein,  P.  Brottier,  K.C. Burtis, D.A.  Busam, H.  Butler,  E.  Cadieu, A.  Center,  I.  Chandra,  J.M.  Cherry,  S.  Cawley,  C. Dahlke, L.B. Davenport, P. Davies, B. de Pablos, A. Delcher, Z. Deng, A.D. Mays, I. Dew, S.M. Dietz, K. Dodson, L.E. Doup, M. Downes, S. Dugan‐Rocha, B.C. Dunkov, P. Dunn, K.J. Durbin, C.C. Evangelista, C. Ferraz, S. Ferriera, W. Fleischmann, C. Fosler, A.E. Gabrielian, N.S. Garg, W.M. Gelbart,  K. Glasser, A. Glodek,  F. Gong,  J.H. Gorrell,  Z. Gu,  P. Guan, M. Harris, N.L. Harris,  D.  Harvey,  T.J.  Heiman,  J.R.  Hernandez,  J.  Houck,  D.  Hostin,  K.A.  Houston,  T.J. Howland,  M.H.  Wei,  C.  Ibegwam,  et  al.  2000.  The  genome  sequence  of  Drosophila melanogaster. Science. 287:2185‐95. 

Alatortsev, V.E.,  I.A. Kramerova, M.V. Frolov, S.A. Lavrov, and E.D. Westphal. 1997. Vinculin gene  is non‐essential in Drosophila melanogaster. FEBS Lett. 413:197‐201. 

Arber,  D.A.,  L.H.  Sun,  and  L.M.  Weiss.  1996.  Detection  of  the  t(2;5)(p23;q35)  chromosomal translocation  in  large  B‐cell  lymphomas  other  than  anaplastic  large  cell  lymphoma.  Hum Pathol. 27:590‐4. 

Artero, R., E.E. Furlong, K. Beckett, M.P. Scott, and M. Baylies. 2003. Notch and Ras signaling pathway effector  genes  expressed  in  fusion  competent  and  founder  cells  during  Drosophila myogenesis. Development. 130:6257‐72. 

Artero, R.D., I. Castanon, and M.K. Baylies. 2001. The immunoglobulin‐like protein Hibris functions as a dose‐dependent  regulator of myoblast  fusion  and  is differentially  controlled by Ras  and Notch signaling. Development. 128:4251‐64. 

Aspland,  S.E.,  and  R.A.  White.  1997.  Nucleocytoplasmic  localisation  of  extradenticle  protein  is spatially regulated throughout development in Drosophila. Development. 124:741‐7. 

Azpiazu, N., and M. Frasch. 1993.  tinman and bagpipe:  two homeo box genes  that determine  cell fates in the dorsal mesoderm of Drosophila. Genes Dev. 7:1325‐40. 

Azpiazu, N., P.A. Lawrence, J.P. Vincent, and M. Frasch. 1996. Segmentation and specification of the Drosophila mesoderm. Genes Dev. 10:3183‐94. 

Balzac, F., M. Avolio, S. Degani,  I. Kaverina, M. Torti, L. Silengo,  J.V. Small, and S.F. Retta. 2005. E‐cadherin endocytosis regulates the activity of Rap1: a traffic  light GTPase at the crossroads between cadherin and integrin function. J Cell Sci. 118:4765‐83. 

Barstead, R.J., and R.H. Waterston. 1991. Vinculin is essential for muscle function in the nematode. J Cell Biol. 114:715‐24. 

Bate, M. 1990. The embryonic development of  larval muscles  in Drosophila. Development. 110:791‐804. 

Baylies, M.K., M. Bate, and M. Ruiz Gomez. 1998. Myogenesis: a view from Drosophila. Cell. 93:921‐7. Beckett, K., and M.K. Baylies. 2006. The development of the Drosophila larval body wall muscles. Int 

Rev Neurobiol. 75:55‐70. Bellen, H.J., C.J. O'Kane, C. Wilson, U. Grossniklaus, R.K. Pearson, and W.J. Gehring. 1989. P‐element‐

mediated enhancer detection: a versatile method to study development in Drosophila. Genes Dev. 3:1288‐300. 

Bilder, D., and M.P. Scott. 1998. Hedgehog and wingless induce metameric pattern in the Drosophila visceral mesoderm. Dev Biol. 201:43‐56. 

Blake, D.J.,  A. Weir,  S.E. Newey,  and  K.E. Davies.  2002.  Function  and  genetics  of  dystrophin  and dystrophin‐related proteins in muscle. Physiol Rev. 82:291‐329. 

52  

Page 55: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

REFERENCES 

Bokel, C., and N.H. Brown. 2002. Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell. 3:311‐21. 

Bos, J.L. 2005. Linking Rap to cell adhesion. Curr Opin Cell Biol. 17:123‐8. Bos, J.L., H. Rehmann, and A. Wittinghofer. 2007. GEFs and GAPs: critical elements  in the control of 

small G proteins. Cell. 129:865‐77. Bour, B.A., M. Chakravarti,  J.M. West,  and  S.M. Abmayr. 2000. Drosophila  SNS,  a member of  the 

immunoglobulin superfamily that is essential for myoblast fusion. Genes Dev. 14:1498‐511. Bourgouin,  C.,  S.E.  Lundgren,  and  J.B.  Thomas.  1992.  Apterous  is  a Drosophila  LIM  domain  gene 

required for the development of a subset of embryonic muscles. Neuron. 9:549‐61. Bourne, H.R., D.A. Sanders, and F. McCormick. 1990. The GTPase superfamily: a conserved switch for 

diverse cell functions. Nature. 348:125‐32. Brand, A.H., and N. Perrimon. 1993. Targeted gene expression as a means of altering cell fates and 

generating dominant phenotypes. Development. 118:401‐15. Bronner, G., Q. Chu‐LaGraff, C.Q. Doe, B. Cohen, D. Weigel, H. Taubert, and H. Jackle. 1994. Sp1/egr‐

like  zinc‐finger  protein  required  for  endoderm  specification  and  germ‐layer  formation  in Drosophila. Nature. 369:664‐8. 

Bronner, G., and H. Jackle. 1991. Control and function of terminal gap gene activity  in the posterior pole region of the Drosophila embryo. Mech Dev. 35:205‐11. 

Bronner, G., and H. Jackle. 1996. Regulation and function of the terminal gap gene huckebein in the Drosophila blastoderm. Int J Dev Biol. 40:157‐65. 

Brown, N.H. 1994. Null mutations  in the alpha PS2 and beta PS  integrin subunit genes have distinct phenotypes. Development. 120:1221‐31. 

Brown, N.H.  2000.  Cell‐cell  adhesion  via  the  ECM:  integrin  genetics  in  fly  and worm. Matrix Biol. 19:191‐201. 

Brown, N.H., S.L. Gregory, and M.D. Martin‐Bermudo. 2000. Integrins as mediators of morphogenesis in Drosophila. Dev Biol. 223:1‐16. 

Brown, N.H., S.L. Gregory, W.L. Rickoll, L.I. Fessler, M. Prout, R.A. White, and  J.W. Fristrom. 2002. Talin is essential for integrin function in Drosophila. Dev Cell. 3:569‐79. 

Burglin, T.R. 1997. Analysis of TALE  superclass homeobox genes  (MEIS, PBC, KNOX,  Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25:4173‐80. 

Campos‐Ortega,  J.A.a.H.,  V.  1997.  The  Embryonic  Development  of  Drosophila  melanogaster. Springer, Berlin, Germany. 

Caren, H., F. Abel, P. Kogner, and T. Martinsson. 2008. High  incidence of DNA mutations and gene amplifications  of  the  ALK  gene  in  advanced  sporadic  neuroblastoma  tumours.  Biochem  J. 416:153‐9. 

Carmena, A., M. Bate, and F.  Jimenez. 1995. Lethal of  scute, a proneural gene, participates  in  the specification of muscle progenitors during Drosophila embryogenesis. Genes Dev. 9:2373‐83. 

Casanova,  J.  1990.  Pattern  formation  under  the  control  of  the  terminal  system  in  the Drosophila embryo. Development. 110:621‐8. 

Chen, E.H., and E.N. Olson. 2001. Antisocial, an intracellular adaptor protein, is required for myoblast fusion in Drosophila. Dev Cell. 1:705‐15. 

Chen, X., M.J. Rubock, and M. Whitman. 1996. A  transcriptional partner  for MAD proteins  in TGF‐beta signalling. Nature. 383:691‐6. 

Chen, Y., J. Takita, Y.L. Choi, M. Kato, M. Ohira, M. Sanada, L. Wang, M. Soda, A. Kikuchi, T. Igarashi, A. Nakagawara, Y. Hayashi, H. Mano, and S. Ogawa. 2008. Oncogenic mutations of ALK kinase in neuroblastoma. Nature. 455:971‐4. 

Costa,  M.,  E.T.  Wilson,  and  E.  Wieschaus.  1994.  A  putative  cell  signal  encoded  by  the  folded gastrulation  gene  coordinates  cell  shape  changes  during  Drosophila  gastrulation.  Cell. 76:1075‐89. 

Currie,  D.A.,  and  M.  Bate.  1991.  The  development  of  adult  abdominal  muscles  in  Drosophila: myoblasts express twist and are associated with nerves. Development. 113:91‐102. 

53  

Page 56: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

REFERENCES 

Dettman,  R.W.,  F.R.  Turner,  and  E.C.  Raff.  1996. Genetic  analysis  of  the Drosophila  beta3‐tubulin gene demonstrates that the microtubule cytoskeleton in the cells of the visceral mesoderm is required for morphogenesis of the midgut endoderm. Dev Biol. 177:117‐35. 

Devenport, D., and N.H. Brown. 2004. Morphogenesis in the absence of integrins: a mutation of both Drosophila β subunits prevents midgut migration. Development. 131:5405‐5415. 

Doberstein,  S.K.,  R.D.  Fetter,  A.Y. Mehta,  and  C.S. Goodman.  1997. Genetic  analysis  of myoblast fusion:  blown  fuse  is  required  for  progression  beyond  the  prefusion  complex.  J  Cell  Biol. 136:1249‐61. 

Doctor,  J.S., P.D.  Jackson, K.E. Rashka, M. Visalli, and F.M. Hoffmann. 1992. Sequence, biochemical characterization,  and  developmental  expression  of  a  new  member  of  the  TGF‐beta superfamily in Drosophila melanogaster. Dev Biol. 151:491‐505. 

Dohrmann, C., N. Azpiazu, and M. Frasch. 1990. A new Drosophila homeo box gene  is expressed  in mesodermal precursor  cells of distinct muscles during embryogenesis. Genes Dev. 4:2098‐111. 

Duan, H.,  J.B.  Skeath,  and H.T. Nguyen.  2001. Drosophila  Lame  duck,  a  novel member  of  the Gli superfamily, acts as a key regulator of myogenesis by controlling fusion‐competent myoblast development. Development. 128:4489‐500. 

Dworak, H.A., M.A. Charles, L.B. Pellerano, and H. Sink. 2001. Characterization of Drosophila hibris, a gene related to human nephrin. Development. 128:4265‐76. 

Dworak, H.A., and H. Sink. 2002. Myoblast fusion in Drosophila. Bioessays. 24:591‐601. Englund, C., C.E. Loren, C. Grabbe, G.K. Varshney, F. Deleuil, B. Hallberg, and R.H. Palmer. 2003. Jeb 

signals  through  the  Alk  receptor  tyrosine  kinase  to  drive  visceral muscle  fusion.  Nature. 425:512‐6. 

Erickson, M.R., B.J. Galletta, and S.M. Abmayr. 1997. Drosophila myoblast city encodes a conserved protein that  is essential for myoblast fusion, dorsal closure, and cytoskeletal organization. J Cell Biol. 138:589‐603. 

Faul,  C.,  A.  Dhume,  A.D.  Schecter,  and  P.  Mundel.  2007.  Protein  kinase  A,  Ca2+/calmodulin‐dependent  kinase  II,  and  calcineurin  regulate  the  intracellular  trafficking  of  myopodin between the Z‐disc and the nucleus of cardiac myocytes. Mol Cell Biol. 27:8215‐27. 

Foe,  V.E.,  and  B.M.  Alberts.  1983.  Studies  of  nuclear  and  cytoplasmic  behaviour  during  the  five mitotic cycles that precede gastrulation in Drosophila embryogenesis. J Cell Sci. 61:31‐70. 

Frank, D., C. Kuhn, H.A. Katus, and N. Frey. 2006. The sarcomeric Z‐disc: a nodal point  in signalling and disease. J Mol Med. 84:446‐68. 

Fukuyama, T., H. Ogita, T. Kawakatsu, T. Fukuhara, T. Yamada, T. Sato, K. Shimizu, T. Nakamura, M. Matsuda, and Y. Takai. 2005. Involvement of the c‐Src‐Crk‐C3G‐Rap1 signaling in the nectin‐induced activation of Cdc42 and formation of adherens junctions. J Biol Chem. 280:815‐25. 

Furlong, E.E., E.C. Andersen, B. Null, K.P. White, and M.P. Scott. 2001. Patterns of gene expression during Drosophila mesoderm development. Science. 293:1629‐33. 

George,  R.E.,  T.  Sanda, M.  Hanna,  S.  Frohling, W.  Luther,  2nd,  J.  Zhang,  Y.  Ahn, W.  Zhou, W.B. London, P. McGrady, L. Xue, S. Zozulya, V.E. Gregor, T.R. Webb, N.S. Gray, D.G. Gilliland, L. Diller, H. Greulich, S.W. Morris, M. Meyerson, and A.T. Look. 2008. Activating mutations  in ALK provide a therapeutic target in neuroblastoma. Nature. 455:975‐8. 

Golic,  M.M.,  Y.S.  Rong,  R.B.  Petersen,  S.L.  Lindquist,  and  K.G.  Golic.  1997.  FLP‐mediated  DNA mobilization to specific target sites  in Drosophila chromosomes. Nucleic Acids Res. 25:3665‐71. 

Gong, W.J., and K.G. Golic. 2003. Ends‐out, or replacement, gene targeting  in Drosophila. Proc Natl Acad Sci U S A. 100:2556‐61. 

Gotoh, T., S. Hattori, S. Nakamura, H. Kitayama, M. Noda, Y. Takai, K. Kaibuchi, H. Matsui, O. Hatase, H.  Takahashi,  and  et  al.  1995.  Identification  of Rap1  as  a  target  for  the  Crk  SH3  domain‐binding guanine nucleotide‐releasing factor C3G. Mol Cell Biol. 15:6746‐53. 

Gotoh, T., Y. Niino, M. Tokuda, O. Hatase, S. Nakamura, M. Matsuda, and S. Hattori. 1997. Activation of R‐Ras by Ras‐guanine nucleotide‐releasing factor. J Biol Chem. 272:18602‐7. 

54  

Page 57: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

REFERENCES 

Griffin,  C.A.,  A.L.  Hawkins,  C.  Dvorak,  C.  Henkle,  T.  Ellingham,  and  E.J.  Perlman.  1999.  Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res. 59:2776‐80. 

Hartenstein, V. 1993. Atlas of Drosophila Development. Cold Spring Harbour Laboratory Press, New York. 

Henderson,  K.D.,  and  D.J.  Andrew.  1998.  Identification  of  a  novel  Drosophila  SMAD  on  the  X chromosome. Biochem Biophys Res Commun. 252:195‐201. 

Hidalgo, A., J. Urban, and A.H. Brand. 1995. Targeted ablation of glia disrupts axon tract formation in the Drosophila CNS. Development. 121:3703‐12. 

Hoffman,  E.P.,  R.H.  Brown,  Jr.,  and  L.M.  Kunkel.  1987.  Dystrophin:  the  protein  product  of  the Duchenne muscular dystrophy locus. Cell. 51:919‐28. 

Horwitz,  A.,  K.  Duggan,  C.  Buck,  M.C.  Beckerle,  and  K.  Burridge.  1986.  Interaction  of  plasma membrane fibronectin receptor with talin‐‐a transmembrane linkage. Nature. 320:531‐3. 

Ishimaru, S., R. Williams, E. Clark, H. Hanafusa, and U. Gaul. 1999. Activation of the Drosophila C3G leads to cell  fate changes and overproliferation during development, mediated by the RAS‐MAPK pathway and RAP1. Embo J. 18:145‐55. 

Iwai, Y., T. Usui, S. Hirano, R. Steward, M. Takeichi, and T. Uemura. 1997. Axon patterning requires DN‐cadherin, a novel neuronal adhesion receptor, in the Drosophila embryonic CNS. Neuron. 19:77‐89. 

Jagla, T., F. Bellard, Y. Lutz, G. Dretzen, M. Bellard, and K. Jagla. 1998.  ladybird determines cell fate decisions during diversification of Drosophila somatic muscles. Development. 125:3699‐708. 

Jani, K., and F. Schock. 2007. Zasp is required for the assembly of functional integrin adhesion sites. J Cell Biol. 179:1583‐97. 

Janoueix‐Lerosey,  I., D.  Lequin,  L. Brugieres, A.  Ribeiro,  L.  de  Pontual, V.  Combaret, V.  Raynal, A. Puisieux,  G.  Schleiermacher,  G.  Pierron,  D.  Valteau‐Couanet,  T.  Frebourg,  J.  Michon,  S. Lyonnet,  J. Amiel, and O. Delattre. 2008. Somatic and germline activating mutations of  the ALK kinase receptor in neuroblastoma. Nature. 455:967‐70. 

Kadrmas, J.L., and M.C. Beckerle. 2004. The LIM domain: from the cytoskeleton to the nucleus. Nat Rev Mol Cell Biol. 5:920‐31. 

Kim,  S., K.  Shilagardi,  S.  Zhang,  S.N. Hong, K.L.  Sens,  J. Bo, G.A. Gonzalez,  and E.H. Chen. 2007. A critical function for the actin cytoskeleton in targeted exocytosis of prefusion vesicles during myoblast fusion. Dev Cell. 12:571‐86. 

Kitayama,  H.,  Y.  Sugimoto,  T. Matsuzaki,  Y.  Ikawa,  and M.  Noda.  1989.  A  ras‐related  gene with transformation suppressor activity. Cell. 56:77‐84. 

Klapper, R., C. Stute, O. Schomaker, T. Strasser, W. Janning, R. Renkawitz‐Pohl, and A. Holz. 2002. The formation of syncytia within the visceral musculature of the Drosophila midgut is dependent on duf, sns and mbc. Mech Dev. 110:85‐96. 

Klingler, M., M. Erdelyi,  J. Szabad, and C. Nusslein‐Volhard. 1988. Function of  torso  in determining the terminal anlagen of the Drosophila embryo. Nature. 335:275‐7. 

Knox, A.L., and N.H. Brown. 2002. Rap1 GTPase regulation of adherens junction positioning and cell adhesion. Science. 295:1285‐8. 

Knudsen,  B.S.,  S.M.  Feller,  and  H.  Hanafusa.  1994.  Four  proline‐rich  sequences  of  the  guanine‐nucleotide  exchange  factor  C3G  bind with  unique  specificity  to  the  first  Src  homology  3 domain of Crk. In J Biol Chem. Vol. 269. 32781‐7. 

Kooistra, M.R., N. Dube, and J.L. Bos. 2007. Rap1: a key regulator in cell‐cell junction formation. J Cell Sci. 120:17‐22. 

Kusch, T., and R. Reuter. 1999. Functions for Drosophila brachyenteron and forkhead  in mesoderm specification and cell signalling. Development. 126:3991‐4003. 

Lee,  H.H.,  A.  Norris,  J.B. Weiss,  and M.  Frasch.  2003a.  Jelly  belly  protein  activates  the  receptor tyrosine kinase Alk to specify visceral muscle pioneers. Nature. 425:507‐12. 

Lee,  S.B.,  K.S.  Cho,  E.  Kim,  and  J.  Chung.  2003b.  blistery  encodes  Drosophila  tensin  protein  and interacts  with  integrin  and  the  JNK  signaling  pathway  during  wing  development. Development. 130:4001‐10. 

55  

Page 58: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

REFERENCES 

Lee, Y.M., T. Park, R.A. Schulz, and Y. Kim. 1997. Twist‐mediated activation of  the NK‐4 homeobox gene  in  the  visceral  mesoderm  of  Drosophila  requires  two  distinct  clusters  of  E‐box regulatory elements. J Biol Chem. 272:17531‐41. 

Lengyel,  J.A.,  and  D.D.  Iwaki.  2002.  It  takes  guts:  the  Drosophila  hindgut  as  a model  system  for organogenesis. Dev Biol. 243:1‐19. 

Leptin, M.  1991.  twist  and  snail  as  positive  and  negative  regulators  during Drosophila mesoderm development. Genes Dev. 5:1568‐76. 

Lo, S.H. 2004. Tensin. Int J Biochem Cell Biol. 36:31‐4. Loren, C.E., C. Englund, C. Grabbe, B. Hallberg, T. Hunter, and R.H. Palmer. 2003. A crucial role for the 

Anaplastic  lymphoma  kinase  receptor  tyrosine  kinase  in  gut  development  in  Drosophila melanogaster. EMBO Rep. 4:781‐6. 

Loren, C.E., A. Scully, C. Grabbe, P.T. Edeen,  J. Thomas, M. McKeown, T. Hunter, and R.H. Palmer. 2001. Identification and characterization of DAlk: a novel Drosophila melanogaster RTK which drives ERK activation in vivo. Genes Cells. 6:531‐44. 

Machado, C., and D.J. Andrew. 2000. D‐Titin: a giant protein with dual  roles  in  chromosomes and muscles. J Cell Biol. 151:639‐52. 

Martin‐Bermudo,  M.D.,  I.  Alvarez‐Garcia,  and  N.H.  Brown.  1999.  Migration  of  the  Drosophila primordial midgut cells requires coordination of diverse PS integrin functions. Development. 126:5161‐9. 

Martin, B.S., M. Ruiz‐Gomez, M. Landgraf, and M. Bate. 2001. A distinct set of founders and fusion‐competent  myoblasts  make  visceral  muscles  in  the  Drosophila  embryo.  Development. 128:3331‐8. 

Massarwa, R., S. Carmon, B.Z. Shilo, and E.D. Schejter. 2007. WIP/WASp‐based actin‐polymerization machinery is essential for myoblast fusion in Drosophila. Dev Cell. 12:557‐69. 

Moffat, K.G.,  J.H. Gould, H.K. Smith, and C.J. O'Kane. 1992.  Inducible cell ablation  in Drosophila by cold‐sensitive ricin A chain. Development. 114:681‐7. 

Morris, S.W., M.N. Kirstein, M.B. Valentine, K.G. Dittmer, D.N. Shapiro, D.L. Saltman, and A.T. Look. 1994.  Fusion  of  a  kinase  gene,  ALK,  to  a  nucleolar  protein  gene,  NPM,  in  non‐Hodgkin's lymphoma. Science. 263:1281‐4. 

Mosse, Y.P., M. Laudenslager, L. Longo, K.A. Cole, A. Wood, E.F. Attiyeh, M.J. Laquaglia, R. Sennett, J.E. Lynch, P. Perri, G. Laureys, F. Speleman, C. Kim, C. Hou, H. Hakonarson, A. Torkamani, N.J. Schork,  G.M.  Brodeur,  G.P.  Tonini,  E.  Rappaport,  M.  Devoto,  and  J.M.  Maris.  2008. Identification of ALK as a major familial neuroblastoma predisposition gene. Nature. 455:930‐5. 

Newfeld, S.J., E.H. Chartoff,  J.M. Graff, D.A. Melton, and W.M. Gelbart. 1996. Mothers against dpp encodes  a  conserved  cytoplasmic  protein  required  in  DPP/TGF‐beta  responsive  cells. Development. 122:2099‐108. 

Nollet, F., P. Kools, and F. van Roy. 2000. Phylogenetic analysis of  the cadherin superfamily allows identification of six major subfamilies besides several solitary members. J Mol Biol. 299:551‐72. 

Nusslein‐Volhard,  C.,  H.G.  Frohnhofer,  and  R.  Lehmann.  1987.  Determination  of  anteroposterior polarity in Drosophila. Science. 238:1675‐81. 

Padgett, R.W., R.D. St Johnston, and W.M. Gelbart. 1987. A transcript from a Drosophila pattern gene predicts  a  protein  homologous  to  the  transforming  growth  factor‐beta  family.  Nature. 325:81‐4. 

Panganiban,  G.E.,  R.  Reuter, M.P.  Scott,  and  F.M.  Hoffmann.  1990.  A  Drosophila  growth  factor homolog,  decapentaplegic,  regulates  homeotic  gene  expression  within  and  across  germ layers during midgut morphogenesis. Development. 110:1041‐50. 

Patel,  N.H.,  P.M.  Snow,  and  C.S.  Goodman.  1987.  Characterization  and  cloning  of  fasciclin  III:  a glycoprotein  expressed  on  a  subset  of  neurons  and  axon  pathways  in  Drosophila.  Cell. 48:975‐88. 

56  

Page 59: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

REFERENCES 

Patil,  S.,  A.  Jedsadayanmata,  J.D.  Wencel‐Drake,  W.  Wang,  I.  Knezevic,  and  S.C.  Lam.  1999. Identification of  a  talin‐binding  site  in  the  integrin beta(3)  subunit distinct  from  the NPLY regulatory motif of post‐ligand binding functions. The talin n‐terminal head domain interacts with the membrane‐proximal region of the beta(3) cytoplasmic tail. J Biol Chem. 274:28575‐83. 

Pignoni, F., R.M. Baldarelli, E. Steingrimsson, R.J. Diaz, A. Patapoutian, J.R. Merriam, and J.A. Lengyel. 1990. The Drosophila gene tailless is expressed at the embryonic termini and is a member of the steroid receptor superfamily. Cell. 62:151‐63. 

Popichenko, D., J. Sellin, M. Bartkuhn, and A. Paululat. 2007. Hand is a direct target of the forkhead transcription  factor  Biniou  during Drosophila  visceral mesoderm  differentiation.  BMC Dev Biol. 7:49. 

Raftery, L.A., V. Twombly, K. Wharton, and W.M. Gelbart. 1995. Genetic screens to identify elements of the decapentaplegic signaling pathway in Drosophila. Genetics. 139:241‐54. 

Rauskolb, C., M. Peifer, and E. Wieschaus. 1993. extradenticle, a regulator of homeotic gene activity, is a homolog of the homeobox‐containing human proto‐oncogene pbx1. Cell. 74:1101‐12. 

Reuter, R., B. Grunewald, and M. Leptin. 1993. A role for the mesoderm in endodermal migration and morphogenesis in Drosophila. Development. 119:1135‐45. 

Reuter, R., and M. Leptin. 1994.  Interacting functions of snail, twist and huckebein during the early development of germ layers in Drosophila. Development. 120:1137‐50. 

Reuter,  R., G.E.  Panganiban,  F.M. Hoffmann,  and M.P.  Scott.  1990. Homeotic  genes  regulate  the spatial  expression  of  putative  growth  factors  in  the  visceral  mesoderm  of  Drosophila embryos. Development. 110:1031‐40. 

Reuter, R., and M.P. Scott. 1990. Expression and function of the homoeotic genes Antennapedia and Sex combs reduced in the embryonic midgut of Drosophila. Development. 109:289‐303. 

Riechmann, V., U. Irion, R. Wilson, R. Grosskortenhaus, and M. Leptin. 1997. Control of cell fates and segmentation in the Drosophila mesoderm. Development. 124:2915‐22. 

Rieckhof, G.E., F. Casares, H.D. Ryoo, M. Abu‐Shaar, and R.S. Mann. 1997. Nuclear  translocation of extradenticle  requires homothorax, which encodes  an extradenticle‐related homeodomain protein. Cell. 91:171‐83. 

Roote, C.E., and S. Zusman. 1995. Functions for PS integrins in tissue adhesion, migration, and shape changes during early embryonic development in Drosophila. Dev Biol. 169:322‐36. 

Ruiz‐Gomez, M., N. Coutts, A. Price, M.V.  Taylor,  and M. Bate. 2000. Drosophila dumbfounded:  a myoblast attractant essential for fusion. Cell. 102:189‐98. 

Ruiz‐Gomez, M., N.  Coutts, M.L.  Suster, M.  Landgraf,  and M.  Bate.  2002. myoblasts  incompetent encodes a zinc finger transcription factor required to specify fusion‐competent myoblasts in Drosophila. Development. 129:133‐41. 

Ruiz‐Gomez, M., S. Romani, C. Hartmann, H. Jackle, and M. Bate. 1997. Specific muscle identities are regulated by Kruppel during Drosophila embryogenesis. Development. 124:3407‐14. 

Ruiz Gomez, M., and M. Bate. 1997. Segregation of myogenic lineages in Drosophila requires numb. Development. 124:4857‐66. 

Ryder, E., F. Blows, M. Ashburner, R. Bautista‐Llacer, D. Coulson, J. Drummond, J. Webster, D. Gubb, N. Gunton, G. Johnson, C.J. O'Kane, D. Huen, P. Sharma, Z. Asztalos, H. Baisch, J. Schulze, M. Kube, K. Kittlaus, G. Reuter, P. Maroy,  J.  Szidonya, A. Rasmuson‐Lestander, K. Ekstrom, B. Dickson, C. Hugentobler, H. Stocker, E. Hafen, J.A. Lepesant, G. Pflugfelder, M. Heisenberg, B. Mechler, F. Serras, M. Corominas, S. Schneuwly, T. Preat, J. Roote, and S. Russell. 2004. The DrosDel  collection:  a  set  of  P‐element  insertions  for  generating  custom  chromosomal aberrations in Drosophila melanogaster. Genetics. 167:797‐813. 

Ryder,  E.,  and  S.  Russell.  2003.  Transposable  elements  as  tools  for  genomics  and  genetics  in Drosophila. Brief Funct Genomic Proteomic. 2:57‐71. 

Schnorrer,  F.,  and  B.J.  Dickson.  2004.  Muscle  building;  mechanisms  of  myotube  guidance  and attachment site selection. Dev Cell. 7:9‐20. 

57  

Page 60: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

REFERENCES 

Schupbach, T., and E. Wieschaus. 1986. Germline autonomy of maternal‐effect mutations altering the embryonic body pattern of Drosophila. Dev Biol. 113:443‐8. 

Schwamborn, J.C., and A.W. Puschel. 2004. The sequential activity of the GTPases Rap1B and Cdc42 determines neuronal polarity. Nat Neurosci. 7:923‐9. 

Shirinian, M.,  G.  Varshney,  C.E.  Loren,  C.  Grabbe,  and  R.H.  Palmer.  2007.  Drosophila  Anaplastic Lymphoma Kinase regulates Dpp signalling in the developing embryonic gut. Differentiation. 75:418‐26. 

Simpson, P. 1983. Maternal‐Zygotic Gene Interactions during Formation of the Dorsoventral Pattern in Drosophila Embryos. Genetics. 105:615‐632. 

Soda, M., Y.L. Choi, M. Enomoto, S. Takada, Y. Yamashita, S.  Ishikawa, S. Fujiwara, H. Watanabe, K. Kurashina, H. Hatanaka, M. Bando, S. Ohno, Y.  Ishikawa, H. Aburatani, T. Niki, Y. Sohara, Y. Sugiyama, and H. Mano. 2007.  Identification of  the  transforming EML4‐ALK  fusion gene  in non‐small‐cell lung cancer. Nature. 448:561‐6. 

Sprenger,  F.,  L.M.  Stevens,  and  C.  Nusslein‐Volhard.  1989.  The  Drosophila  gene  torso  encodes  a putative receptor tyrosine kinase. Nature. 338:478‐83. 

Strecker,  T.R.,  S.R. Halsell, W.W.  Fisher,  and H.D.  Lipshitz.  1989.  Reciprocal  effects  of  hyper‐  and hypoactivity mutations in the Drosophila pattern gene torso. Science. 243:1062‐6. 

Strecker, T.R., K. Kongsuwan, J.A. Lengyel, and J.R. Merriam. 1986. The zygotic mutant tailless affects the anterior and posterior ectodermal regions of the Drosophila embryo. Dev Biol. 113:64‐76. 

Strunkelnberg, M.,  B.  Bonengel,  L.M. Moda, A. Hertenstein, H.G.  de  Couet,  R.G.  Ramos,  and  K.F. Fischbach.  2001.  rst  and  its  paralogue  kirre  act  redundantly  during  embryonic  muscle development in Drosophila. Development. 128:4229‐39. 

Stultz, B.G., D.G.  Jackson, M.A. Mortin, X. Yang, P.A. Beachy, and D.A. Hursh. 2006. Transcriptional activation by extradenticle in the Drosophila visceral mesoderm. Dev Biol. 290:482‐94. 

Stute,  C.,  K.  Schimmelpfeng,  R.  Renkawitz‐Pohl,  R.H.  Palmer,  and  A.  Holz.  2004.  Myoblast determination in the somatic and visceral mesoderm depends on Notch signalling as well as on milliways(mili(Alk)) as receptor for Jeb signalling. Development. 131:743‐54. 

Sun, B., D.A. Hursh, D.  Jackson, and P.A. Beachy. 1995. Ultrabithorax protein  is necessary but not sufficient for full activation of decapentaplegic expression in the visceral mesoderm. Embo J. 14:520‐35. 

Sweeton, D., S. Parks, M. Costa, and E. Wieschaus. 1991. Gastrulation in Drosophila: the formation of the ventral furrow and posterior midgut invaginations. Development. 112:775‐89. 

Tanaka, S., T. Morishita, Y. Hashimoto, S. Hattori, S. Nakamura, M. Shibuya, K. Matuoka, T. Takenawa, T.  Kurata,  K.  Nagashima,  and  et  al.  1994.  C3G,  a  guanine  nucleotide‐releasing  protein expressed ubiquitously, binds to the Src homology 3 domains of CRK and GRB2/ASH proteins. Proc Natl Acad Sci U S A. 91:3443‐7. 

Tepass, U., E. Gruszynski‐DeFeo, T.A. Haag, L. Omatyar, T. Torok, and V. Hartenstein. 1996. shotgun encodes Drosophila  E‐cadherin  and  is preferentially  required during  cell  rearrangement  in the neurectoderm and other morphogenetically active epithelia. Genes Dev. 10:672‐85. 

Tepass,  U.,  and  V.  Hartenstein.  1994a.  The  development  of  cellular  junctions  in  the  Drosophila embryo. Dev Biol. 161:563‐96. 

Tepass, U., and V. Hartenstein. 1994b. Epithelium  formation  in  the Drosophila midgut depends on the interaction of endoderm and mesoderm. Development. 120:579‐90. 

Tepass, U., K. Truong, D. Godt, M.  Ikura, and M. Peifer. 2000. Cadherins  in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol. 1:91‐100. 

Thibault,  S.T.,  M.A.  Singer,  W.Y.  Miyazaki,  B.  Milash,  N.A.  Dompe,  C.M.  Singh,  R.  Buchholz,  M. Demsky, R. Fawcett, H.L. Francis‐Lang,  L. Ryner,  L.M. Cheung, A. Chong, C. Erickson, W.W. Fisher, K. Greer, S.R. Hartouni, E. Howie, L. Jakkula, D. Joo, K. Killpack, A. Laufer, J. Mazzotta, R.D.  Smith,  L.M.  Stevens, C.  Stuber,  L.R.  Tan, R. Ventura, A. Woo,  I.  Zakrajsek,  L.  Zhao,  F. Chen,  C.  Swimmer,  C.  Kopczynski,  G.  Duyk,  M.L.  Winberg,  and  J.  Margolis.  2004.  A complementary  transposon  tool kit  for Drosophila melanogaster using P and piggyBac. Nat Genet. 36:283‐7. 

58  

Page 61: Midgut and muscle development in Drosophila melanogaster212847/FULLTEXT01.pdf · Midgut and muscle development in Drosophila melanogaster . ... a desired tissue or cell type and analyzing

REFERENCES 

59  

Thisse, B., C. Stoetzel, C. Gorostiza‐Thisse, and F. Perrin‐Schmitt. 1988. Sequence of  the  twist gene and nuclear localization of its protein in endomesodermal cells of early Drosophila embryos. EMBO J. 7:2175‐83. 

Torgler,  C.N., M. Narasimha,  A.L.  Knox,  C.G.  Zervas, M.C.  Vernon,  and N.H.  Brown.  2004.  Tensin stabilizes integrin adhesive contacts in Drosophila. Dev Cell. 6:357‐69. 

Tremml, G., and M. Bienz. 1989. Homeotic gene expression  in the visceral mesoderm of Drosophila embryos. EMBO J. 8:2677‐85. 

Tremml, G., and M. Bienz. 1992. Induction of labial expression in the Drosophila endoderm: response elements for dpp signalling and for autoregulation. Development. 116:447‐56. 

Tsuneizumi,  K.,  T.  Nakayama,  Y.  Kamoshida,  T.B.  Kornberg,  J.L.  Christian,  and  T.  Tabata.  1997. Daughters against dpp modulates dpp organizing activity  in Drosophila wing development. Nature. 389:627‐31. 

Turner, C.E. 1998. Paxillin. Int J Biochem Cell Biol. 30:955‐9. Turner,  F.R.,  and A.P. Mahowald. 1977.  Scanning electron microscopy of Drosophila melanogaster 

embryogenesis. II. Gastrulation and segmentation. Dev Biol. 57:403‐16. van der Plas, M.C., G.S. Pilgram, A.W. de  Jong, M.R. Bansraj,  L.G.  Fradkin,  and  J.N. Noordermeer. 

2007. Drosophila Dystrophin is required for integrity of the musculature. Mech Dev. 124:617‐30. 

Wang, J., N. Shaner, B. Mittal, Q. Zhou, J. Chen, J.M. Sanger, and J.W. Sanger. 2005. Dynamics of Z‐band based proteins in developing skeletal muscle cells. Cell Motil Cytoskeleton. 61:34‐48. 

Varshney, G.K., and R.H. Palmer. 2006. The bHLH transcription factor Hand is regulated by Alk in the Drosophila embryonic gut. Biochem Biophys Res Commun. 351:839‐46. 

Weigel, D., G.  Jurgens, M. Klingler, and H.  Jackle. 1990. Two gap genes mediate maternal  terminal pattern information in Drosophila. Science. 248:495‐8. 

Weiss, J.B., K.L. Suyama, H.H. Lee, and M.P. Scott. 2001. Jelly belly: a Drosophila LDL receptor repeat‐containing signal required for mesoderm migration and differentiation. Cell. 107:387‐98. 

Wennerberg, K., K.L. Rossman, and C.J. Der. 2005. The Ras superfamily at a glance. J Cell Sci. 118:843‐6. 

Wheeler, G.N., and R.O. Hynes. 2001. The cloning, genomic organization and expression of the focal contact protein paxillin in Drosophila. Gene. 262:291‐9. 

Yin,  Z.,  X.L.  Xu,  and M.  Frasch.  1997. Regulation  of  the  twist  target  gene  tinman  by modular  cis‐regulatory elements during early mesoderm development. Development. 124:4971‐82. 

Zaffran,  S.,  A.  Kuchler,  H.H.  Lee,  and M.  Frasch.  2001.  biniou  (FoxF),  a  central  component  in  a regulatory network controlling visceral mesoderm development and midgut morphogenesis in Drosophila. Genes Dev. 15:2900‐15. 

Zusman, S.B., and E.F. Wieschaus. 1985. Requirements for zygotic gene activity during gastrulation in Drosophila melanogaster. Dev Biol. 111:359‐71.